II. Pathways of Discovery in Microbiology. 1.6 The Historical Roots of Microbiology. Robert Hooke and Early Microscopy

Size: px
Start display at page:

Download "II. Pathways of Discovery in Microbiology. 1.6 The Historical Roots of Microbiology. Robert Hooke and Early Microscopy"

Transcription

1 II. Pathways of Discovery in Microbiology 1.6 The Historical Roots of Microbiology 1.6 The Historical Roots of Microbiology 1.7 Pasteur and the Defeat of Spontaneous Generation 1.8 Koch, Infectious Disease, and the Rise of Pure Culture Microbiology 1.9 Microbial Diversity and the Rise of General Microbiology 1.10 The Modern Era of Microbiology The Historical Roots of Microbiology Robert Hooke ( ) was the first to describe microbes Illustrated the fruiting structures of molds (Figure 1.9b) Anton van Leeuwenhoek ( ) 1723) was the first to describe bacteria (Figure 1.10b) Further progess required development of more powerful microscopes Ferdinand Cohn ( ) founded the field of bacteriology and discovered bacterial endospores Robert Hooke and Early Microscopy Robert Hooke and Early Microscopy Figure 1.9a Figure 1.9b The van Leeuwenhoek Microscope 1.7 Pasteur and the Defeat of Spontaneous Generation Louis Pasteur ( ) Discovered that living organisms discriminate between optical isomers Discovered that alcoholic fermentation was a biologically mediated process (originally thought to be purely chemical) Disproved theory of spontaneous generation (Figure 1.13) Led to the development of methods for controlling the growth of microorganisms Developed vaccines for anthrax, fowl cholera, and rabies Figure 1.10 Pasteur s Experiment 1

2 The Defeat of Spontaneous Generation: Pasteur s Experiment The Defeat of Spontaneous Generation: Pasteur s Experiment ~1860: Where do microorganisms come from? Spontaneous generation? Heat was used to kill the microbes in liquid Figure 1.13a When dust was prevented from reaching the sterilized liquid, no microbes grew in the liquid Figure 1.13b The Defeat of Spontaneous Generation: Pasteur s Experiment 1.8 Koch, Infectious Disease, and the Rise of Pure Cultures Robert Koch ( ) Definitively demonstrated the link between microbes and infectious diseases Identified causative agents of anthrax and tuberculosis Koch s postulates (Figure 1.15) 15) Developed techniques (solid media) for obtaining pure cultures of microbes, some still in existence today Awarded Nobel Prize for Physiology and Medicine in 1905 Contact with dust resulted in growth of microbes in the liquid disproved spontaneous generation Figure 1.13c Koch s Postulates Koch s Postulates Anthrax, caused by Bacillus anthracis Organism present in blood of all diseased animals cause or result of the disease? Figure 1.15 Conclusion specific organisms cause specific diseases Koch s postulates can be extended beyond disease-causing organisms Figure

3 1.9 Microbial Diversity and the Rise of General Microbiology 1.9 Microbial Diversity and the Rise of General Microbiology General Microbiology Field that focuses on non-medical aspects of microbiology Roots in 20th century Martinus Beijerinck ( ) Developed Enrichment Culture Technique Microbes isolated from natural samples in a highly selective fashion by manipulating nutrient and incubation conditions e.g., Nitrogen-fixing bacteria Sergei Winogradsky ( ) and the Concept of Chemolithotrophy Demonstrated that specific bacteria are linked to specific biogeochemical transformations (e.g., S & N cycles) Proposed concept of chemolithotrophy Oxidation of inorganic compounds linked to energy conservation (Figure 1.19) Major Concepts Conceived by Sergei Winogradsky Major Concepts Conceived by Sergei Winogradsky Figure 1.19a Figure 1.19b Some Landmarks in Molecular Microbiology since 1985 Brock Biology of Microorganisms Twelfth Edition Madigan / Martinko Dunlap / Clark Ch hapter 2 A Brief Journey to the Microbial World Figure 1.20 Lectures by Buchan & LeCleir 3

4 II. Cell Structure and Evolutionary History 2.5 Elements of Cell and Viral Structure Elements of Cell and Viral Structure Arrangement of DNA in Microbial Cells The Evolutionary Tree of Life All microbial cells have the following in common: Cytoplasmic membrane Cytoplasm Ribosomes Internal Structure of Prokaryotic Cell Internal Structure of Eukaryote Cell No organelles Figure 2.11a Figure 2.11b 2.5 Elements of Cell and Viral Structure Electron Micrographs of Sectioned Cells Eukaryotic vs. Prokaryotic Cells Eukaryotes DNA enclosed in a membrane-bound nucleus Cells are generally larger and more complex Contain organelles Prokaryotes No membrane-enclosed organelles No nucleus Generally smaller than eukaryotic cells Figure 2.12a and b 4

