Semiconductor Memories

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Semiconductor Memories"

Transcription

1 Semiconductor Memories Semiconductor memories array capable of storing large quantities of digital information are essential to all digital systems Maximum realizable data storage capacity of a single chip doubles every two years On-chip memory have become a widely used subsystem in many VLSI circuit Prof. Gaetano Palumbo 1 Semiconductor memory read-write RWM read-only ROM nonvolatile read-write NRWM non random access random access EPROM E PROM FLASH FIFO, LIFO CAM static SRAM dynamic DRAM Prof. Gaetano Palumbo 1

2 Memory characteristic Capability to store data, Memory Size (bit, byte or word) Time needed to retrieve data, read-access (delay between the read request and the time the data is available) Time elapsed between a write request and the final writing of data, write-access Minimum time required between successive reads or writes, cycle time (it is greater than the access times. It can be different for write or read operation, but it is assumed equal for simplicity) Prof. Gaetano Palumbo 3 Read cycle READ Read access Read access Write cycle WRITE Data Valid Write access DATA Data written Prof. Gaetano Palumbo 4

3 Memory architectures S0 S1 S S n- S n-1 Word 0 Word 1 Word Word n- Word n-1 Storage cell (bit) Input-Output A0 A1 A k-1 d ec o d er k = log n S0 S n-1 Word 0 Word 1 Word Word n- Word n-1 Input-Output A decoder is inserted to reduce the number of select signals (A o A K-1 address word) Prof. Gaetano Palumbo 5 In order to optimize the area of the memory the shape of the core should be almost square A k A k+1 A m-1 Word line d e r c o o w d e r A o A k-1 Input-Output Word 0 Word 1 Word Word N- Word N-1 sense amplifiers column decoder storage cell (word) bit line Prof. Gaetano Palumbo 6 3

4 It is common to reduce voltage swing of bit line to reduce propagation delay, power consumption, cross talk interfacing with external word is achieved via sense amplifiers which give full rail-to-rail swing The architecture works well up to range of 64 Kbits to 56 Kbits (larger memories suffer of speed degradation due to excessively long bit and word lines) Prof. Gaetano Palumbo 7 Higher memories are partitioned into P smaller block (it is added the block address) the local word and bit lines are reduced non active block can be powered off Block 0 Block j Block p-1 row address column address block address Control circuitry block selector Global amplifier/driver input/output Global data bus Prof. Gaetano Palumbo 8 4

5 I/O interface has an enormous impact on the global memory performance (control and timing) DRAM use multiplexed addressing scheme (the lower and upper halves of the address are presented sequentially) reduced number of package pins it is needed strobe signals for each part of the address SRAM uses a self-timed approach (the complete address is presented at once) Prof. Gaetano Palumbo 9 Read-Only Memories NOR ROM WL 0 WL 1 GND WL WL 3 GND Prof. Gaetano Palumbo 10 5

6 A bit has a 0 value if the a MOS is present Each column woks has a pseudo-nmos NOR the design follows the same guidelines of the ratioed logic (pseudo-nmos) V OL equal to 1 to 3 volt for a 5 V power supply The array is constructed by repeating the same cell (in both the horizontal and vertical directions), mirroring the odd cells around the horizontal axis to share the ground line Prof. Gaetano Palumbo 11 The memory is programmed by a selective addition of metal-to-diffusion contact. (the presence of a contact means a 0-bit) WL 0 WL 1 Basic cell 10λ x 7λ WL WL 3 Metal 1 over diffusion GND (diffusion) Prof. Gaetano Palumbo 1 6

7 A denser solution uses an extra implant step to be able to set the MOS threshold to a voltage higher than the power supply (in that case transistor is off) Threshold rising implant WL 0 Basic cell 8.5λ x 7λ WL 1 WL Metal 1 over diffusion GND (diffusion) WL Prof. Gaetano Palumbo 13 A denser solution is NAND ROM since does not requires ground lines A transistor represent a 1 bit value NAND ROM WL 0 WL 1 WL WL 3 The word line operates in reverse logic mode (all word line are high for default) Prof. Gaetano Palumbo 14 7

8 The core area can be almost two times lower than other solutions Basic cell 5λ x 6λ WL 0 WL 1 WL Threshold lowering implant WL Worst performance since a wider pull-up load is needed (higher parasitic capacitances) Prof. Gaetano Palumbo 15 To reduce ROM power dissipation a precharged approach can be adopted Vpre WL 0 WL 1 GND WL WL 3 GND Prof. Gaetano Palumbo 16 8

9 Nonvolatile Read-Write Memories The architecture of the NVRW memories is virtually identical to the ROM structure They make use of transistor threshold which can be electrically altered To reprogram the memory, it need before to be erased The erasing methods differs for the various classes of NVRW The programming takes typically more time of the reading time (an order of magnitude) Prof. Gaetano Palumbo 17 Floating Gate Transistor The core of every NVRW is made by a floatinggate transistor Floating-gate transistor has the threshold voltage programmable Floating gate Source Gate Drain tox t ox n+ p n+ Prof. Gaetano Palumbo 18 9

