KLEF University,Guntur. B.Tech-II Year, First Semester : B.Tech ELECTRONICS & COMPUTER ENGINEERING

Size: px
Start display at page:

Download "KLEF University,Guntur. B.Tech-II Year, First Semester : B.Tech ELECTRONICS & COMPUTER ENGINEERING"

Transcription

1 KLEF University,Guntur B.Tech-II Year, First Semester Date: Program Name Course Title : B.Tech ELECTRONICS & COMPUTER ENGINEERING : SWITCHING THEORY& LOGIC DESIGN Course Coordinator : Dr.S.Balaji Course Detail : Theory Lecture Hours : 45 I ELECTRONICS & COMPUTER ENGINEERING PROGRAMME OBJECTIVE: The main objective of an engineering course in Electronics & Computers is to prove the technical viability of new technology, together with, as appropriate, its possible economic advantages. Provides a quality education with emphasis on strong foundation, fostering creativity and use of modern ICT tools. Demonstration activities are expected to speed up the innovation of new technologies in the field of computers and electronics. The above programme objective can be broadly defined on five counts as below. 1. Preparation: To prepare students for successful careers both in software and hardware industry that meet the needs of Indian and Multinational companies and to prepare students for postgraduate programs in inter-disciplinary streams related to Electronics and Computers. 2. Core Competence: To provide students with solid foundation in mathematical, scientific and engineering fundamentals which are necessary to formulate, solve and analyze engineering problems and also to prepare them for graduate studies. 3. Breadth: To train the students with good engineering skills so as to work as part of teams in Multi disciplinary projects. 4. Professionalism: The instruction should emphasize the primary purpose of the profession as being the pursuit of a learned art in the sprit of public service. The sense of professionalism should convey the responsibility to evaluate the impact of the opportunity and obligation of the practitioner, to be in concert with peers, guides, and direct the profession. 1

2 5. Learning Environment: To develop the ability among students to synthesize data and technical concepts for application to product design. To promote student awareness of the life long learning and to introduce them to professional ethics and codes of professional practice. II Program Outcomes: a. Graduates will demonstrate basic knowledge in mathematics, science and engineering. b. Graduates will demonstrate an ability to identify, formulate and solve Electronics and Computer Engineering problems. c. Graduates will demonstrate the ability to design Electronic circuits and develop programs under different operating systems. d. Graduates will demonstrate the ability to design the Embedded System and application software that meets the desired specifications and requirements. e. Graduates will demonstrate the ability to visualize and work in both electronic and software industry, involving Multidisciplinary tasks. f. Graduate will demonstrate skills to use modern engineering tools, software and equipment to analyze problems. g. Graduates will demonstrate knowledge of professional and ethical responsibilities. h. Graduate will be able to communicate effectively in both verbal and written form. i. Graduate will show the understanding of impact of engineering solutions on the society and also will be aware of contemporary issues. j. Graduate will develop confidence for self education and ability for life long learning. k. Graduate who can participate and succeed in competitive examinations like GATE, PGECET, IES, GRE etc. 2

3 Mapping of Program Objectives (I-V) with Program Outcome (a-k) Program Educational Objectives Program Outcomes a B C d e f g h i j k I X X X X X II X X X X X III X X X X IV X X X X X V X X III Course Description: Boolean Algebra, Postulates and theorems, Minimization of Switching functions, Karnaugh map method, Tabulation method, Logic gates, Binary Adders, Carry look ahead Adder, Decoders, Encoders, Multiplexer, De-multiplexer, Sequential circuit models, Flip Flops, Mealy Moore Models, Registers, Counters, RAM, PAL,PLA. IV COURSE OBJECTIVES After thorough learning of Switching Theory and Logic Design the student will be able to: 1. Understand the various methods of designing and construction of systems such as digital computers, data communication, digital recording and many other applications that require digital hardware. 2. Assess the various designing procedures for the given problems. 3. the various digital circuits. 4. Comprehend the applications of various digital circuits in designing higher model like computers, Microprocessors, ATMs and inculcate them into carrying out mini projects and further research. 3