5 Electron Micrographs of Sectioned Cells 2.5 Elements of Cell and Viral Structure Viruses Not considered cells No metabolic abilities of their own Rely completely on biosynthetic machinery of infected cell Infect all types of cells Smallest virus is 10 nm in diameter Viruses of bacteria = bacteriophages Yeast cell, 8 μm diameter Figure 2.12c Virus Structure and Size Comparison of Viruses and Cells 2.6 Arrangement of DNA in Microbial Cells Genome A cell s full complement of genes Prokaryotic cells generally have a single, circular DNA molecule called a chromosome DNA aggregates to form the nucleoid region Prokaryotes also may have small amounts of extrachromosomal DNA called plasmids that confer special properties ( i.e., antibiotic resistance) Figure Arrangement of DNA in Microbial Cells The Nucleoid Eukaryotic DNA is linear and found within the nucleus Associated with proteins that help in folding of the DNA Usually have more than one chromosome oso Typically have two copies of each chromosome [Insert Fig. 2.14] Figure

6 2.6 Arrangement of DNA in Microbial Cells The Tree of Life Defined by rrna Sequencing Escherichia coli Genome 4.68 million base pairs 4,300 genes 1,900 different kinds of protein 2.4 million protein molecules Human Cell 1,000X more DNA per cell than E. coli 7X more genes than E. coli Figure The Evolutionary Tree of Life Ribosomal RNA (rrna) Gene Sequencing and Phylogeny Evolution The process of change in a line of descent over time that results in new varieties and species of organisms Phylogeny Evolutionary relationships between organisms Relationships can be deduced by comparing genetic information (nucleic acid or amino acid sequences) in the different specimens Ribosomal RNA (rrna) are excellent molecules for determining phylogeny Can visualize relationships on a phylogenetic tree Figure The Evolutionary Tree of Life 2.7 The Evolutionary Tree of Life Comparative rrna sequencing has defined three distinct lineages of cells called domains. Bacteria (prokaryotic) Archaea (prokaryotic) Eukarya (eukaryotic) Archaea and Bacteria are NOT closely related. Archaea are more closely related to Eukarya than Bacteria. Eukaryotic microorganisms were the ancestors of multicellular organisms Mitochondria and chloroplasts also contain their own genomes (circular, like prokaryotes) and ribosomes These organelles are ancestors of specific lineages of Bacteria Mitochondria and chloroplasts took up residence in Eukarya eons ago This arrangement is known as endosymbiosis 6

7 The Tree of Life Defined by rrna Sequencing Figure

Lecture Objectives: Why study microbiology? What is microbiology? Roots of microbiology

Lecture Objectives: Why study microbiology? What is microbiology? Roots of microbiology 1 Lecture Objectives: Why study microbiology? What is microbiology? Roots of microbiology Why study microbiology? ENVIRONMENTAL MEDICAL APPLIED SCIENCE BASIC SCIENCE The science of microbiology Microbiology

More information

CHAPTER 7 A TOUR OF THE CELL. Section B: A Panoramic View of the Cell

CHAPTER 7 A TOUR OF THE CELL. Section B: A Panoramic View of the Cell CHAPTER 7 A TOUR OF THE CELL Section B: A Panoramic View of the Cell 1. Prokaryotic and eukaryotic cells differ in size and complexity 2. Internal membranes compartmentalize the functions of a eukaryotic

More information

Viruses and Prokaryotes

Viruses and Prokaryotes Viruses and Prokaryotes Cellular Basis of Life Q: Are all microbes that make us sick made of living cells? 20.1 What is a virus? WHAT I KNOW SAMPLE ANSWER: A virus is a tiny particle that can make people

More information

THE INTERESTING HISTORY OF CELLS STUDENT HANDOUT. There are two basic types of cells, prokaryotic cells and eukaryotic cells.

THE INTERESTING HISTORY OF CELLS STUDENT HANDOUT. There are two basic types of cells, prokaryotic cells and eukaryotic cells. THE INTERESTING HISTORY OF CELLS STUDENT HANDOUT There are two basic types of cells, prokaryotic cells and eukaryotic cells. Figure 1. A PROKARYOTIC CELL The prokaryotes are very small singlecelled organisms

More information

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature

KEY CONCEPT Organisms can be classified based on physical similarities. binomial nomenclature Section 17.1: The Linnaean System of Classification Unit 9 Study Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN

More information

PROKARYOTIC AND EUKARYOTIC CELLS

PROKARYOTIC AND EUKARYOTIC CELLS reflect Think for a moment about all the living things on Earth. There is great diversity among organisms, from microscopic bacteria to massive blue whales, the largest animals on the planet. Despite the