10 To program the memory an high voltage in the range 15-0 V between source and gate-drain must be used When the programmable voltage is applied the high electric field causes avalanche injection (Electrons acquire sufficient energy to become hot and traverse the first oxide insulation) The phenomenon can occur with oxide as thick as 100 nm (simply to realize) and is self-limiting For the programming mechanism it is also called FAMOS (Floating-gate Avalanche-injection MOS) Prof. Gaetano Palumbo V 5 V 0 V 0 V n+ p n+ Avalanche injection the floating gate change its voltage which is ideally half of the gate 0 V -5 V 0 V n+ p n+ 5 V -.5 V 5 V n+ p n+ Removing programming voltages leaves charge trapped It is equivalent to a voltage offset Although the gate is at the power supply, the floating gate voltages is much lower than threshold voltage Prof. Gaetano Palumbo 0 10

11 EPROM Erasable-Programmable Read-Only Memory is erasable using ultraviolet light via a transparent window in the package are simple and dense erasure is slow (from seconds to minutes) programming takes several (5-10) µs/word erase/program cycle is limited to one thousand Prof. Gaetano Palumbo 1 EEPROM (E PROM) Electrically-Erasable Programmable Read-Only Memory provides electrical-erasure procedure are based on a modified floating gate transistor called FLOTOX (floating-gate tunneling oxide), which uses the Fowler-Nordheim tunneling effect The effect arises using dielectric thickness lower than 10 nm Source Drain n+ p n+ Prof. Gaetano Palumbo 11

12 The main advantage of the effect is that it is reversible The bidirectionality of the effect poses the problem of threshold control (removing too much charge can determine a depletion device always on), and to remedy to it a transistor in series is introduced (it acts as access device) WL Prof. Gaetano Palumbo 3 EEPROM are larger than EPROM (two transistors in each cell and FLOTOX is larger than FAMOS due to extra area for tunneling oxide) Fabrication of very thin oxide is a challenging and costly manufacturing step Advantages are their versatility Can support up to 10 5 erase/write cycle Programming can take from almost 10 ms/word (few s/chip) Prof. Gaetano Palumbo 4 1

13 FLASH FLASH Electrically-Erasable Programmable Read-Only Memory Combines EPROM density with E PROM versatility Uses avalanche hot-electrons-injection to program the device and the Fowler-Nordheim tunneling to erase it Erasure is performed in bulk for a complete core or for a subsection. This reduce flexibility, but allows to avoid access transistor (the threshold can be electronically controlled during erasure) Unlike E PROM erasure occurs with gate grounded and applying and high voltage (1 V) to the source Prof. Gaetano Palumbo 5 SRAM 6T cell WL M M4 M5 Q M1 Q M6 M3 Access is enabled by M5 and M6 Two bit line are used (although they are not necessary, this improves noise margin during read and write operations) Prof. Gaetano Palumbo 6 13

14 6T write operation WL=V DD M 0 M4 Q=0 M5 1 M1 =1 Q=1 0 M6 M3 =0 M4, M6 is a pseudo NMOS and to toggle the memory must be its V OL < / M5 is diode connected and to toggle its source should be > / (M1 is in triode region) Prof. Gaetano Palumbo 7 β [ ( V V ) V ] V = ( V V ) p 4 DD tp OL OL β n 6 [ DD t V OL ] V OL W µ p W L 6 µ n L 4 β 5 1 VDD VDD βn VDD n V V Vt 5 ( DD to ) = W L 5 3 VDD V VDD V to t5 V DD W L Prof. Gaetano Palumbo

15 6T write operation WL=V DD M 0 M4 = C bit M5 Q=0 Q=1 M6 M1 M3 =V C bit DD The bit line are precharged to To do not destroy information we have to guarantee that the source of the diode connected M5 stay lower than / (M1 is in triode region) Prof. Gaetano Palumbo 9 β ( ) 5 1 V DD VDD β = n VDD n VDD Vto Vt 5 W L 3 V DD V ( VDD / Vt 5 ) 1 5 to V DD W L This condition is opposite to that found for writing operation, but it is stronger (to write the memory we can only satisfy the first condition) W / L 1 W / L W / L W / L W / L = W / L ( ) = ( ) = ( ) 3 = ( ) 4 = ( ) 5 ( )6 Prof. Gaetano Palumbo 30 15

16 The second bit line clamp to making extremely difficult to toggle the cell during the read operation (advantage of the dual bit-line architecture) To further prevent the toggling during the read operation the bitline are precharged / (makes impossible to reach the threshold voltage of the inverter) The transient behavior is limited by the read operation since the large bit-line capacitance must be discharged The write time is dominated by the propagation delay of the cross-coupled inverter pair Prof. Gaetano Palumbo 31 The 6T cell while simple and reliable it is areahungry (its dimension are dominated by wiring and interlayer contacts) M M4 Q Q M1 M3 M5 M6 GND WL Prof. Gaetano Palumbo 3 16

