A Little Perspective Combinational Logic Circuits
|
|
|
- Briana Pope
- 9 years ago
- Views:
Transcription
1 A Little Perspective Combinational Logic Circuits COMP 251 Computer Organization and Architecture Fall 2009 Motivating Example Recall our machine s architecture: A Simple ALU Consider an ALU that can perform the following operations: ADD, SUB, AND, OR, NOT C3 C2 C1 C0 Operation B A B A & B A + B ~B A - B All of the computations that can be performed in our assembly/machine languages have to be able to be carried out by the hardware. ADD, SUB, AND, OR, SHL, SHR etc A, B, R 32 bit binary C3-C0 1 bit control lines N, Z, O 1 bit status flags Result is Negative, Zero, Odd Binary Addition Consider the process of adding two, 2 s complement binary numbers: or With the second approach we can see that the bit in every column is generated as the addition of 3 bits. Thus, to build a machine that can add n bit binary numbers we need only build n copies of a machine that can add three 1 bit binary numbers. Binary Addition Adding three, 1 bit binary numbers: 1 x 1 or more generally y z 10 c s s sum of three bits c carry out to next bit. Adding multi-bit numbers: 1
2 Building Blocks Logic Gates: Electronic components that compute a Boolean function of their inputs. Logic Circuits Logic Circuit: A combination of logic gates that computes some Boolean function. Every circuit can be expressed in three ways: Logic Expression Truth Table Logic Expression z = AB + C Truth Table A B C Z More Building Blocks Some additional logic gates that we ll use: Schematic Expression Converting a Schematic to an Expression: Write expressions for intermediate results. Write expression for output in terms of intermediate results. Substitute intermediate results into output expression. Logic Expression Z = AB + (A + B) Schematic Truth Table Converting a Schematic to a truth table: Write out all possible inputs. Generate truth values for intermediate results. Generate the truth vales for the output. Truth Table A B C D Y Z Truth Table Expression Converting a Truth Table to an Expression: Generate an AND term for each row of the truth table with output 1. OR together all of the AND terms. This gives an expression in Sum-Of-Products (SOP) form. Truth Table A B C Z Expression Z = ABC + ABC + ABC + ABC Note: AB AB 2
3 SOP Expression Schematic Converting SOP Expressions to Schematics: Expression Z = ABC + ABC + ABC + ABC Typical Problem Construct a circuit that detects prime numbers in 3 bit unsigned representation. Primes: 2, 3, 5, 7 Approach? Probe Applet Probe: Circuit simulation program. Available on-line: See Link on web page. Quick Demo: Click on Start Probe button on web page Select component type Use add new component tool Input Probes Logic Gates Output Probes Truth Table Window Copy: Command+Shift+4 then Space bar Circuit Design Motivating Example: Create a circuit that detects even 3 bit unsigned binary numbers. The input is a 3 bit unsigned binary number (ABC). The output is a single bit (E): 1 if the input is even. 0 if the input is odd. A B C E (0) (1) (2) (3) (4) (5) (6) (7) 0 E = ABC + ABC + ABC + ABC Evaluating Circuit Quality Cost: The total number of inputs on the logic gates gives an estimate of the cost of the circuit. Speed: The maximum number of gates through which an input must pass before reaching the output gives an estimate of the speed of the circuit. Propagation Delay Example 1: Cost = Delay = Example 2: Cost = Delay = Examples 3