More information

An Overview of Cells and Cell Research

An Overview of Cells and Cell Research An Overview of Cells and Cell Research 1 An Overview of Cells and Cell Research Chapter Outline Model Species and Cell types Cell components Tools of Cell Biology Model Species E. Coli: simplest organism

More information

Introduction to Microbiology The Microbial World and You (Chapter 1) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Introduction to Microbiology The Microbial World and You (Chapter 1) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Introduction to Microbiology The Microbial World and You (Chapter 1) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Source for figures and content: Eastern Campus

More information

Prokaryotic and Eukaryotic Cells

Prokaryotic and Eukaryotic Cells Have you ever wondered how people are similar to bacteria? It may seem like a silly question. After all, humans and bacteria are very different in size and complexity. Yet scientists have learned that

More information

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth.

2.3: Eukaryotic Evolution and Diversity pg. 67. For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 2.3: Eukaryotic Evolution and Diversity pg. 67 For about 1.5 billion years Prokaryotes were on the only living organism on Earth. 3.5 to 2 billion years ago Prokaryotes thrive in many different environments.

More information

Viruses, Archaea and Bacteria

Viruses, Archaea and Bacteria Viruses, Archaea and Bacteria Viruses and Viroids Features of Prokaryotes Bacterial Diversity Archaeal Diversity Viruses A virus is a noncellular infectious agent Ø Consists of a protein coat around a

More information

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z.

Given these characteristics of life, which of the following objects is considered a living organism? W. X. Y. Z. Cell Structure and Organization 1. All living things must possess certain characteristics. They are all composed of one or more cells. They can grow, reproduce, and pass their genes on to their offspring.

More information

The correct answer is d A. Answer a is incorrect. The cell theory states that all living things are composed of one or more cells.

The correct answer is d A. Answer a is incorrect. The cell theory states that all living things are composed of one or more cells. 1. Which of the following statements is NOT part of the cell theory? a. All organisms are composed of one or more cells. b. Cells come from other cells by division. c. Cells are the smallest living things.

More information

Table of Contents. North Carolina Essential Standards Correlation Chart... 6

Table of Contents. North Carolina Essential Standards Correlation Chart... 6 Table of Contents North Carolina Essential Standards Correlation Chart........ 6 Objectives Chapter 1 Cell Biology................................. 9 Lesson 1 Cell Structure...............................

More information

Microbiology. Chapter 1. of Microbiology. Many Diverse Disciplines: Biotechnology Genetic engineering & recombinant.

Microbiology. Chapter 1. of Microbiology. Many Diverse Disciplines: Biotechnology Genetic engineering & recombinant. PowerPoint to accompany The Cowan/Talaro Chapter 1 Microbiology: Microbiology Main Themes of A Systems Approach Topics Scope Importance to Cover: Characteristics of Microbiology History Human of Use Microbiology

More information

Name Class Date. What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell?

Name Class Date. What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell? CHAPTER 1 2 SECTION Cells: The Basic Units of Life Eukaryotic Cells BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of a eukaryotic cell? What

More information

Basic Biological Principles Module A Anchor 1

Basic Biological Principles Module A Anchor 1 Basic Biological Principles Module A Anchor 1 Key Concepts: - Living things are made of units called cells, are based on a universal genetic code, obtain and use materials and energy, grow and develop,

More information

Structure and Function of DNA

Structure and Function of DNA Structure and Function of DNA DNA and RNA Structure DNA and RNA are nucleic acids. They consist of chemical units called nucleotides. The nucleotides are joined by a sugar-phosphate backbone. The four

More information

Gymnázium, Brno, Slovanské nám. 7, WORKBOOK - Biology WORKBOOK. http://agb.gymnaslo.cz

Gymnázium, Brno, Slovanské nám. 7, WORKBOOK - Biology WORKBOOK. http://agb.gymnaslo.cz WORKBOOK http://agb.gymnaslo.cz Biology Subject: Teacher: Iva Kubištová Student:.. School year:../ This material was prepared with using http://biologygmh.com/ Topics: 1. 2. 3. 4. 5. 6. Viruses and Bacteria

More information

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today.