17 4T cell WL R R Q M3 M1 Q M4 M 4T cell is 1/3 lower than the 6T cell a very high and compact resistance is used which is implemented with undoped polysilicon (sheet resistance TΩ/ ) Prof. Gaetano Palumbo 33 DRAM To reduce RAM dimension we can eliminate the load which has the only function to replenish the charge lost by leakage RAM cells need a periodical refresh, which typical occurs every 1 to 4 ms Common DRAM are based on the 3T and 1T cells In DRAM the information is represented by charge stored on capacitor In contrast to SRAM, no constraint exist on the device ratio Prof. Gaetano Palumbo 34 17

18 3T cell WWL 1 RWL M1 X C s M3 M The cell is written placing the appropriate data value on 1 and asserting WWL (write word line) To read the cell the RWL (read word line) is asserted and the data is on which is precharged (or clamped to a voltage via a load) Prof. Gaetano Palumbo 35 Write and read cycle WWL 1 RWL M1 X C s M3 M WWL RWL X 1 VDD -VT -VT V Prof. Gaetano Palumbo 36 18

19 1 GND RWL M3 M WWL M1 The cell complexity is substantially reduced compared to the SRAM (576 λ compared to 109 λ ) Prof. Gaetano Palumbo 37 1T cell WL X C s C The cell is written and red asserting WL is precharged to / Prof. Gaetano Palumbo 38 19

20 Write and read cycle WL X V C = S CS + C ( V V ) PRE C C s charge transfer ratio (1% -10%) Write 1 Read 1 WL X V / DD -VT V / / sensing Prof. Gaetano Palumbo 39 C S is typically one or two order of magnitude lower than C Bl ( V around 50 mv). 1T DRAM requires sense amplifier for each bit line (in the other memory it is introduce to speed up the read-out) Unlike 3T, read-out of the 1T DRAM cell is destructive (after a successful read operation the value must be restored) The 1T cell requires the presence of extra capacitance (its minimum value is around 30 ff) To avoid the threshold voltage lost when writing a 1, bootstrapping can be used Prof. Gaetano Palumbo 40 0

21 1T DRAM using a polysilicon-diffusion capacitance n + n + Inversion layer (induced by plate bias) Cross section Layout Prof. Gaetano Palumbo 41 1

Memory Design. Random Access Memory. Row decoder. n bit address. 2 m+k memory cells wide. n-1:k. Column Decoder. k-1:0.

Memory Design. Random Access Memory. Row decoder. n bit address. 2 m+k memory cells wide. n-1:k. Column Decoder. k-1:0. Memory Design Random Access Memory Row decoder 2 m+k memory cells wide n-1:k k-1:0 Column Decoder n bit address Sense Amplifier m bit data word Memory Timing: Approaches Address bus Row Address Column

More information

Semiconductor Memories

Semiconductor Memories Chapter 8 Semiconductor Memories (based on Kang, Leblebici. CMOS Digital Integrated Circuits 8.1 General concepts Data storage capacity available on a single integrated circuit grows exponentially being

More information

Memory. Memory Decoders

Memory. Memory Decoders Memory RWM NVRWM ROM Random Access Non-Random Access EPROM E 2 PROM Mask-Programmed Programmable (PROM) SRAM FIFO FLASH DRAM LIFO Shift Register CAM Memory Decoders M bits M bits N Words S 0 S 1 S 2 S

More information

Digital Circuits and Systems

Digital Circuits and Systems EE201: Digital Circuits and Systems 5 Digital Circuitry page 1 of 21 EE201: Digital Circuits and Systems Section 6 Memory Data memory types: 1. Random Access Memory which can be read & written Static &

More information

SRAM Architecture. Vishal Saxena, Boise State University Department of Electrical and Computer Engineering

SRAM Architecture. Vishal Saxena, Boise State University Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering SRAM Architecture Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu) Vishal Saxena -1- Outline Memory Arrays SRAM Architecture SRAM Cell

More information

CHAPTER 16 MEMORY CIRCUITS

CHAPTER 16 MEMORY CIRCUITS CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

More information

Outline. Lecture 19: SRAM. Memory Arrays. Array Architecture

Outline. Lecture 19: SRAM. Memory Arrays. Array Architecture Outline Lecture 19: SRAM Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access Memories 2 Memory Arrays Memory Arrays Random Access Memory Serial Access Memory

More information

ECE 651: SRAM 1. Outline. Memory Arrays SRAM Architecture. SRAM Cell Decoders Column Circuitry Multiple Ports. Serial Access Memories

ECE 651: SRAM 1. Outline. Memory Arrays SRAM Architecture. SRAM Cell Decoders Column Circuitry Multiple Ports. Serial Access Memories ECE 651: SRAM 1 Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry Multiple Ports Serial Access Memories ECE 651: SRAM 2 Memory Arrays Memory Arrays Random Access Memory Serial

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

CSEE 3827: Fundamentals of Computer Systems, Spring Memory Arrays

CSEE 3827: Fundamentals of Computer Systems, Spring Memory Arrays CSEE 3827: Fundamentals of Computer Systems, Spring 2011 6. Memory Arrays Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp11/ Outline (H&H 5.5-5.6) Memory