4 Logic Simplification Boolean Algebra: The Boolean Algebra consists of a collection of identities that can be used to transform Boolean expressions into other equivalent Boolean expressions that may yield better circuits: Fewer gates or inputs (cheaper) Smaller propagation delays (faster) NOTE: Two Boolean expressions, A and B, are equivalent if and only if all possible inputs that make A true also make B true and vice versa. Boolean Identities Name And Form Or Form Identity 1 A = A 0 + A = A Null 0 A = 0 1+ A =1 Idempotent A A = A A + A = A Inverse A A = 0 A + A =1 Commutative A B = B A A + B = B + A Associative (A B) C = A (B C) (A + B) + C = A + (B + C) Distributive A + (B C) = (A + B) (A + C) A (B + C) = A B + A C Absorption A (A + B) = A A + A B = A DeMorgan's A B = A + B A + B = AB Double Negation A= A Exercises Simplify the following circuits to minimize the propagation delay: Circuit 1: Exercises Simplify the following circuits to minimize propagation delay: Circuit 3: Circuit 2: Circuit 4: Exercises Simplify the following circuit to minimize propagation delay: Circuit 5: Recall Our ALU Our ALU that can perform the following basic operations: ADD, SUB, AND, OR, NOT C3 C2 C1 C0 Operation B A B A & B A + B ~B A - B A, B, R 32 bit binary C3-C0 1 bit control lines N, Z, O 1 bit status flags Result is Negative, Zero, Odd 4
5 Our ALU In reality the basic operations of our ALU will be controlled by C1 and C2 and will consist of only: Inside Our ALU Recall the carry-ripple approach to addition: C1 C0 Operation 0 0 B 0 1 A B 1 0 A & B 1 1 A + B Additional operations will be enabled by control lines C2 and C3 as follows: C2 If 1, Flip the bits of B before performing operation. C3 Set the carry in to the LSb A similar approach for an n bit ALU: Inside a 1-Bit ALU Computing each of the basic operations of the ALU is not difficult: Inside a 1-Bit ALU Picking the correct output: Multiplexers Multiplexer (mux): A circuit that uses n control lines (C) to select one of 2 n inputs (D) as the output (Z). Inside a Multiplexer Like all of our other circuits, a multiplexer can be constructed using the basic logic gates. C1 C0 Z 0 0 D D D D 3 Multiplexers come in 2, 4, 8, 16 etc input varieties. 5
6 Inside a 1-Bit ALU A full working 1-bit ALU: Propagation Delays What is the propagation delay of the result (r i ) and carry-out (c) for our 1-bit ALU? Propagation Delays What is the propagation delay for an n bit carry-ripple ALU? Propagation Delays Why are propagation delays important? Recall that generally one machine language instruction will execute during each machine cycle. If that instruction uses the ALU, the length of the cycle must be long enough to allow the ALU to perform its computation. 6
BOOLEAN ALGEBRA & LOGIC GATES
BOOLEAN ALGEBRA & LOGIC GATES Logic gates are electronic circuits that can be used to implement the most elementary logic expressions, also known as Boolean expressions. The logic gate is the most basic
1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.
File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one
Karnaugh Maps & Combinational Logic Design. ECE 152A Winter 2012
Karnaugh Maps & Combinational Logic Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 4 Optimized Implementation of Logic Functions 4. Karnaugh Map 4.2 Strategy for Minimization 4.2. Terminology
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Boolean Algebra Part 1
Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
Karnaugh Maps. Circuit-wise, this leads to a minimal two-level implementation
Karnaugh Maps Applications of Boolean logic to circuit design The basic Boolean operations are AND, OR and NOT These operations can be combined to form complex expressions, which can also be directly translated
Understanding Logic Design
Understanding Logic Design ppendix of your Textbook does not have the needed background information. This document supplements it. When you write add DD R0, R1, R2, you imagine something like this: R1
Gates & Boolean Algebra. Boolean Operators. Combinational Logic. Introduction
Introduction Gates & Boolean lgebra Boolean algebra: named after mathematician George Boole (85 864). 2-valued algebra. digital circuit can have one of 2 values. Signal between and volt =, between 4 and
United States Naval Academy Electrical and Computer Engineering Department. EC262 Exam 1
United States Naval Academy Electrical and Computer Engineering Department EC262 Exam 29 September 2. Do a page check now. You should have pages (cover & questions). 2. Read all problems in their entirety.