Name Class Date. binomial nomenclature. MAIN IDEA: Linnaeus developed the scientific naming system still used today. Section 1: The Linnaean System of Classification 17.1 Reading Guide KEY CONCEPT Organisms can be classified based on physical similarities. VOCABULARY taxonomy taxon binomial nomenclature genus MAIN IDEA:

More information

Organization and Structure of Cells

Organization and Structure of Cells Organization and Structure of Cells All living things fall into one of the two categories: prokaryotes eukaryotes The distinction is based on whether or not a cell has a nucleus. Prokaryotic cells do not

More information

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students

Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Quick Hit Activity Using UIL Science Contests For Formative and Summative Assessments of Pre-AP and AP Biology Students Activity Title: Quick Hit Goal of Activity: To perform formative and summative assessments

More information

1. Matter that originates from a living organism or the products of their life processes.

1. Matter that originates from a living organism or the products of their life processes. Bio Vocabulary Review Name: Directions: Use the MONSTROUS word bank below to pair vocabulary terms with their definition. Each word will be used only once. A. Antibiotics B. Artificial Selection C. ATP

More information

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of

BME 42-620 Engineering Molecular Cell Biology. Lecture 02: Structural and Functional Organization of BME 42-620 Engineering Molecular Cell Biology Lecture 02: Structural and Functional Organization of Eukaryotic Cells BME42-620 Lecture 02, September 01, 2011 1 Outline A brief review of the previous lecture

More information

Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a

Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a Objectives List scientists who contributed to the cell theory List the components of the cell theory Compare prokaryote and eukaryote cells Label a plant and an animal cell Know the functions of cell organelles

More information

Plant and Animal Cells

Plant and Animal Cells Plant and Animal Cells Cell Scientists Hans and Zacharias Janssen Dutch lens grinders, father and son produced first compound microscope (2 lenses) Robert Hooke (1665) English Scientist looked at a thin

More information

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA

CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA CHAPTER 6: RECOMBINANT DNA TECHNOLOGY YEAR III PHARM.D DR. V. CHITRA INTRODUCTION DNA : DNA is deoxyribose nucleic acid. It is made up of a base consisting of sugar, phosphate and one nitrogen base.the

More information

Common Course Topics Biology 1406: Cell and Molecular Biology

Common Course Topics Biology 1406: Cell and Molecular Biology Common Course Topics Biology 1406: Cell and Molecular Biology 1. Introduction to biology --the scientific study of organisms --properties of life --assumptions, methods and limitations of science --underlying

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life H Biology Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells

Chapter 4: A Tour of the Cell. 1. Cell Basics. Limits to Cell Size. 1. Cell Basics. 2. Prokaryotic Cells. 3. Eukaryotic Cells Chapter 4: A Tour of the Cell 1. Cell Basics 2. Prokaryotic Cells 3. Eukaryotic Cells 1. Cell Basics Limits to Cell Size There are 2 main reasons why cells are so small: If cells get too large: 1) there

More information

The influenza A virus genome is segmented into linear molecules.

The influenza A virus genome is segmented into linear molecules. An integrated stable genetic element in a eukaryotic cell A) can occur anywhere in the cellular DNA. B) is called a provirus. C) is analogous to the integration of phage DNA into a bacterial genome. A

More information

7.1 What Are Cells? You are made of cells. A cell is the basic unit of structure and function in a living thing. CHAPTER 7

7.1 What Are Cells? You are made of cells. A cell is the basic unit of structure and function in a living thing. CHAPTER 7 CELL STRUCTURE AND FUNCTION 7.1 What Are Cells? Look closely at the skin on your arm. Can you see that it is made of cells? Of course not! Your skin cells are much too small to see with your eyes. Now

More information

Let s get started. So, what is science?

Let s get started. So, what is science? Let s get started So, what is science? Well Science Science is the observation of phenomena and the theoretical explanation of it. Simply, it is the state of knowing. Biology Biology is the study of life.

More information

Multiple Choice Questions

Multiple Choice Questions Chapter 5 THE FUNDAMENTAL UNIT OF LIFE Multiple Choice Questions 1. Which of the following can be made into crystal? (a) A Bacterium (b) An Amoeba (c) A Virus (d) A Sperm 2. A cell will swell up if (a)

More information

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope

Viruses. Viral components: Capsid. Chapter 10: Viruses. Viral components: Nucleic Acid. Viral components: Envelope Viruses Chapter 10: Viruses Lecture Exam #3 Wednesday, November 22 nd (This lecture WILL be on Exam #3) Dr. Amy Rogers Office Hours: MW 9-10 AM Too small to see with a light microscope Visible with electron

More information

Chapter 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells

Chapter 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Chapter 4 Functional Anatomy of Prokaryotic and Eukaryotic Cells Comparing prokaryotic and eukaryotic cells: Overview Prokaryotic and Eukaryotic cells are chemically similar o Contain nucleic acids, proteins,

More information

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d.

Name Class Date. Figure 13 1. 2. Which nucleotide in Figure 13 1 indicates the nucleic acid above is RNA? a. uracil c. cytosine b. guanine d. 13 Multiple Choice RNA and Protein Synthesis Chapter Test A Write the letter that best answers the question or completes the statement on the line provided. 1. Which of the following are found in both

More information

Bell Ringer. What do you already know about cells? What types of cells have you heard of? Do you know what kind of cell this is?

