# COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012

Save this PDF as:

Size: px
Start display at page:

Download "COMP 250 Fall 2012 lecture 2 binary representations Sept. 11, 2012"

## Transcription

1 Binary numbers The reason humans represent numbers using decimal (the ten digits from 0,1,... 9) is that we have ten fingers. There is no other reason than that. There is nothing special otherwise about the number ten. Computers don t represent numbers using decimal. Instead, they represent numbers using binary, or base 2. Let s make sure we understand what binary representations of numbers are. We ll start with positive integers. In decimal, we write numbers using digits {0, 1,..., 9}, in particular, as sums of powers of ten. For example, (238) 10 = In binary, we represent numbers using bits {0, 1}, in particular, as a sum of powers of two: (11010) 2 = I have put little subscripts (10 and 2) to indicate that we are using a particular representation (decimal or binary). We don t need to always put this subscript in, but sometimes it helps. Let s consider how to count in binary. You should verify that the binary representation is a sum of powers of 2 that indeed corresponds to the decimal representation on the left. decimal binary etc Just as we did last lecture with other bases, let s add two numbers which are written in binary: Make sure you see how this is done, namely how the carries work. For example, in column 0, we add to get 1 and there is no carry. In column 1, we add (in fact, ) and we get = 2 2 and so we carry a 1 over column 2. Do not proceed further until you understand this. 1

2 Converting from decimal to binary It is trivial to convert a number from a binary representation to a decimal representation. You just need to know the decimal representation of the various powers of = 1, 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 4 = 16, 2 5 = 32, 2 6 = 64, 2 7 = 128, 2 8 = 256, 2 9 = 512, 2 10 = 1024,... Then, for any binary number, you write each of its bits as a power of 2 (in decimal) and then you add up these decimal numbers, e.g = = 26. The other direction is more challenging. How do you convert from a decimal number to a binary number? Here is an algorithm for doing so which is so simple you could have learned it in grade school. The algorithm repeatedly divides by 2 and the remainder bits give us the binary representation. Recall that / is the integer division operation which ignores the remainder i.e. fractions. If you want the remainder of the division, use % which is sometimes called the mod (or modulus) operator. Algorithm 1 Convert decimal to binary INPUT: a number m expressed in base 10 (decimal) OUTPUT: the number m expressed in base 2 using a bit array b[ ] i 0 while m > 0 do b[i] m%2 m m/2 i i + 1 end while Example: Convert 241 to binary i m b[ ] : : 2

3 and so (241) 10 = ( ) 2. Note that there are an infinite number of 0 s on the left which are higher powers of 2 which we ignore. What does this algorithm work? To answer this question, it helps to recall a few properties of multiplication and division. Let s go back to base 10 where we have a better intuition. Suppose we have a positive integer m which is written in decimal (as a sum of powers of 10) and we then multiply m by 10. There is a simple way to get the result, 10 m, namely shift the digits left by one place and put a 0 in the rightmost position. So, = 2380 and the reason is = ( ) 10 = Similarly, to divide a number m by 10, we shift the digits to the right 238/10 = ( )/10 = We have dropped the rightmost digit 8 (which becomes the remainder) since we are doing integer division, and thus ignoring terms with negative powers of 10 i.e In binary, the same idea holds. If we represent a number m in binary and multiply by 2, we shift the bits to the left by one position and put a 0 in the rightmost position. So, e.g. if then multiplying by 2 gives m = (11010) 2 = (110100) 2 = If we divide by 2, then we shift right by one position and drop the rightmost bit (which becomes the remainder). Let s put the left shift and right shifts together. For any positive integer m, we can write for example, m = 10 (m/10) + (m%10), 549 = = 10 (549/10) + (549 % 10). More generally, for any positive integer call it base we can write and in particular, in binary we use base = 2, so m = base (m/base) + (m % base), m = 2 (m/2) + (m % 2). Now let s apply these ideas to the algorithm. Representing a positive integer m in binary means that we write it m = n 1 i=0 b i 2 i 3