4 V COURSE OUTCOMES At the end of the course the student will be able to 1. Design various Synchronous and Asynchronous counters. 2. Basic tools for the design of digital circuits and fundamental concepts used in the design of digital systems 3. Realize logic networks, digital computers with special attraction given to 3 basic structures of programmable logic devices. PROM, PLA, PAL devices. 4. Design combinational logic circuits, sequential logic circuits. Mechanism of ATP generation by alternate means Mapping of Course Objectives with Programme Outcomes Program Outcomes a b c d e f g h i j k 1 Course Objectives

5 VI SYLLABUS: UNIT-I BOOLEAN ALGEBERA: Axiomatic definition of Boolean algebra. Binary operation. Postulates and theorems, Switching functions, Canonical forms and standard forms, Simplification of switching functions using theorems. Minimization of switching functions: Karnaugh map method, Quine McCluskey tabular method, Prime implicants and essential prime implicants. UNIT-II COMBINATIONAL LOGIC DESIGN: Single output and multiple-output combinational logic circuit design, AND-OR, OR-AND and NAND/NOR relations, exclusive-or and Equivalence functions. Binary Adders, Carry look ahead Adder, magnitude comparator, sub tractors. LOGIC DESIGN WITH MSI COMPONENTS: Decoders, Encoders, Priority Encoders, Multiplexer, De-multiplexer, Parity generator checker, Code converters UNIT-III SEQUENTIAL LOGIC DESIGN: Classification of sequential circuits, sequential circuit model, latches, flip-flops, and excitation table, characteristic equation, state diagram, Mealy & Moore Models, sequence detectors, Analysis of clocked Sequential Circuits. UNIT-IV REGISTERS AND COUNTERS: Registers, Shift Register, Ripple Counters, Synchronous Counters. UNIT V Memory and Programmable logic: Random Access Memory Read only memory, Programmable logic Array, Programmable Array Logic. 5

6 VII UNIT WISE RATIONALIZATION: UNIT-I: Boolean algebra (or Boolean logic) is a logical calculus of truth values It resembles the algebra of real numbers, but with the numeric operations of multiplication xy, addition x + y, and negation x replaced by the respective logical operations of conjunction x y, disjunction x y, and complement x. This unit includes the fundamentals of switching algebras and basic combinational circuit design procedures and methods for minimizing switching functions. UNIT-II: Boolean algebra can be represented schematically by means of gates. Designing of various systems by using combinational circuits The unit introduces various commonly used number and coding systems and their conversions. The mapping from logic circuit to electronic circuit known as voltage symbolism is introduced. UNIT-III: Sequential logic is a type of logic circuit whose output depends not only on the present input but also on the history of the input. This is in contrast to combinational logic, whose output is a function of, and only of, the present input. In this unit the student will be able to understand about the a general mathematical model of sequential circuits, it also introduces general analysis and synthesis procedures based on sequential machine theory for synchronous and asynchronous Sequential circuits. UNIT-IV: Register is a group of flip-flops. Its basic function is to hold information within a digital system. Counter is essentially a register that goes through a predetermined sequence of states. It begins the presentation on sequential logic networks. The operational behavior of the three categories of flip flops and applications of flip flops in particular, registers and counters. The chapter concludes with a general design procedure for synchronous counters. UNIT-V: A memory unit is a collection of cells capable of storing a large quantity of binary information. A programmable logic device or PLD is an electronic component used to build reconfigurable digital circuits. Before the PLD can be used in a circuit it must be programmed, that is, reconfigured. This unit concerned with several MSI and LSI components. In this chapter student will design arrays like PLD, PLA, PAL etc. and basic design of memories like RAM and ROM. 6