Bell Ringer. What do you already know about cells? What types of cells have you heard of? Do you know what kind of cell this is? Bell Ringer Do you know what kind of cell this is? What do you already know about cells? What types of cells have you heard of? WHAT CELL IS IT? In your groups, look at the picture of a cell you have been

More information

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope

Biology 101 Chapter 4 Cells as the Basic Unit of Life. The Cell Theory Major Contributors: Galileo = first observations made with a microscope Biology 101 Chapter 4 Cells as the Basic Unit of Life The Cell Theory Major Contributors: Galileo = first observations made with a microscope Robert Hooke = first to observe small compartments in dead

More information

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory.

STANDARD 2 Students will demonstrate appropriate safety procedures and equipment use in the laboratory. BIOTECHNOLOGY Levels: 11-12 Units of Credit: 1.0 CIP Code: 51.1201 Prerequisite: Biology or Chemistry Skill Certificates: #708 COURSE DESCRIPTION is an exploratory course designed to create an awareness

More information

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA

Chapter 9. Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Chapter 9 Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Q&A Interferons are species specific, so that interferons to be used in humans must be produced in human cells. Can you think

More information

Algorithms in Computational Biology (236522) spring 2007 Lecture #1

Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Algorithms in Computational Biology (236522) spring 2007 Lecture #1 Lecturer: Shlomo Moran, Taub 639, tel 4363 Office hours: Tuesday 11:00-12:00/by appointment TA: Ilan Gronau, Taub 700, tel 4894 Office

More information

Cell Structure and Function

Cell Structure and Function Open the TI-Nspire document Cell Structure and Function.tns. All living things are made of cells. Some organisms, like bacteria or yeast, have only one cell. Other organisms, like you, are multicellular,

More information

4. Why are common names not good to use when classifying organisms? Give an example.

4. Why are common names not good to use when classifying organisms? Give an example. 1. Define taxonomy. Classification of organisms 2. Who was first to classify organisms? Aristotle 3. Explain Aristotle s taxonomy of organisms. Patterns of nature: looked like 4. Why are common names not

More information

Week 3 eukaryotic nucleus Organelles Figure 3.1a

Week 3 eukaryotic nucleus Organelles Figure 3.1a Week 3 If you recall from week one, I mentioned that one of the characteristics of all living things is that they are made up of cells. We are now ready to look at cells in a little more detail. We will

More information

(ii) They are smaller than bacteria, and this can pass through bacteriological filter.

(ii) They are smaller than bacteria, and this can pass through bacteriological filter. Viruses Definition: Obligate intracellular parasite composed of: Nucleic acid - either DNA or RNA & Protein coat. Characteristics of viruses Viruses are the most primitive cellular and non-cytoplasmic

More information

3 Domains of Life Eukaryotic Cell (non bacterial) Prokaryotic Cell (bacteria)

3 Domains of Life Eukaryotic Cell (non bacterial) Prokaryotic Cell (bacteria) Prokaryotic and Eukaryotic Cells Two Main Classes of Cells Prokaryotic (Bacteria and Archaea) Pro = Before ; Karyon = Kernel No nucleus, DNA coiled up inside cell Eukaryotic (Everything else) Eu = True

More information

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 17 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The correct order for the levels of Linnaeus's classification system,

More information

1 Mutation and Genetic Change

1 Mutation and Genetic Change CHAPTER 14 1 Mutation and Genetic Change SECTION Genes in Action KEY IDEAS As you read this section, keep these questions in mind: What is the origin of genetic differences among organisms? What kinds

More information

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS

Regents Biology REGENTS REVIEW: PROTEIN SYNTHESIS Period Date REGENTS REVIEW: PROTEIN SYNTHESIS 1. The diagram at the right represents a portion of a type of organic molecule present in the cells of organisms. What will most likely happen if there is

More information

Quiz: Cell Organelles and Their Functions 1. This organelle functions in cellular respiration: lysosome endoplasmic reticulum mitochondrion golgi

Quiz: Cell Organelles and Their Functions 1. This organelle functions in cellular respiration: lysosome endoplasmic reticulum mitochondrion golgi Quiz: Cell Organelles and Their Functions 1. This organelle functions in cellular respiration: lysosome mitochondrion 2. The organelle functions to package and deliver proteins: lysosome mitochondrion

More information

AP Biology Learning Objective Cards

AP Biology Learning Objective Cards 1.1 The student is able to convert a data set from a table of numbers that reflect a change in the genetic makeup of a population over time and to apply mathematical methods and conceptual understandings

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 1 Cells and Molecules Copyright 2000 BioMEDIA ASSOCIATES Each of the five video programs in