4 where b i is a bit, i.e either 0 or 1. So we write m in binary as a bit sequence (b n 1 b n 2... b 2 b 1 b 0 ). In particular, m % 2 = b 0 m / 2 = (b n 1... b 2 b 1 ) Thus, the algorithm essentially just uses repeated division and mod to read off the bits of the binary representation of the number. If you are still not convinced, let s run another example where we know the answer from the start and we ll see that the algorithm does the correct thing. Suppose our number is m = 241, which is ( ) 2 in binary. i m b[i] and so the remainders are just the bits used in the binary representation of the number. Interestingly, the same algorithm works for any base. For example, let s convert 238 from decimal to base 5, that is, let s write 238 as a sum of powers of 5. We apply the same algorithm as earlier but now we divide by 5 at each step and take the remainder and so (238) 10 = (1423) 5. Verify this by converting the latter back into decimal by summing powers of 5. Binary fractions Up to now we have only talked about integers. We next talk about binary representations of fractional numbers, that is, numbers that lie between the integers. Take a decimal number such as We write this as: The. is called the decimal point. (26.375) 10 =

5 One uses an analogous representation using binary numbers, e.g. ( ) 2 = where. is called the binary point. Check for yourself that this is the same number as above, namely = How do we convert from decimal to binary for such fractional numbers in general? Suppose we have a number x that is written in decimal and has a finite number of digits to the right of the binary point. Let s look at a particular example. This is different from the one given in the slides. Let x = 4.63 and let s convert it to binary. Since x = , we know the answer will have the form 100. since 100 is the binary representation of 4 and.63 is a sum of powers of negative powers of 2. So we just need to find the bits to the right of the binary point. To get the first say five bits, we multiply and divide by 2 five times (or alternatively, as was suggested in class, we just directly multiply 0.67 by 2 5 = 32 and also divide by 2 5 ) = = = = = We convert (21) 10 from decimal to binary which gives ( ) 2 and then we shift the binary point left by five places. Thus.67 =.10101, and so 4.63 = If we drop off the unspecified part to have a finite number of bits only, then we have an approximation. As was observed in class, we can sometimes obtain a better approximation than truncating (chopping) the unknown bits. In this example, the approximation error is and since 0.44 is closer to 0 than to 1, we are better of truncating. For other examples, however, it might be better to round up. This is the case of the one example in the slides, where we had (.247) 10 = = (.0011 ) 2 Since.952 is closer to 1 than to 0, we would obtain a better approximation we replaced by 1 2 4, and so the approximation would be (.0011) = (.0100) 2. 5

### ECE 0142 Computer Organization. Lecture 3 Floating Point Representations

ECE 0142 Computer Organization Lecture 3 Floating Point Representations 1 Floating-point arithmetic We often incur floating-point programming. Floating point greatly simplifies working with large (e.g.,

### Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

### Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 INTRODUCTION TO DIGITAL LOGIC

Levent EREN levent.eren@ieu.edu.tr A-306 Office Phone:488-9882 1 Number Systems Representation Positive radix, positional number systems A number with radix r is represented by a string of digits: A n

### MACM 101 Discrete Mathematics I

MACM 101 Discrete Mathematics I Exercises on Combinatorics, Probability, Languages and Integers. Due: Tuesday, November 2th (at the beginning of the class) Reminder: the work you submit must be your own.

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### Introduction (I) Present Value Concepts. Introduction (II) Introduction (III)

Introduction (I) Present Value Concepts Philip A. Viton February 19, 2014 Many projects lead to impacts that occur at different times. We will refer to those impacts as constituting an (inter)temporal

### Factoring Algorithms

Institutionen för Informationsteknologi Lunds Tekniska Högskola Department of Information Technology Lund University Cryptology - Project 1 Factoring Algorithms The purpose of this project is to understand

### Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### Lecture 4: Binary. CS442: Great Insights in Computer Science Michael L. Littman, Spring 2006. I-Before-E, Continued

Lecture 4: Binary CS442: Great Insights in Computer Science Michael L. Littman, Spring 26 I-Before-E, Continued There are two ideas from last time that I d like to flesh out a bit more. This time, let

### Factoring & Primality

Factoring & Primality Lecturer: Dimitris Papadopoulos In this lecture we will discuss the problem of integer factorization and primality testing, two problems that have been the focus of a great amount

### SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

### Arithmetic Coding: Introduction

Data Compression Arithmetic coding Arithmetic Coding: Introduction Allows using fractional parts of bits!! Used in PPM, JPEG/MPEG (as option), Bzip More time costly than Huffman, but integer implementation

### Faster deterministic integer factorisation

David Harvey (joint work with Edgar Costa, NYU) University of New South Wales 25th October 2011 The obvious mathematical breakthrough would be the development of an easy way to factor large prime numbers

### U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

### Information, Entropy, and Coding

Chapter 8 Information, Entropy, and Coding 8. The Need for Data Compression To motivate the material in this chapter, we first consider various data sources and some estimates for the amount of data associated

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Quantum Computing Lecture 7. Quantum Factoring. Anuj Dawar

Quantum Computing Lecture 7 Quantum Factoring Anuj Dawar Quantum Factoring A polynomial time quantum algorithm for factoring numbers was published by Peter Shor in 1994. polynomial time here means that

### Subnetting Examples. There are three types of subnetting examples I will show in this document:

Subnetting Examples There are three types of subnetting examples I will show in this document: 1) Subnetting when given a required number of networks 2) Subnetting when given a required number of clients

### 11 Ideals. 11.1 Revisiting Z

11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

### 5.1 Introduction to Decimals

Chapter 5 Decimals On January 29, 2001, the New Yk Stock exchange ended its 200-year tradition of quoting stock prices in fractions and switched to decimals. It was said that pricing stocks the same way

### Random-Number Generation

Random-Number Generation Raj Jain Washington University Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/ 26-1

### Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

### Taylor and Maclaurin Series

Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

### Pascal is here expressing a kind of skepticism about the ability of human reason to deliver an answer to this question.

Pascal s wager So far we have discussed a number of arguments for or against the existence of God. In the reading for today, Pascal asks not Does God exist? but Should we believe in God? What is distinctive

### Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

### Chapter 1. Computation theory

Chapter 1. Computation theory In this chapter we will describe computation logic for the machines. This topic is a wide interdisciplinary field, so that the students can work in an interdisciplinary context.

### A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC. E. C. R. HEHNER and R. N. S. HORSPOOL

A NEW REPRESENTATION OF THE RATIONAL NUMBERS FOR FAST EASY ARITHMETIC E. C. R. HEHNER and R. N. S. HORSPOOL Abstract. A novel system for representing the rational numbers based on Hensel's p-adic arithmetic

### LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Graphic Organizers SAMPLES

This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase

### Lecture 13: Factoring Integers

CS 880: Quantum Information Processing 0/4/0 Lecture 3: Factoring Integers Instructor: Dieter van Melkebeek Scribe: Mark Wellons In this lecture, we review order finding and use this to develop a method

### Discrete Structures. Rajmohan Rajaraman Eric Ropiak Chris Burrows Ravi Sundaram

Discrete Structures Harriet Fell Javed A. Aslam Rajmohan Rajaraman Eric Ropiak Chris Burrows Ravi Sundaram Discrete Structures Version 2.1 Harriet Fell Javed A. Aslam Rajmohan Rajaraman Eric Ropiak Chris

### Grade 7/8 Math Circles February 3/4, 2015 Arithmetic Aerobics

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Mental Math is Good For You! Grade 7/8 Math Circles February 3/4, 2015 Arithmetic Aerobics You ve probably

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### Mining Data Streams. Chapter 4. 4.1 The Stream Data Model

Chapter 4 Mining Data Streams Most of the algorithms described in this book assume that we are mining a database. That is, all our data is available when and if we want it. In this chapter, we shall make

### 6 Scalar, Stochastic, Discrete Dynamic Systems

47 6 Scalar, Stochastic, Discrete Dynamic Systems Consider modeling a population of sand-hill cranes in year n by the first-order, deterministic recurrence equation y(n + 1) = Ry(n) where R = 1 + r = 1

### OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

### Primes. Name Period Number Theory

Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

### Third Southern African Regional ACM Collegiate Programming Competition. Sponsored by IBM. Problem Set

Problem Set Problem 1 Red Balloon Stockbroker Grapevine Stockbrokers are known to overreact to rumours. You have been contracted to develop a method of spreading disinformation amongst the stockbrokers

### Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms 1, Counting Distinct Elements 2, 3, counting distinct elements problem formalization input: stream of elements o from some universe U e.g. ids from a set

### TAKE-AWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION

TAKE-AWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf take-away?f have become popular. The purpose of this paper is to determine the

### DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

### (Refer Slide Time: 01:11-01:27)

Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

### SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

### INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

### Some applications of LLL

Some applications of LLL a. Factorization of polynomials As the title Factoring polynomials with rational coefficients of the original paper in which the LLL algorithm was first published (Mathematische

### Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)

Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the

### How to build a probability-free casino

How to build a probability-free casino Adam Chalcraft CCR La Jolla dachalc@ccrwest.org Chris Freiling Cal State San Bernardino cfreilin@csusb.edu Randall Dougherty CCR La Jolla rdough@ccrwest.org Jason

### 3201 Computer Networks 2014/2015 Handout: Subnetting Question

Subnetting Questions with Answers Question1: Given the following: Network address: 192.168.10.0 Subnet mask: 255.255.255.224 1. How many subnets? Ans: 6 2. How many hosts? Ans: 30 3. What are the valid

### 15-251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012

15-251: Great Theoretical Ideas in Computer Science Anupam Gupta Notes on Combinatorial Games (draft!!) January 29, 2012 1 A Take-Away Game Consider the following game: there are 21 chips on the table.

### Background Information on Exponentials and Logarithms

Background Information on Eponentials and Logarithms Since the treatment of the decay of radioactive nuclei is inetricably linked to the mathematics of eponentials and logarithms, it is important that

### Identification Numbers and Check Digits 1

Identification Numbers and Check Digits 1 Many products or documents today have an identification number stamped. This numbers codes information about the product. Some examples: 1. Credit Cards 2. Postal

### Lecture 9 - Message Authentication Codes

Lecture 9 - Message Authentication Codes Boaz Barak March 1, 2010 Reading: Boneh-Shoup chapter 6, Sections 9.1 9.3. Data integrity Until now we ve only been interested in protecting secrecy of data. However,

### Symmetric Key cryptosystem

SFWR C03: Computer Networks and Computer Security Mar 8-11 200 Lecturer: Kartik Krishnan Lectures 22-2 Symmetric Key cryptosystem Symmetric encryption, also referred to as conventional encryption or single

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### Geometric Series and Annuities

Geometric Series and Annuities Our goal here is to calculate annuities. For example, how much money do you need to have saved for retirement so that you can withdraw a fixed amount of money each year for

### Structure of the Root Spaces for Simple Lie Algebras

Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)

### 14:440:127 Introduction to Computers for Engineers. Notes for Lecture 06

14:440:127 Introduction to Computers for Engineers Notes for Lecture 06 Rutgers University, Spring 2010 Instructor- Blase E. Ur 1 Loop Examples 1.1 Example- Sum Primes Let s say we wanted to sum all 1,

### Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

### Chapter 5. Binary, octal and hexadecimal numbers

Chapter 5. Binary, octal and hexadecimal numbers A place to look for some of this material is the Wikipedia page http://en.wikipedia.org/wiki/binary_numeral_system#counting_in_binary Another place that

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Cryptography and Network Security

Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard

### Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide

### CSCI 1301: Introduction to Computing and Programming Summer 2015 Project 1: Credit Card Pay Off

CSCI 1301: Introduction to Computing and Programming Summer 2015 Project 1: Credit Card Pay Off Introduction This project will allow you to apply your knowledge of variables, assignments, expressions,

### 2.3 IPv4 Address Subnetting Part 2

.3 IPv4 Address Subnetting Part Objective Upon completion of this activity, you will be able to determine subnet information for a given IP address and subnetwork mask. When given an IP address, network

### Chapter Binary, Octal, Decimal, and Hexadecimal Calculations

Chapter 5 Binary, Octal, Decimal, and Hexadecimal Calculations This calculator is capable of performing the following operations involving different number systems. Number system conversion Arithmetic