7 VII.SESSION PLAN S.No Unit Session Content Learning objective 1 I 1. Boolean algebra Logic operations for two variables Methodology Faculty Student Learning Approach approach outcome Chalk and talk Explanation Listens Understand 2 I 2. Boolean algebra Logic operations for two variables 3 I 3. Postulates and theorems Theorems and properties 4 I 4. Postulates and theorems Theorems and properties participate Remember Understand 5 I 5. Switching functions Boolean Functions Chalk and talk Explanation Listen 6 I 6. Canonical forms and standard forms MinTerms and Max Terms participate 7 I 7. Canonical forms and standard forms Sum Of Max terms and Product of Min terms Chalk and talk Explanation Observe 8 I 8. Simplification of switching functions using theorems Theorems and Properties participate Explore the mechanism 9 I 9. Simplification of switching functions using theorems Theorems and Properties Chalk and talk Demonstration Observe and participate Application 10 I 10. Karnaugh map method Two, Four & Five variable map Chalk and talk Demonstration Observe and comprehend 7

8 11 I 11. Karnaugh map method SOP & POS Chalk and talk Explanation Listens and Participate 12 I 12. Karnaugh map method Prime Implicants & don t care conditions Application Remember and recall 13 I 13. Quine McCluskey tabular method Prime Implicants 14 I 14. Quine McCluskey tabular method 15 I 15. Prime implicants and essential prime implicants. 16 II 16. combinational logic circuit design 17 II 17. combinational logic circuit design Algorithms for generating Prime implicants Irredundant Expressions & Conjunctive Normal Formulas Basic Components used in design Basic Components used in design Chalk and talk Demonstration Listen Chalk and talk Explanation Listen Chalk and talk Explanation Listen Chalk and talk Explanation Observes 18 II 18. AND-OR, OR-AND and NAND/NOR relations 19 II 19. Exclusive-OR and Equivalence functions Two Level Circuits Two Level Circuits Evaluate 20 II 20. Binary Adders Design of Combinational 8

9 Circuits 21 II 21. Carry look ahead Adder Design of Combinational Circuits 22 II 22. Magnitude comparator, sub tractors Design of Combinational Circuits Chalk and talk Explanation Observe 23 II 23. Encoders, Priority Encoders Conversion of Information Chalk and talk facilitates Observe and 24 II 24. Decoders Conversion of Information Chalk and talk Explanation Observes 25 II 25. Multiplexer, Demultiplexer Signal Compression 26 II 26. Parity generator checker, Error Correcting and Verification 27 II 27. Code converters Conversion of codes 28 III 28. Classification of sequential circuits Design of sequential circuits Oral Explanation Listen 29 III 29. sequential circuits model Models of Synchronous sequential circuit Chalk and talk Explanation Listen and 9

10 30 III 30. Latches Two state Circuit Chalk and talk Explanation Listen 31 III 31. Flip-flops Feedback Property Chalk and talk Explanation Comprehend 32 III 32. Flip-flops Inputs to change states 33 III 33. Flip-flops Inputs to change states Chalk and talk Demonstration Listen Remember 34 III 34. Mealy & Moore Models State Models Chalk and talk Explanation Comprehend and 35 III 35. Mealy & Moore Models State Models Chalk and talk Demonstration Comprehend and 36 III 36. Sequence detectors, Analysis of clocked Sequential Circuits. State Diagram design example Chalk and talk Explanation Listen Application 37 IV 37. Registers Group of Flip flops Remember and 38 IV 38. Shift Register Shift Right & Shift Left 39 IV 39. Ripple Counters Asynchronous Counters Remember and Apply and evaluate 10

11 40 IV 40. Synchronous Counters. Modulus Design Chalk and talk Demonstration Observe Understand s and comprehends 41 IV 41. Synchronous Counters Modulus Design Synthesis 42 V 42. RAM&ROM Design of Memories Chalk and talk Explanation Listen understand 43 V 43 PLA Logic Array Design 44 V 44 PAL Array Logic Design 45 V 45 PAL Array Logic Design Understand Understand s and comprehends Understand s and comprehends 11