More information

CELL STRUCTURE AND FUNCTION Textbook Connection McDougal Littell Biology 1.1, 3.1-3.2, 18.5

CELL STRUCTURE AND FUNCTION Textbook Connection McDougal Littell Biology 1.1, 3.1-3.2, 18.5 CELL STRUCTURE AND FUNCTION Textbook Connection McDougal Littell Biology 1.1, 3.1-3.2, 18.5 Revised 2012-2013 Objectives: 1. Differentiate between prokaryotic and eukaryotic cells. 2. Describe the internal

More information

1.1.1 Cell Structure. Relevant Past Paper Questions. Condensed Notes By Specification Point. 2013 January 5 e f i j. 2012 June 2 e f g i

1.1.1 Cell Structure. Relevant Past Paper Questions. Condensed Notes By Specification Point. 2013 January 5 e f i j. 2012 June 2 e f g i 1.1.1 Cell Structure Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 5 e f i j 2012 June 2 e f g i 2012 January 4 a b d f 2011 June 1 part a only f 2011 January

More information

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org

Chapter 3. Cellular Structure and Function Worksheets. 39 www.ck12.org Chapter 3 Cellular Structure and Function Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 3.1: Introduction to Cells Lesson 3.2: Cell

More information

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Chapter 29 Lecture Notes. Slide 1. Slide 2. Slide 3. Chapter 29, Page 1

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Chapter 29 Lecture Notes. Slide 1. Slide 2. Slide 3. Chapter 29, Page 1 BCH 4054 Chapter 29 Lecture Notes 1 Chapter 29 DNA: Genetic Information, Recombination, and Mutation 2 DNA as the Genetic Material Griffith Experiment on pneumococcal transformation (Fig 29.1) Avery, MacLeod

More information

Lecture 4 Cell Membranes & Organelles

Lecture 4 Cell Membranes & Organelles Lecture 4 Cell Membranes & Organelles Structure of Animal Cells The Phospholipid Structure Phospholipid structure Encases all living cells Its basic structure is represented by the fluidmosaic model Phospholipid

More information

Basic Concepts of DNA, Proteins, Genes and Genomes

Basic Concepts of DNA, Proteins, Genes and Genomes Basic Concepts of DNA, Proteins, Genes and Genomes Kun-Mao Chao 1,2,3 1 Graduate Institute of Biomedical Electronics and Bioinformatics 2 Department of Computer Science and Information Engineering 3 Graduate

More information

The Cell Teaching Notes and Answer Keys

The Cell Teaching Notes and Answer Keys The Cell Teaching Notes and Answer Keys Subject area: Science / Biology Topic focus: The Cell: components, types of cells, organelles, levels of organization Learning Aims: describe similarities and differences

More information

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems?

The Origin of Life. The Origin of Life. Reconstructing the history of life: What features define living systems? The Origin of Life I. Introduction: What is life? II. The Primitive Earth III. Evidence of Life s Beginning on Earth A. Fossil Record: a point in time B. Requirements for Chemical and Cellular Evolution:

More information

THE HISTORY OF CELL BIOLOGY

THE HISTORY OF CELL BIOLOGY SECTION 4-1 REVIEW THE HISTORY OF CELL BIOLOGY Define the following terms. 1. cell 2. cell theory Write the correct letter in the blank. 1. One early piece of evidence supporting the cell theory was the

More information

Biol 101 Exam 2: Cells & Cell Membranes Fall 2008

Biol 101 Exam 2: Cells & Cell Membranes Fall 2008 MULTIPLE CHOICE. There are 60 questions on this exam. All answers go on the Scantron. Choose the one alternative that best completes the statement or answers the question. 1. The cell theory is one of

More information

Antibiotic susceptibility

Antibiotic susceptibility Antibiotic susceptibility Antibiotic: natural chemicals produced by bacteria, fungi, actinomycetes, plants or animals, and either inhibits or kills other microbes and/or cells Chemotherapeutic agent: A

More information

AP Biology Essential Knowledge Student Diagnostic

AP Biology Essential Knowledge Student Diagnostic AP Biology Essential Knowledge Student Diagnostic Background The Essential Knowledge statements provided in the AP Biology Curriculum Framework are scientific claims describing phenomenon occurring in

More information

Prokaryotes and Eukaryotes. Prokaryotes and Eukaryotes. Learning Objective. Molecular & Cell Biology

Prokaryotes and Eukaryotes. Prokaryotes and Eukaryotes. Learning Objective. Molecular & Cell Biology All living organisms are classified into two broad categories, prokaryotes & eukaryote. Prokaryotes are those organisms whose cells lack a cell nucleus while eukaryotes possess a well-defined, membrane