More information

Technical Summary on Non-Volatile ROMs

Technical Summary on Non-Volatile ROMs International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-6, June 2014 Technical Summary on Non-Volatile ROMs Sampa Paul Abstract In this paper, several types

More information

Memory Structures. Ramon Canal NCD - Master MIRI. Slides based on:introduction to CMOS VLSI Design. D. Harris. NCD - Master MIRI 1

Memory Structures. Ramon Canal NCD - Master MIRI. Slides based on:introduction to CMOS VLSI Design. D. Harris. NCD - Master MIRI 1 Memory Structures Ramon Canal NCD - Master MIRI Slides based on:introduction to CMOS VLSI Design. D. Harris NCD - Master MIRI 1 Outline Memory Arrays SRAM Architecture SRAM Cell Decoders Column Circuitry

More information

13. Memories. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2016

13. Memories. Jacob Abraham. Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2016 13. Memories Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 2016 October 12, 2016 ECE Department, University of Texas at Austin Lecture

More information

Memory Devices. Read Only Memory (ROM) Structure of diode ROM Types of ROMs. ROM with 2-Dimensional Decoding. Using ROMs for Combinational Logic

Memory Devices. Read Only Memory (ROM) Structure of diode ROM Types of ROMs. ROM with 2-Dimensional Decoding. Using ROMs for Combinational Logic Memory Devices Read Only Memory (ROM) Structure of diode ROM Types of ROMs. ROM with 2-Dimensional Decoding. Using ROMs for Combinational Logic Read/Write Memory (Random Access Memory, RAM): Types of RAM:

More information

Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 9 Semiconductor Memories. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 9 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Outline Introduction

More information

EPROM, & EEPROM TECHNOLOGY

EPROM, & EEPROM TECHNOLOGY 9 ROM, EPROM, & EEPROM TECHNOLOGY Overview Read only memory devices are a special case of memory where, in normal system operation, the memory is read but not changed. Read only memories are non-volatile,

More information

Module 6 : Semiconductor Memories Lecture 28 : Static Random Access Memory (SRAM)

Module 6 : Semiconductor Memories Lecture 28 : Static Random Access Memory (SRAM) Module 6 : Semiconductor Memories Lecture 28 : Static Random Access Memory (SRAM) Objectives In this lecture you will learn the following SRAM Basics CMOS SRAM Cell CMOS SRAM Cell Design READ Operation

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Consider a 4M x 1 bit RAM. It will apparently need a 22- to-4m decoder. 4 million output lines will make it complex! D in. D out

Consider a 4M x 1 bit RAM. It will apparently need a 22- to-4m decoder. 4 million output lines will make it complex! D in. D out Inside RAM Two-level addressing Consider a 4M x bit RAM. It will apparently need a 22- to-4m decoder. 4 million output lines will make it complex! Complex! Tw-level addressing simplifies it. A2-A These

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

Memory Address Decoding

Memory Address Decoding Memory Address Decoding 1 ROAD MAP Memory Address Decoding S-RAM Interfacing Process Solved Examples For S-RAM Decoding D-RAM Interfacing 2 Memory Addressing The processor can usually address a memory

More information

A N. O N Output/Input-output connection

A N. O N Output/Input-output connection Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:

More information

Semiconductor Memories. Prof. MacDonald

Semiconductor Memories. Prof. MacDonald Semiconductor Memories Prof. MacDonald Types of Memories! l Volatile Memories require power supply to retain information dynamic memories l use charge to store information and require refreshing static

More information

Chapter 5 :: Memory and Logic Arrays

Chapter 5 :: Memory and Logic Arrays Chapter 5 :: Memory and Logic Arrays Digital Design and Computer Architecture David Money Harris and Sarah L. Harris Copyright 2007 Elsevier 5- ROM Storage Copyright 2007 Elsevier 5- ROM Logic Data

More information

Week 8. Memory and Memory Interfacing

Week 8. Memory and Memory Interfacing Week 8 Memory and Memory Interfacing Semiconductor Memory Fundamentals In the design of all computers, semiconductor memories are used as primary storage for data and code. They are connected directly

More information

Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs

Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs The MOSFET Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Assets: High integration density and relatively simple manufacturing

More information

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST

Flash Memories. João Pela (52270), João Santos (55295) December 22, 2008 IST Flash Memories João Pela (52270), João Santos (55295) IST December 22, 2008 João Pela (52270), João Santos (55295) (IST) Flash Memories December 22, 2008 1 / 41 Layout 1 Introduction 2 How they work 3

More information

SYSC Microprocessor Systems. SYSC3601 Microprocessor Systems. Unit 5: Memory Structures and Interfacing

SYSC Microprocessor Systems. SYSC3601 Microprocessor Systems. Unit 5: Memory Structures and Interfacing SYSC3601 1 Microprocessor Systems SYSC3601 Microprocessor Systems Unit 5: Memory Structures and Interfacing Topics/Reading SYSC3601 2 Microprocessor Systems 1. Memory Types 2. Interfacing 8-bit memory/io