Let s put together a Manual Processor
Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce
ASYNCHRONOUS COUNTERS
LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding
CSEE 3827: Fundamentals of Computer Systems. Standard Forms and Simplification with Karnaugh Maps
CSEE 3827: Fundamentals of Computer Systems Standard Forms and Simplification with Karnaugh Maps Agenda (M&K 2.3-2.5) Standard Forms Product-of-Sums (PoS) Sum-of-Products (SoP) converting between Min-terms
Lab 1: Full Adder 0.0
Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify
Adder.PPT(10/1/2009) 5.1. Lecture 13. Adder Circuits
Adder.T(//29) 5. Lecture 3 Adder ircuits Objectives Understand how to add both signed and unsigned numbers Appreciate how the delay of an adder circuit depends on the data values that are being added together
The string of digits 101101 in the binary number system represents the quantity
Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
Simplifying Logic Circuits with Karnaugh Maps
Simplifying Logic Circuits with Karnaugh Maps The circuit at the top right is the logic equivalent of the Boolean expression: f = abc + abc + abc Now, as we have seen, this expression can be simplified
CSE140: Components and Design Techniques for Digital Systems
CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing What we covered thus far: Number representations Logic gates Boolean algebra Introduction to CMOS HW#2 due, HW#3 assigned
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
Counters and Decoders
Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Gates, Circuits, and Boolean Algebra
Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks
Combinational Logic Design
Chapter 4 Combinational Logic Design The foundations for the design of digital logic circuits were established in the preceding chapters. The elements of Boolean algebra (two-element switching algebra
Sistemas Digitais I LESI - 2º ano
Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes ([email protected]) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The
CSE140: Midterm 1 Solution and Rubric
CSE140: Midterm 1 Solution and Rubric April 23, 2014 1 Short Answers 1.1 True or (6pts) 1. A maxterm must include all input variables (1pt) True 2. A canonical product of sums is a product of minterms
Logic Reference Guide
Logic eference Guide Advanced Micro evices INTOUCTION Throughout this data book and design guide we have assumed that you have a good working knowledge of logic. Unfortunately, there always comes a time
Chapter 2: Boolean Algebra and Logic Gates. Boolean Algebra
The Universit Of Alabama in Huntsville Computer Science Chapter 2: Boolean Algebra and Logic Gates The Universit Of Alabama in Huntsville Computer Science Boolean Algebra The algebraic sstem usuall used
Digital circuits make up all computers and computer systems. The operation of digital circuits is based on
Digital Logic Circuits Digital circuits make up all computers and computer systems. The operation of digital circuits is based on Boolean algebra, the mathematics of binary numbers. Boolean algebra is
Two-level logic using NAND gates
CSE140: Components and Design Techniques for Digital Systems Two and Multilevel logic implementation Tajana Simunic Rosing 1 Two-level logic using NND gates Replace minterm ND gates with NND gates Place
CSE140 Homework #7 - Solution
CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576
exclusive-or and Binary Adder R eouven Elbaz [email protected] Office room: DC3576 Outline exclusive OR gate (XOR) Definition Properties Examples of Applications Odd Function Parity Generation and Checking
C H A P T E R. Logic Circuits
C H A P T E R Logic Circuits Many important functions are naturally computed with straight-line programs, programs without loops or branches. Such computations are conveniently described with circuits,
BINARY CODED DECIMAL: B.C.D.
BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder
FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct
Elementary Logic Gates
Elementary Logic Gates Name Symbol Inverter (NOT Gate) ND Gate OR Gate Truth Table Logic Equation = = = = = + C. E. Stroud Combinational Logic Design (/6) Other Elementary Logic Gates NND Gate NOR Gate
Logic in Computer Science: Logic Gates
Logic in Computer Science: Logic Gates Lila Kari The University of Western Ontario Logic in Computer Science: Logic Gates CS2209, Applied Logic for Computer Science 1 / 49 Logic and bit operations Computers
CS 61C: Great Ideas in Computer Architecture Finite State Machines. Machine Interpreta4on
CS 61C: Great Ideas in Computer Architecture Finite State Machines Instructors: Krste Asanovic & Vladimir Stojanovic hbp://inst.eecs.berkeley.edu/~cs61c/sp15 1 Levels of RepresentaKon/ InterpretaKon High
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots
Lecture 12: More on Registers, Multiplexers, Decoders, Comparators and Wot- Nots Registers As you probably know (if you don t then you should consider changing your course), data processing is usually
2.0 Chapter Overview. 2.1 Boolean Algebra
Thi d t t d ith F M k 4 0 2 Boolean Algebra Chapter Two Logic circuits are the basis for modern digital computer systems. To appreciate how computer systems operate you will need to understand digital
3.Basic Gate Combinations
3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and
COMBINATIONAL CIRCUITS
COMBINATIONAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/combinational_circuits.htm Copyright tutorialspoint.com Combinational circuit is a circuit in which we combine the different
Lecture 5: Gate Logic Logic Optimization
Lecture 5: Gate Logic Logic Optimization MAH, AEN EE271 Lecture 5 1 Overview Reading McCluskey, Logic Design Principles- or any text in boolean algebra Introduction We could design at the level of irsim
NEW adder cells are useful for designing larger circuits despite increase in transistor count by four per cell.