More information

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope

Microscopes. Eukaryotes Eukaryotic cells are characterized by having: DNA in a nucleus that is bounded by a membranous nuclear envelope CH 6 The Cell Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye. In a light microscope (LM), visible light is passed through a specimen and then through glass

More information

Biol115 The Thread of Life

Biol115 The Thread of Life Biol115 The Thread of Life Lecture 13 A panoramic tour of the cell It is the cells which create and maintain in us, during the span of our lives, our will to live and survive, to search and experiment,

More information

CCR Biology - Chapter 9 Practice Test - Summer 2012

CCR Biology - Chapter 9 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 9 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Genetic engineering is possible

More information

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1

AP BIOLOGY 2006 SCORING GUIDELINES. Question 1 AP BIOLOGY 2006 SCORING GUIDELINES Question 1 A major distinction between prokaryotes and eukaryotes is the presence of membrane-bound organelles in eukaryotes. (a) Describe the structure and function

More information

GCSE Additional Science

GCSE Additional Science GCSE Additional Science Module B4 The processes of life: What you should know Name: Science Group: Teacher: R.A.G. each of the statements to help focus your revision: R = Red: I don t know this A = Amber:

More information

Course Descriptions. I. Professional Courses: MSEG 7216: Introduction to Infectious Diseases (Medical Students)

Course Descriptions. I. Professional Courses: MSEG 7216: Introduction to Infectious Diseases (Medical Students) Course Descriptions I. Professional Courses: MSEG 7216: Introduction to Infectious Diseases (Medical Students) This course is offered during the first semester of the second year of the MD Program. It

More information

DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY

DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY DEPARTMENT OF MICROBIOLOGY AND IMMUNOLOGY Seminar The purpose of this course is to train students the skills of oral presentation about how to deliver seminar in an efficient way. For each talk, a professor

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

Single celled organisms

Single celled organisms Single celled organisms Single Celled Organisms Some organisms, unlike plants and animals, consist of only one cell. These organisms are said to be unicellular An amoeba is another name given to an organism

More information

Medical Microbiology Culture Media :

Medical Microbiology Culture Media : Lecture 3 Dr. Ismail I. Daood Medical Microbiology Culture Media : Culture media are used for recognition and identification (diagnosis) of microorganisms. The media are contained in plates (Petri dishes),

More information

Microscopes and the Metric System

Microscopes and the Metric System Microscopes and the Metric System BIO162 Fall 2007 Sizes of Microorganisms: -Viruses: 0.01 0.3 um -Bacteria: 1 3 um -Fungi: 3 30 um -Protozoa: 5 1000 um 1 Measuring Microorganisms Ocular Micrometer The

More information

Cell Biology Questions and Learning Objectives

Cell Biology Questions and Learning Objectives Cell Biology Questions and Learning Objectives (with hypothetical learning materials that might populate the objective) The topics and central questions listed here are typical for an introductory undergraduate

More information

Make your own bacteria!

Make your own bacteria! Make your own bacteria! Bacteria: a single-celled microorganism with no membrane-bound nucleus. Bacteria are found everywhere from soil to acidic hot springs. You can make your own bacteria to take home

More information

DNA Organization in Chromosomes

DNA Organization in Chromosomes DNA Organization in Chromosomes Chap 11 Genetics Dr. Schauer 1 Chapter 11 Contents 11.1 Viral and Bacterial Chromosomes Are Relatively Simple DNA Molecules 11.2 Mitochondria and Chloroplasts Contain DNA

More information

Cellular Structure and Function

Cellular Structure and Function Chapter Test A CHAPTER 7 Cellular Structure and Function Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best answers each question. 1. Which defines a cell?

More information

Genetics Lecture Notes 7.03 2005. Lectures 1 2

Genetics Lecture Notes 7.03 2005. Lectures 1 2 Genetics Lecture Notes 7.03 2005 Lectures 1 2 Lecture 1 We will begin this course with the question: What is a gene? This question will take us four lectures to answer because there are actually several

More information

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells.

Transfection-Transfer of non-viral genetic material into eukaryotic cells. Infection/ Transduction- Transfer of viral genetic material into cells. Transfection Key words: Transient transfection, Stable transfection, transfection methods, vector, plasmid, origin of replication, reporter gene/ protein, cloning site, promoter and enhancer, signal peptide,

More information

Total Test Questions: 71 Levels: Grades 10-12 Units of Credit: 1.0 STANDARD 1 STUDENTS WILL INVESTIGATE THE PAST, PRESENT, AND FUTURE APPLICATIONS OF

Total Test Questions: 71 Levels: Grades 10-12 Units of Credit: 1.0 STANDARD 1 STUDENTS WILL INVESTIGATE THE PAST, PRESENT, AND FUTURE APPLICATIONS OF DESCRIPTION Biotechnology is designed to create an awareness of career possibilities in the field of biotechnology. Students are introduced to diagnostic and therapeutic laboratory procedures that support