More information

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic

More information

Lecture 12: MOS Decoders, Gate Sizing

Lecture 12: MOS Decoders, Gate Sizing Lecture 12: MOS Decoders, Gate Sizing MAH, AEN EE271 Lecture 12 1 Memory Reading W&E 8.3.1-8.3.2 - Memory Design Introduction Memories are one of the most useful VLSI building blocks. One reason for their

More information

EE 4432 VLSI Design Layout and Simulation of a 6T SRAM Cell

EE 4432 VLSI Design Layout and Simulation of a 6T SRAM Cell EE 4432 VLSI Design Layout and Simulation of a 6T SRAM Cell Mat Binggeli October 24 th, 2014 Overview Binggeli Page 2 The objective of this report is to describe the design and implementation of a 6-transistor

More information

Read-Only Memories. L25 Outline. Two-dimensional decoding. Larger example, 32Kx8 ROM

Read-Only Memories. L25 Outline. Two-dimensional decoding. Larger example, 32Kx8 ROM L25 Outline Read-Only Memories Read-only memories Static read/write memories Dynamic read/write memories Program storage Boot ROM for personal computers Complete application storage for embedded systems.

More information

Memory Circuits CHAPTER 15. 15.4 Sense Amplifiers and Address Decoders 1227. Introduction. Latches and Flip-Flops. 15.5 Read-Only Memory (ROM)

Memory Circuits CHAPTER 15. 15.4 Sense Amplifiers and Address Decoders 1227. Introduction. Latches and Flip-Flops. 15.5 Read-Only Memory (ROM) CHAPTER 15 Memory Circuits Introduction 15.1 1203 Latches and Flip-Flops 1204 15.2 Semiconductor Memories: Types and Architectures 1214 15.3 Random-Access Memory (RAM) Cells 1217 15.4 Sense Amplifiers

More information

AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas.

AN1837. Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas. Order this document by /D Non-Volatile Memory Technology Overview By Stephen Ledford Non-Volatile Memory Technology Center Austin, Texas Introduction Today s microcontroller applications are more sophisticated

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic 1 Chapter 7 Memory and Programmable Logic 2 7-1. Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only

More information

Layout, Fabrication, and Elementary Logic Design

Layout, Fabrication, and Elementary Logic Design Introduction to CMOS VLSI Design Layout, Fabrication, and Elementary Logic Design Adapted from Weste & Harris CMOS VLSI Design Overview Implementing switches with CMOS transistors How to compute logic

More information

9 Memory Devices & Chip Area

9 Memory Devices & Chip Area 9 Memory Devices & Chip Area 18-548/15-548 Memory System Architecture Philip Koopman September 30, 1998 Required Reading: Understanding SRAM (App. Note) What s All This Flash Stuff? (App. Note) Assignments

More information

Main Memory Background

Main Memory Background ECE 554 Computer Architecture Lecture 5 Main Memory Spring 2013 Sudeep Pasricha Department of Electrical and Computer Engineering Colorado State University Pasricha; portions: Kubiatowicz, Patterson, Mutlu,

More information

Evaluating Embedded Non-Volatile Memory for 65nm and Beyond

Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Evaluating Embedded Non-Volatile Memory for 65nm and Beyond Wlodek Kurjanowicz DesignCon 2008 Sidense Corp 2008 Agenda Introduction: Why Embedded NVM? Embedded Memory Landscape Antifuse Memory evolution

More information

9 ROM, EPROM, AND EEPROM TECHNOLOGY

9 ROM, EPROM, AND EEPROM TECHNOLOGY 9 ROM, EPROM, AND EEPROM TECHNOLOGY OVERVIEW Read only memory devices are a special case of memory where, in normal system operation, the memory is read but not changed. Read only memories are non-volatile,

More information

Computer Architecture

Computer Architecture Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services ghorvath@hit.bme.hu 2 Storing data Possible

More information

Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer

Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Christian Schindelhauer Algorithms and Methods for Distributed Storage Networks 3. Solid State Disks Institut für Informatik Wintersemester 2007/08 Solid State Disks Motivation 2 10 5 1980 1985 1990 1995 2000 2005 2010 PRODUCTION

More information

Digital Circuits. Frequently Asked Questions

Digital Circuits. Frequently Asked Questions Digital Circuits Frequently Asked Questions Module 1: Digital & Analog Signals 1. What is a signal? Signals carry information and are defined as any physical quantity that varies with time, space, or any

More information

Class 18: Memories-DRAMs

Class 18: Memories-DRAMs Topics: 1. Introduction 2. Advantages and Disadvantages of DRAMs 3. Evolution of DRAMs 4. Evolution of DRAMs 5. Basics of DRAMs 6. Basics of DRAMs 7. Write Operation 8. SA-Normal Operation 9. SA-Read Operation

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

Module 7 : I/O PADs Lecture 33 : I/O PADs

Module 7 : I/O PADs Lecture 33 : I/O PADs Module 7 : I/O PADs Lecture 33 : I/O PADs Objectives In this lecture you will learn the following Introduction Electrostatic Discharge Output Buffer Tri-state Output Circuit Latch-Up Prevention of Latch-Up