12 IX. Self Study Material: Unit Topic Source I Binary Operations Fundamentals of logic Design, Charles H.Roth,Jr. III Introduction to Combinational & Sequential circuits Digital Circuits& Logic Design, Samuel C.Lee III Conversion of Flip Flops Digital Logic Design, A.Anand Kumar IV Ring Counter & Johnson Counter Digital Design,3 rd Edition, M.Morris Mano V Complex Programmable Logic Devices Fundamentals of logic Design, Charles H.Roth,Jr. Dr.S.Balaji (Course Instructor) 12

13 13

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

Course Requirements & Evaluation Methods

Course Requirements & Evaluation Methods Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

BOOLEAN ALGEBRA & LOGIC GATES

BOOLEAN ALGEBRA & LOGIC GATES BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic

More information

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Title VLSI DESIGN Course Code 57035 Regulation R09 COURSE DESCRIPTION Course Structure

More information

Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -

Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: - Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

Combinational Logic Design Process

Combinational Logic Design Process Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012

Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012 Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology

More information

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines

More information

CSE140: Midterm 1 Solution and Rubric

CSE140: Midterm 1 Solution and Rubric CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Combinational Logic Design

Combinational Logic Design Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots

Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is CONTENTS PREFACE xv 1 INTRODUCTION 1 1.1 About Digital Design 1 1.2 Analog versus Digital 3 1.3 Digital Devices

More information

Logic in Computer Science: Logic Gates

Logic in Computer Science: Logic Gates Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

Understanding Logic Design

Understanding Logic Design Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1

More information

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course

Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University swain@scsu.edu Raghu Korrapati,

More information

CpE358/CS381. Switching Theory and Logical Design. Class 10

CpE358/CS381. Switching Theory and Logical Design. Class 10 CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer- 24 Copyright 24-373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic

More information

A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online

A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana

More information

Digital Systems. Syllabus 8/18/2010 1

Digital Systems. Syllabus 8/18/2010 1 Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,

More information

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals Full Marks 100 (Theory 75, Practical 25) Introduction to Computers :- What is Computer?

More information

Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation!

Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation! Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation! by Nasser Michigan Technological University alaraje@mtu.edu Abstract: The Electrical Engineering Technology program

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

Switching and Finite Automata Theory

Switching and Finite Automata Theory Switching and Finite Automata Theory Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. New topics include: CMOS gates logic synthesis logic

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned

More information

3.Basic Gate Combinations

3.Basic Gate Combinations 3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

More information

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28. ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures

More information

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR.

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR. COURSE SYLLABUS COURSE NUMBER AND TITLE: CETT 1325- Digital Fundamentals COURSE (CATALOG) DESCRIPTION An entry level course in digital electronics covering number systems, binary mathematics, digital codes,

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Course Structure of Three Year Degree B.A Programme in Computer Application under Semester System of Dibrugarh University (General Programme)

Course Structure of Three Year Degree B.A Programme in Computer Application under Semester System of Dibrugarh University (General Programme) Course Structure of Three Year Degree B.A Programme in Computer Application under Semester System of Dibrugarh University (General Programme) COURSE LECTURE DURATION(LD) /paper SEMESTER-I 1. Course Code:CAN101

More information

Lecture 5: Gate Logic Logic Optimization

Lecture 5: Gate Logic Logic Optimization Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

1) Chemical Engg. PEOs & POs Programme Educational Objectives

1) Chemical Engg. PEOs & POs Programme Educational Objectives 1) Chemical Engg. PEOs & POs Programme Educational Objectives The Programme has the following educational objectives: To prepare students for successful practice in diverse fields of chemical engineering

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

7CS-A(CD_lab) Actual date of covering the. Reason for not covering the topic in due time. Month in which the topic will be covered