More information

Transformation. Making Change Happen

Transformation. Making Change Happen Transformation Making Change Happen Genetic Engineering Definition: The alteration of an organism s genetic, or hereditary, material to eliminate undesirable characteristics or to produce desirable new

More information

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons

Specific problems. The genetic code. The genetic code. Adaptor molecules match amino acids to mrna codons Tutorial II Gene expression: mrna translation and protein synthesis Piergiorgio Percipalle, PhD Program Control of gene transcription and RNA processing mrna translation and protein synthesis KAROLINSKA

More information

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic

cells - relatively simple cells - lack nuclear membrane and many organelles - bacteria and their relatives are all prokaryotic Cell Biology A cell is chemical system that is able to maintain its structure and reproduce. Cells are the fundamental unit of life. All living things are cells or composed of cells. 1 The interior contents

More information

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures.

7.2 Cell Structure. Lesson Objectives. Lesson Summary. Cell Organization Eukaryotic cells contain a nucleus and many specialized structures. 7.2 Cell Structure Lesson Objectives Describe the structure and function of the cell nucleus. Describe the role of vacuoles, lysosomes, and the cytoskeleton. Identify the role of ribosomes, endoplasmic

More information

The Processes of Life. Bicester Community College Science Department

The Processes of Life. Bicester Community College Science Department B4 The Processes of Life B4 Key Questions How do chemical reactions take place in living things? How do plants make food? How do living organisms obtain energy? How do chemical reactions take place in

More information

Classification of Microorganisms (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Classification of Microorganisms (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Classification of Microorganisms (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology

More information

But what about the prokaryotic cells?

But what about the prokaryotic cells? Chapter 32: Page 318 In the past two chapters, you have explored the organelles that can be found in both plant and animal s. You have also learned that plant s contain an organelle that is not found in

More information

CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS

CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS CHARACTERISTICS OF PROKARYOTIC AND EUKARYOTIC CELLS CHAPTER 4 Cellular Characteristics Cellular Characteristics 2 Domains, then Phyla 1 Domain, 4 kingdoms, then Phyla Prokaryotic Cells Sizes 0.5-2µm (average)

More information

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta

Compartmentalization of the Cell. Objectives. Recommended Reading. Professor Alfred Cuschieri. Department of Anatomy University of Malta Compartmentalization of the Cell Professor Alfred Cuschieri Department of Anatomy University of Malta Objectives By the end of this session the student should be able to: 1. Identify the different organelles

More information

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6)

BIOL 1030 TOPIC 1 LECTURE NOTES Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) Topic 1: Classification and the Diversity of Life (Chapters 25, 26.6) I. Background review (Biology 1020 material) A. Scientific Method 1. observations 2. scientific model explains observations makes testable

More information

Biotechnology and Recombinant DNA

Biotechnology and Recombinant DNA Biotechnology and Recombinant DNA Recombinant DNA procedures - an overview Biotechnology: The use of microorganisms, cells, or cell components to make a product. Foods, antibiotics, vitamins, enzymes Recombinant

More information

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA.

Answer: 2. Uracil. Answer: 2. hydrogen bonds. Adenine, Cytosine and Guanine are found in both RNA and DNA. Answer: 2. Uracil Adenine, Cytosine and Guanine are found in both RNA and DNA. Thymine is found only in DNA; Uracil takes its (Thymine) place in RNA molecules. Answer: 2. hydrogen bonds The complementary

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

The general structure of bacteria

The general structure of bacteria The general structure of bacteria The uni-cellular organisms Viruses Herpes virus, HIV, influenza virus The procaryotic organisms Escherichia, Salmonella, Pseudomonas Streptococcus, Staphylococcus, Neisseria

More information

Keystone Biology Exam Information: Module A: Cell and Cell Processes

Keystone Biology Exam Information: Module A: Cell and Cell Processes Keystone Biology Exam Information: Module A: Cell and Cell Processes Basic Biological Principles- Day 1 Describe the characteristics of life shared by prokaryotic and eukaryotic organisms. Compare cellular

More information

Antibiotics: The difference between prokaryotic and eukaryotic cells, Biology AA, Teacher Leslie Hadaway, New lesson, Science

Antibiotics: The difference between prokaryotic and eukaryotic cells, Biology AA, Teacher Leslie Hadaway, New lesson, Science Antibiotics: The difference between prokaryotic and eukaryotic cells, Biology AA, Teacher Leslie Hadaway, New lesson, Science Antibiotics: The difference between prokaryotic and eukaryotic cells Author(s)

More information