CHAPTER 4 THE ADDER The adder is one of the most critical components of a processor, as it is used in the Arithmetic Logic Unit (ALU), in the floating-point unit and for address generation in case of cache
Combinational circuits
Combinational circuits Combinational circuits are stateless The outputs are functions only of the inputs Inputs Combinational circuit Outputs 3 Thursday, September 2, 3 Enabler Circuit (High-level view)
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Two's Complement Adder/Subtractor Lab L03
Two's Complement Adder/Subtractor Lab L03 Introduction Computers are usually designed to perform indirect subtraction instead of direct subtraction. Adding -B to A is equivalent to subtracting B from A,
Figure 8-1 Four Possible Results of Adding Two Bits
CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find
earlier in the semester: The Full adder above adds two bits and the output is at the end. So if we do this eight times, we would have an 8-bit adder.
The circuit created is an 8-bit adder. The 8-bit adder adds two 8-bit binary inputs and the result is produced in the output. In order to create a Full 8-bit adder, I could use eight Full -bit adders and
Lecture 8: Synchronous Digital Systems
Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered
ELEC 2210 - EXPERIMENT 1 Basic Digital Logic Circuits
Objectives ELEC - EXPERIMENT Basic Digital Logic Circuits The experiments in this laboratory exercise will provide an introduction to digital electronic circuits. You will learn how to use the IDL-00 Bit
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
2011, The McGraw-Hill Companies, Inc. Chapter 3
Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through
FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. The Binary Adder
FORDHAM UNIVERITY CIC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. cience pring, 2011 1 Introduction The Binar Adder The binar adder circuit is an important building
Systems I: Computer Organization and Architecture
Systems I: Computer Organization and Architecture Lecture : Microprogrammed Control Microprogramming The control unit is responsible for initiating the sequence of microoperations that comprise instructions.
Take-Home Exercise. z y x. Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas
Take-Home Exercise Assume you want the counter below to count mod-6 backward. That is, it would count 0-5-4-3-2-1-0, etc. Assume it is reset on startup, and design the wiring to make the counter count
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1
WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits
Boolean Algebra. Boolean Algebra. Boolean Algebra. Boolean Algebra
2 Ver..4 George Boole was an English mathematician of XIX century can operate on logic (or Boolean) variables that can assume just 2 values: /, true/false, on/off, closed/open Usually value is associated
plc numbers - 13.1 Encoded values; BCD and ASCII Error detection; parity, gray code and checksums
plc numbers - 3. Topics: Number bases; binary, octal, decimal, hexadecimal Binary calculations; s compliments, addition, subtraction and Boolean operations Encoded values; BCD and ASCII Error detection;
Lecture 8: Binary Multiplication & Division
Lecture 8: Binary Multiplication & Division Today s topics: Addition/Subtraction Multiplication Division Reminder: get started early on assignment 3 1 2 s Complement Signed Numbers two = 0 ten 0001 two
ENGI 241 Experiment 5 Basic Logic Gates
ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.
Karnaugh Maps (K-map) Alternate representation of a truth table
Karnaugh Maps (K-map) lternate representation of a truth table Red decimal = minterm value Note that is the MS for this minterm numbering djacent squares have distance = 1 Valuable tool for logic minimization
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands Ben Bruidegom, [email protected] AMSTEL Instituut Universiteit van Amsterdam Kruislaan 404 NL-1098 SM Amsterdam
6. BOOLEAN LOGIC DESIGN
6. OOLEN LOGI DESIGN 89 Topics: oolean algebra onverting between oolean algebra and logic gates and ladder logic Logic examples Objectives: e able to simplify designs with oolean algebra 6. INTRODUTION
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
Lecture 2. Binary and Hexadecimal Numbers
Lecture 2 Binary and Hexadecimal Numbers Purpose: Review binary and hexadecimal number representations Convert directly from one base to another base Review addition and subtraction in binary representations
Base Conversion written by Cathy Saxton
Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,
(Refer Slide Time: 00:01:16 min)
Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control
5 Combinatorial Components. 5.0 Full adder. Full subtractor
5 Combatorial Components Use for data transformation, manipulation, terconnection, and for control: arithmetic operations - addition, subtraction, multiplication and division. logic operations - AND, OR,
CS311 Lecture: Sequential Circuits
CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce
Designing Digital Circuits a modern approach. Jonathan Turner
Designing Digital Circuits a modern approach Jonathan Turner 2 Contents I First Half 5 1 Introduction to Designing Digital Circuits 7 1.1 Getting Started.......................... 7 1.2 Gates and Flip
DEPARTMENT OF INFORMATION TECHNLOGY
DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453
Chapter 1. Computation theory
Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.