### Chapter 15: Dynamic Programming

Chapter 15: Dynamic Programming Dynamic programming is a general approach to making a sequence of interrelated decisions in an optimum way. While we can describe the general characteristics, the details

### Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### The finite field with 2 elements The simplest finite field is

The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0

### FACTORING SPARSE POLYNOMIALS

FACTORING SPARSE POLYNOMIALS Theorem 1 (Schinzel): Let r be a positive integer, and fix non-zero integers a 0,..., a r. Let F (x 1,..., x r ) = a r x r + + a 1 x 1 + a 0. Then there exist finite sets S

### Major Work of the Grade

Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Kindergarten Describe and compare measurable attributes. Classify objects and count

### PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be

Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our

### IST 220 Honors Project. Subnets with Variable Length Subnet Masks

IST 220 Honors Project Subnets with Variable Length Subnet Masks Project Objectives: In this project, you will subnet the IP address 193.170.10.0 according to needs of the organization. Overview a) Perform

### CSC 373: Algorithm Design and Analysis Lecture 16

CSC 373: Algorithm Design and Analysis Lecture 16 Allan Borodin February 25, 2013 Some materials are from Stephen Cook s IIT talk and Keven Wayne s slides. 1 / 17 Announcements and Outline Announcements

### -- Martensdale-St. Marys Community School Math Curriculum

-- Martensdale-St. Marys Community School Standard 1: Students can understand and apply a variety of math concepts. Benchmark; The student will: A. Understand and apply number properties and operations.

### The Australian Curriculum Mathematics

The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year

### IP Subnetting: Practical Subnet Design and Address Determination Example

IP Subnetting: Practical Subnet Design and Address Determination Example When educators ask students what they consider to be the most confusing aspect in learning about networking, many say that it is

### THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING

THE FUNDAMENTAL THEOREM OF ARBITRAGE PRICING 1. Introduction The Black-Scholes theory, which is the main subject of this course and its sequel, is based on the Efficient Market Hypothesis, that arbitrages

### UGBA 103 (Parlour, Spring 2015), Section 1. Raymond C. W. Leung

UGBA 103 (Parlour, Spring 2015), Section 1 Present Value, Compounding and Discounting Raymond C. W. Leung University of California, Berkeley Haas School of Business, Department of Finance Email: r_leung@haas.berkeley.edu

Should we Really Care about Building Business Cycle Coincident Indexes! Alain Hecq University of Maastricht The Netherlands August 2, 2004 Abstract Quite often, the goal of the game when developing new

### Numbers 101: Cost and Value Over Time

The Anderson School at UCLA POL 2000-09 Numbers 101: Cost and Value Over Time Copyright 2000 by Richard P. Rumelt. We use the tool called discounting to compare money amounts received or paid at different

### An Innocent Investigation

An Innocent Investigation D. Joyce, Clark University January 2006 The beginning. Have you ever wondered why every number is either even or odd? I don t mean to ask if you ever wondered whether every number

### https://satonlinecourse.collegeboard.com/sr/previewassessment.do?ass...

1 of 8 12/16/2011 12:14 PM Help Profile My Bookmarks Logout Algebra and Functions Practice Quiz #3 20 Questions Directions: This quiz contains two types of questions. For questions 1-15, solve each problem

### Calculating Loan Payments

IN THIS CHAPTER Calculating Loan Payments...............1 Calculating Principal Payments...........4 Working with Future Value...............7 Using the Present Value Function..........9 Calculating Interest

### A Simple Inventory System

A Simple Inventory System Section 1.3 Discrete-Event Simulation: A First Course Section 1.3: A Simple Inventory System customers. demand items.. facility. order items.. supplier Distributes items from

### 12.0 Statistical Graphics and RNG

12.0 Statistical Graphics and RNG 1 Answer Questions Statistical Graphics Random Number Generators 12.1 Statistical Graphics 2 John Snow helped to end the 1854 cholera outbreak through use of a statistical

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Elementary factoring algorithms

Math 5330 Spring 013 Elementary factoring algorithms The RSA cryptosystem is founded on the idea that, in general, factoring is hard. Where as with Fermat s Little Theorem and some related ideas, one can

### Non-Inferiority Tests for One Mean

Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random