More information

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap

Silicon Memories. Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Silicon Memories Why store things in silicon? It s fast!!! Compatible with logic devices (mostly) The main goal is to be cheap Dense -- The smaller the bits, the less area you need, and the more bits you

More information

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology

Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Static-Noise-Margin Analysis of Conventional 6T SRAM Cell at 45nm Technology Nahid Rahman Department of electronics and communication FET-MITS (Deemed university), Lakshmangarh, India B. P. Singh Department

More information

1.1 Silicon on Insulator a brief Introduction

1.1 Silicon on Insulator a brief Introduction Table of Contents Preface Acknowledgements Chapter 1: Overview 1.1 Silicon on Insulator a brief Introduction 1.2 Circuits and SOI 1.3 Technology and SOI Chapter 2: SOI Materials 2.1 Silicon on Heteroepitaxial

More information

Memory and Programmable Logic

Memory and Programmable Logic Chapter 7 Memory and Programmable Logic 7 Outline! Introduction! RandomAccess Memory! Memory Decoding! Error Detection and Correction! ReadOnly Memory! Programmable Devices! Sequential Programmable Devices

More information

Novel Approaches to Low Leakage and Area Efficient VLSI Design. Professor Md. Shafiqul Islam, PhD

Novel Approaches to Low Leakage and Area Efficient VLSI Design. Professor Md. Shafiqul Islam, PhD Novel Approaches to Low Leakage and Area Efficient VLSI Design A Thesis Submitted to the Department of Electrical and Electronic Engineering in Partial Fulfillment of the Requirements for the Degree of

More information

Data remanence in non-volatile semiconductor memories

Data remanence in non-volatile semiconductor memories Data remanence in non-volatile semiconductor memories Part I: Introduction and non-invasive approach Sergei Skorobogatov 1 Data remanence Magnetic media SRAM and DRAM Low temperature data remanence Long-term

More information

FLASH TECHNOLOGY DRAM/EPROM. Flash. 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996"

FLASH TECHNOLOGY DRAM/EPROM. Flash. 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, Memory 1996 10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term flash was chosen because a large chunk of memory could be erased at one time. The name, therefore,

More information

With respect to the way of data access we can classify memories as:

With respect to the way of data access we can classify memories as: Memory Classification With respect to the way of data access we can classify memories as: - random access memories (RAM), - sequentially accessible memory (SAM), - direct access memory (DAM), - contents

More information

Lecture 22: Sequential Circuits. Sequential Circuits. Characteristic Table, SR Latch. S-R Latch (Clocked) Latches:

Lecture 22: Sequential Circuits. Sequential Circuits. Characteristic Table, SR Latch. S-R Latch (Clocked) Latches: Lecture 22: Sequential Circuits Latches: SR D JK Flip-Flops Memory Sequential Circuits In sequential circuits, new state depends on not only the input, but also on the previous state. Devices like registers

More information

DESIGN OF LOW POWER SRAM USING NEGATIVE BIAS TEMPERATURE INSTABILITY TECHNIQUE

DESIGN OF LOW POWER SRAM USING NEGATIVE BIAS TEMPERATURE INSTABILITY TECHNIQUE DESIGN OF LOW POWER SRAM USING NEGATIVE BIAS TEMPERATURE INSTABILITY TECHNIQUE 1 SWATHI TANGELLA, 2 PREMA KUMAR MEDAPATI 1 M.Tech Student, Department of ECE, Shri Vishnu Engineering College for Women 2

More information

Sequential Logic. References:

Sequential Logic. References: Sequential Logic References: Adapted from: Digital Integrated Circuits: A Design Perspective, J. Rabaey, Prentice Hall UCB Principles of CMOS VLSI Design: A Systems Perspective, N. H. E. Weste, K. Eshraghian,

More information

CMOS Digital Circuits

CMOS Digital Circuits CMOS Digital Circuits Types of Digital Circuits Combinational The value of the outputs at any time t depends only on the combination of the values applied at the inputs at time t (the system has no memory)

More information

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B) Introduction to Transistor-Level Logic Circuits Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed state

More information

MEMORY BASICS Dr. Fethullah Karabiber

MEMORY BASICS Dr. Fethullah Karabiber 0113611 COMPUTER HARDWARE MEMORY BASICS Dr. Fethullah Karabiber Overview Memory definitions Random Access Memory (RAM) Static RAM (SRAM) integrated circuits Cells and slices Cell arrays and coincident

More information

Hitachi HD66770 LCD Source Driver Partial Circuit Analysis

Hitachi HD66770 LCD Source Driver Partial Circuit Analysis June 14, 2004 Hitachi HD66770 LCD Source Driver Partial Circuit Analysis Table of Contents Introduction... Page 1 List of Figures... Page 2 Device Summary Sheet... Page 7 Signal Naming Conventions and