CS201: Architecture and Assembly Language
CS201: Architecture and Assembly Language Lecture Three Brendan Burns CS201: Lecture Three p.1/27 Arithmetic for computers Previously we saw how we could represent unsigned numbers in binary and how binary
CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012
CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline Multi-Level Gate Circuits NAND and NOR Gates Design of Two-Level Circuits Using NAND and NOR Gates
CHAPTER 2. Logic. 1. Logic Definitions. Notation: Variables are used to represent propositions. The most common variables used are p, q, and r.
CHAPTER 2 Logic 1. Logic Definitions 1.1. Propositions. Definition 1.1.1. A proposition is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0). Notation:
(1) /30 (2) /30 (3) /40 TOTAL /100
Your Name: SI Number: UNIVERSITY OF CALIFORNIA AT BERKELEY BERKELEY AVIS IRVINE LOS ANGELES RIVERSIE SAN IEGO SAN FRANCISCO epartment of Electrical Engineering and Computer Sciences SANTA BARBARA SANTA
University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell
Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates
Module 3: Floyd, Digital Fundamental
Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : [email protected] Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY
RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display
NUMBER SYSTEMS. 1.1 Introduction
NUMBER SYSTEMS 1.1 Introduction There are several number systems which we normally use, such as decimal, binary, octal, hexadecimal, etc. Amongst them we are most familiar with the decimal number system.
To convert an arbitrary power of 2 into its English equivalent, remember the rules of exponential arithmetic:
Binary Numbers In computer science we deal almost exclusively with binary numbers. it will be very helpful to memorize some binary constants and their decimal and English equivalents. By English equivalents
Gates, Plexers, Decoders, Registers, Addition and Comparison
Introduction to Digital Logic Autumn 2008 Gates, Plexers, Decoders, Registers, Addition and Comparison [email protected] ...open up a command shell and type logisim and press enter to start Logisim.
Combinational Logic Design Process
Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 3 Binary Operations We are used to addition and multiplication of real numbers. These operations combine two real numbers
def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.
Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true
This Unit: Floating Point Arithmetic. CIS 371 Computer Organization and Design. Readings. Floating Point (FP) Numbers
This Unit: Floating Point Arithmetic CIS 371 Computer Organization and Design Unit 7: Floating Point App App App System software Mem CPU I/O Formats Precision and range IEEE 754 standard Operations Addition
COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012
Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output
An Efficient RNS to Binary Converter Using the Moduli Set {2n + 1, 2n, 2n 1}
An Efficient RNS to Binary Converter Using the oduli Set {n + 1, n, n 1} Kazeem Alagbe Gbolagade 1,, ember, IEEE and Sorin Dan Cotofana 1, Senior ember IEEE, 1. Computer Engineering Laboratory, Delft University
Levent EREN [email protected] A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC
Levent EREN [email protected] A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n
Switching Algebra and Logic Gates
Chapter 2 Switching Algebra and Logic Gates The word algebra in the title of this chapter should alert you that more mathematics is coming. No doubt, some of you are itching to get on with digital design
RAM & ROM Based Digital Design. ECE 152A Winter 2012
RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in
Lab 17: Building a 4-Digit 7-Segment LED Decoder
Phys2303 L.A. Bumm [Nexys 1.1.2] Lab 17 (p1) Lab 17: Building a 4-Digit 7-Segment LED Decoder In this lab your will make 4 test circuits, the 4-digit 7-segment decoder, and demonstration circuit using
CSI 333 Lecture 1 Number Systems
CSI 333 Lecture 1 Number Systems 1 1 / 23 Basics of Number Systems Ref: Appendix C of Deitel & Deitel. Weighted Positional Notation: 192 = 2 10 0 + 9 10 1 + 1 10 2 General: Digit sequence : d n 1 d n 2...
COMPUTER SCIENCE. Paper 1 (THEORY)
COMPUTER SCIENCE Paper 1 (THEORY) (Three hours) Maximum Marks: 70 (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time) -----------------------------------------------------------------------------------------------------------------------