7CS-A(CD_lab) Actual date of covering the. Reason for not covering the topic in due time. Month in which the topic will be covered 7CS-A(CD_lab) Write grammar for a fictitious language and create a lexical analyzer for the same Develop a lexical analyzer to recognize a few patterns in PASCAL and C (ex: identifiers, constants, comments,

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Counters & Shift Registers Chapter 8 of R.P Jain

Counters & Shift Registers Chapter 8 of R.P Jain Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

More information

MASSEY UNIVERSITY BACHELOR OF ENGINEERING with HONOURS TELECOMMUNICATIONS AND NETWORK ENGINEERING. Major Profile Description and Competency Framework

MASSEY UNIVERSITY BACHELOR OF ENGINEERING with HONOURS TELECOMMUNICATIONS AND NETWORK ENGINEERING. Major Profile Description and Competency Framework Appendix 3.13 Telecommunications & Network Engineering Major Profile MASSEY UNIVERSITY BACHELOR OF ENGINEERING with HONOURS TELECOMMUNICATIONS AND NETWORK ENGINEERING Major Profile Description and Competency

More information

Online Development of Digital Logic Design Course

Online Development of Digital Logic Design Course Online Development of Digital Logic Design Course M. Mohandes, M. Dawoud, S. Al Amoudi, A. Abul Hussain Electrical Engineering Department & Deanship of Academic Development King Fahd University of Petroleum

More information

2.0 Chapter Overview. 2.1 Boolean Algebra

2.0 Chapter Overview. 2.1 Boolean Algebra Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital

More information

Sistemas Digitais I LESI - 2º ano

Sistemas Digitais I LESI - 2º ano Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes (miguel@di.uminho.pt) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The

More information

FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES. (Master in Information Technology)

FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES. (Master in Information Technology) FACULTY OF COMPUTER SCIENCE AND ENGINEERING CURRICULUM FOR POSTGRADUATE PROGRAMMES (Master in Information Technology) MASTER IN INFORMATION TECHNOLOGY (MIT) CURRICULUM 1.1 Introduction This programme is

More information

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition

RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition A Tutorial Approach James O. Hamblen Georgia Institute of Technology Michael D. Furman Georgia Institute of Technology KLUWER ACADEMIC PUBLISHERS Boston

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1

United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1 United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.

More information

We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -

We r e going to play Final (exam) Jeopardy! Answers: Questions: - 1 - . (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)

More information

Simplifying Logic Circuits with Karnaugh Maps

Simplifying Logic Circuits with Karnaugh Maps Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

Principles of Engineering (PLTW)

Principles of Engineering (PLTW) Indiana Department of Education Indiana Academic Course Framework Principles of Engineering (PLTW) Principles of Engineering is a course that focuses on the process of applying engineering, technological,

More information

Indiana University East Faculty Senate

Indiana University East Faculty Senate Indiana University East Faculty Senate General Education Curriculum for Baccalaureate Degree Programs at Indiana University East The purpose of the General Education Curriculum is to ensure that every

More information

ENEE Electrical & Computer Engineering Summer 2015

ENEE Electrical & Computer Engineering Summer 2015 This printed version of the Schedule of Classes is current as of 12/14/15 10:19 PM. ENEE Electrical & Computer Engineering Summer 2015 ENEE200 Social and Ethical Dimensions of Engineering Technology Credits:

More information

5 Combinatorial Components. 5.0 Full adder. Full subtractor

5 Combinatorial Components. 5.0 Full adder. Full subtractor 5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

Two-level logic using NAND gates

Two-level logic using NAND gates CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place

More information

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 OUTCOME 3 PART 1 This work covers part of outcome 3 of the Edexcel standard module: Outcome 3 is the most demanding

More information

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas

Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on

Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is

More information

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk How to go

More information

Counters are sequential circuits which "count" through a specific state sequence.

Counters are sequential circuits which count through a specific state sequence. Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

Cascaded Counters. Page 1 BYU

Cascaded Counters. Page 1 BYU Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls

More information

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com

More information