More information

Floating Gate Memory Arrays. Retention Issues

Floating Gate Memory Arrays. Retention Issues Inc Introduction Floating Gate Memory Arrays Retention Issues This document reviews the nature of Data Retention, and presents approaches to its specification and verification based upon procedures defined

More information

CMOS Digital Integrated Circuits Analysis and Design

CMOS Digital Integrated Circuits Analysis and Design CMOS Digital Integrated Circuits nalysis and Design Chapter 7 Combinational MOS Logic Circuits 1 Introduction Combination logic circuit Performing Boolean operations between input and put Static and dynamic

More information

Lecture 3-1. Inverters and Combinational Logic

Lecture 3-1. Inverters and Combinational Logic Lecture 3 Konstantinos Masselos Department of Electrical & Electronic Engineering Imperial College London URL: http://cas.ee.ic.ac.uk/~kostas E-mail: k.masselos@imperial.ac.uk Lecture 3-1 Based on slides/material

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

Memory. Hot electron injection and electron tunneling mechanisms for analog memory (Shih-Chii Liu) Uses of long-term analog storage.

Memory. Hot electron injection and electron tunneling mechanisms for analog memory (Shih-Chii Liu) Uses of long-term analog storage. Hot electron ection and electron tunneling mechanisms for analog memory (Shih-Chii Liu) Memory Short-term memory (ms->s) Memory can be stored as charge on a capacitor. Needs frequent refresh or updating

More information

Bit Line Bias. Sense Amps. Column Decode BR 9/01. Memory Array

Bit Line Bias. Sense Amps. Column Decode BR 9/01. Memory Array it Line ias Row Address Row Decode Cell Memory Organization Word lines (1 per row) Column Address Sense Amps Column Decode it lines (2 per column) Data lines Memory Array Typically want an aspect ratio

More information

Outline. Introduction Interconnect Modeling Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. 4th Ed.

Outline. Introduction Interconnect Modeling Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. 4th Ed. Lecture 14: Wires Outline Introduction Interconnect Modeling Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters 2 Introduction Chips are mostly made of wires called interconnect

More information

SLC vs MLC: Which is best for high-reliability apps?

SLC vs MLC: Which is best for high-reliability apps? SLC vs MLC: Which is best for high-reliability apps? Here's an examination of trade-offs, with an emphasis on how they affect the reliability of storage targeted at industrial, military and avionic applications.

More information

CMOS Process Variations EEPROM Fabrication Technology. Dr. Lynn Fuller Webpage:

CMOS Process Variations EEPROM Fabrication Technology. Dr. Lynn Fuller Webpage: ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING CMOS Process Variations EEPROM Fabrication Technology Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester,

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency

More information

Memory examples. Chapter 5 Memories

Memory examples. Chapter 5 Memories Memory examples Chapter 5 Memories Portions of this work are from the book, Digital Design: An Embedded Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan Kaufmann Publishers, Copyright

More information

Chapter 10 Advanced CMOS Circuits

Chapter 10 Advanced CMOS Circuits Transmission Gates Chapter 10 Advanced CMOS Circuits NMOS Transmission Gate The active pull-up inverter circuit leads one to thinking about alternate uses of NMOS devices. Consider the circuit shown in

More information

11-1. Stick Diagram and Lamda Based Rules

11-1. Stick Diagram and Lamda Based Rules 11-1 Stick Diagram and Lamda Based Rules Mask Layout (Print this presentation in colour if possible, otherwise highlight colours) 11-2 Circuit coloured mask layer layout Coloured stick diagram mask representation

More information

Pass-Transistor Logic. Topics. NMOS-Only Logic. Pass-Transistor Logic. Resistance of Transmission Gate. Pass-Transistor Logic.

Pass-Transistor Logic. Topics. NMOS-Only Logic. Pass-Transistor Logic. Resistance of Transmission Gate. Pass-Transistor Logic. Topics Transmission Gate Pass-transistor Logic 3 March 2009 1 3 March 2009 2 NMOS-Only Logic Example: AND Gate 3 March 2009 3 3 March 2009 4 Resistance of Transmission Gate XOR 3 March 2009 5 3 March 2009

More information

SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications. A TCS Space & Component Technology White Paper

SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications. A TCS Space & Component Technology White Paper SLC vs MLC: Proper Flash Selection for SSDs in Industrial, Military and Avionic Applications A TCS Space & Component Technology White Paper Introduction As with most storage technologies, NAND Flash vendors

More information

Data remanence in Flash Memory Devices

Data remanence in Flash Memory Devices Data remanence in Flash Memory Devices Sergei Skorobogatov 1 Data remanence Residual representation of data after erasure Magnetic media SRAM and DRAM Low-temperature data remanence Long-term retention

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Logic Design. Implementation Technology

Logic Design. Implementation Technology Logic Design Implementation Technology Outline Implementation of logic gates using transistors Programmable logic devices Complex Programmable Logic Devices (CPLD) Field Programmable Gate Arrays (FPGA)

More information

The MOSFET Transistor

The MOSFET Transistor The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

More information

Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Computer/Data Storage Technology

Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Computer/Data Storage Technology Lecture Outline Computer/Data Storage Technology Objectives Describe the distinguishing characteristics of primary and secondary storage Describe the devices used to implement primary storage Compare secondary

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

Yaffs NAND Flash Failure Mitigation

Yaffs NAND Flash Failure Mitigation Yaffs NAND Flash Failure Mitigation Charles Manning 2012-03-07 NAND flash is one of very few types of electronic device which are knowingly shipped with errors and are expected to generate further errors

More information

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to

More information

1 / 25. CS 137: File Systems. Persistent Solid-State Storage

1 / 25. CS 137: File Systems. Persistent Solid-State Storage 1 / 25 CS 137: File Systems Persistent Solid-State Storage Technology Change is Coming Introduction Disks are cheaper than any solid-state memory Likely to be true for many years But SSDs are now cheap

More information

Dynamic Random Access Memory:

Dynamic Random Access Memory: Dynamic Random Access Memory: Dynamic random access memory (DRAM) is a type of random access memory that stores each bit of data in a separate capacitor within an integrated circuit. Since real capacitors

More information

Interfacing 3V and 5V applications

Interfacing 3V and 5V applications Authors: Tinus van de Wouw (Nijmegen) / Todd Andersen (Albuquerque) 1.0 THE NEED FOR TERFACG BETWEEN 3V AND 5V SYSTEMS Many reasons exist to introduce 3V 1 systems, notably the lower power consumption

More information

IGFET Transistors. Biasing, Gain, Input and Output. James K Beard, Ph.D. Assistant Professor Rowan University

IGFET Transistors. Biasing, Gain, Input and Output. James K Beard, Ph.D. Assistant Professor Rowan University IGFET Transistors Biasing, Gain, Input and Output James K Beard, Ph.D. Assistant Professor Rowan University beard@rowan.edu Table of Contents IGFET Transistors...i Biasing, Gain, Input and Output... i

More information

Chapter 2 Digital Components. Section 2.1 Integrated Circuits

Chapter 2 Digital Components. Section 2.1 Integrated Circuits Chapter 2 Digital Components Section 2.1 Integrated Circuits An integrated circuit (IC) is a small silicon semiconductor crystal, called a chip, containing the electronic components for the digital gates

More information

Ferroelectric Field Effect Transistors

Ferroelectric Field Effect Transistors Ferroelectric Field Effect Transistors Reza M. Rad UMBC Based on pages 387-403 of Nanoelectronics and Information Technology,, Rainer Waser Introduction Ferroelectrics: : dielectric crystals which show

More information

Microprocessors and Microcontrollers/Interfacing with 8086

Microprocessors and Microcontrollers/Interfacing with 8086 Module 3 Learning unit 8: Interface We have four common types of memory: Read only memory (ROM) Flash memory (EEPROM) Static Random access memory (SARAM) Dynamic Random access memory (DRAM). Pin connections

More information

Introduction to CMOS VLSI Design Lecture 6: Wires

Introduction to CMOS VLSI Design Lecture 6: Wires Introduction to CMOS VLSI Design Lecture 6: Wires David Harris Harvey Mudd College Spring 2004 1 Outline Introduction Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters

More information

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

More information

Computer Organization and Architecture. Semiconductor Memory

Computer Organization and Architecture. Semiconductor Memory Computer Organization and Architecture Chapter 5 Internal Memory Semiconductor main memory Early computers used doughnut shaped ferromagnetic loops called cores for each bit Main memory was often referred

More information

Layout Design and Simulation of CMOS Multiplexer

Layout Design and Simulation of CMOS Multiplexer 23 Layout and Simulation of CMOS Multiplexer Priti Gupta Electronics & Communication department National Institute of Teacher s Training and Research Chandigarh Rajesh Mehra Electronics & Communication

More information

Programming NAND devices

Programming NAND devices Technical Guide Programming NAND devices Kelly Hirsch, Director of Advanced Technology, Data I/O Corporation Recent Design Trends In the past, embedded system designs have used NAND devices for storing

More information

NMOS Digital Circuits. Introduction Static NMOS circuits Dynamic NMOS circuits

NMOS Digital Circuits. Introduction Static NMOS circuits Dynamic NMOS circuits NMOS Digital Circuits Introduction Static NMOS circuits Dynamic NMOS circuits Introduction PMOS and NMOS families are based on MOS transistors with induced channel of p, respectively n NMOS circuits mostly

More information

DIMM Technologies DIMM (dual inline memory module) Has independent pins on opposite sides of module

DIMM Technologies DIMM (dual inline memory module) Has independent pins on opposite sides of module 1 2 3 4 5 6 7 8 9 A+ Guide to Hardware, 4e Chapter 6 Upgrading Memory Objectives Learn about the different kinds of physical memory and how they work Learn how to upgrade memory Learn how to troubleshoot

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 19: March 29, 2016 Timing Hazards and Dynamic Logic Lecture Outline! Review: Sequential MOS Logic " SR Latch " D-Latch! Timing Hazards! Dynamic

More information