Basic Elements of Arithmetic Sequences and Series

Size: px
Start display at page:

Download "Basic Elements of Arithmetic Sequences and Series"

Transcription

1 MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic sequeces ad series Example : Cosider the arithmetic sequece 3, 7,, 5, 9, What does the mea? What is the 7 th term, t 7? What is the 0 st term of the sequece? The key feature of a arithmetic sequece is that there is a commo differece d betwee ay two cosecutive terms. To obtai ay term, add d to the precedig term or subtract d from the followig term. We call it arithmetic series because of this addig ad subtractig. The formula for the th term ( t ) of a arithmetic sequece is give by: a. recursively: which meas that each term is calculated from the immediately precedig term t + = t + d b. explicitly (or directly): Which meas ay term ca be directly calculated t = a + ( )d where a is the first term (t ), ad d is the commo differece betwee terms. I the case of fidig the 0 st term the, we have a = 3, d = 4, ad = 0. t 0 = 3 + (0 )*4 = 403 MA40SP_G_GeoSeries_ClassNotes.doc Revised:20045

2 2 Example 2: How may terms are there i the arithmetic sequece 4, 5, 26,, 2853? We will use the formula t = a + ( )d ad will solve for the variable. 4 + ( ) = 2853 ( ) = = 259 = 260 Example 3: The 3rd term of a arithmetic progressio is 3, ad the 500th term is Fid the first two terms. First, we express 3 ad 2498 i terms of the formulas for t 3 ad t 500 respectively. 3 = a + (3 - )d 2498 = a + (500 - )d This results i a system of two equatios i two ukows: a + 2d = 3 () a + 499d = 2498 (2) Subtractig equatio () from equatio (2) we ca elimiate the variable a ad fid d. Thus, from equatio (), we ca solve for a. 497d = 2485 d = 5 a = 3 2d a = 3 0 = 3 Thus the first two terms of the sequece are 3 ad 8.

3 3 Example 4: Fid the sum of 0 terms of the series The formula for the sum of terms of a arithmetic series. S = 2a + ( )d 2 [ ] S = (0 - )4 2 = [ ] [ ] = The formula is much simpler whe a = ad d =. Try it for that Teacher will prove where this formula comes from: PRACTICE PROBLEMS YOU CAN TRY a. fid the ext arithmetic term ad state the d : (), 3, 5, 7, 9,. d= (2), 5, 9, 3, 7,. d= (3) 22, 33, 44, 55, d= b. fid the 2 th term explicitly: (), 3, 5, 7, 9,. (2), 5, 9, 3, 7,. (3) 22, 33, 44, 55,

4 4 c. Fid the sum of the arithmetic series: (), 3, 5, 7, 9,. For the first 20 terms (2), 5, 9, 3, 7,. For the first 30 terms (3) 22, 33, 44, 55, For the first 0 terms (4) what is the sum of all the umbers from to 00? (5) what is the sum of all the umbers from to,000? (6) what is the sum of all the umbers o a clock? Geometric Sequeces Objective: To lear about the properties of geometric sequeces Ivestigatio: Cosider the sequece 2, 6, 8, 54. The fill i the blaks below with t 5, t 6, ad t 7. 2, 6, 8, 54, 62, 486, 458 t t t t t t t Explai the patter whereby you foud t 5, t 6, ad t 7. Each term is obtaied by multiplyig the precedig term by 3. This sequece of umbers is called a geometric sequece. The distiguishig feature of a geometric sequece is that the ratio formed by dividig ay term (the th term) by the precedig term (the ( ) th term) is a costat. So above, each successive term could be calculated by t + = t *r. This is called the recursive formula for the geometric series. This ratio, r, is called the commo ratio. I this example, the commo ratio is = = = 54 8 = 8 6 = 6 2 = 3 You were able to fid t 5, t 6, ad t 7. Ca you fid t 2? Doig it recursively meas you would eed to calculate all the terms t 8, t 9, all the way up to t 20, so you could fid t 2.

5 5 There are two ways to fid t 2 : a loger tedious way, ad a shorter more efficiet way. Loger, cumbersome way: Multiply cotiuously by 3 util you reach t 2. Shorter, eater way: Look for a patter From this patter, what is t 2? t t 2 t 3 t 4 t 5 t 6 t t 2 = = Geeralizatio of Geometric Sequeces Let the first term of the sequece be a, ad let r equal the commo ratio. The first seve terms ca be writte as follows: t t 2 t 3 t 4 t 5 t 6 t 7... a ar ar 2 ar 3 ar 4 ar 5 ar 6... What is the formula for the 00 th term? The 60 th term? t 00 = ar 00 = ar 99 t 60 = ar 60 = ar 609 What is the explicit formula for computig th term of a geometric sequece directly? t = ar Example : Determie the commo ratio of the sequece, 3, 9, 27. r = 3 = 3

6 6 Example 2: Determie the 4 th term of the geometric sequece 6, 2, 24 We have a = 6 ad r = 2 Sice t = ar we have t 4 = = = 4952 Notice that geometric series are very much just expoetial equatios (from that uit!), the variable is a expoet. I this case though, the variable ca oly take o whole umbers Example 3: Usig a r of less tha (r < ) I the World Domioes touramet 78,25 players are placed i groups of 5 players per table. Oe game is played by these 5 players, ad the wier at each table advaces to the ext roud, ad so o util the fial game of 5 players. How may rouds would the ultimate wier have played (icludig the fial roud)? We have a = 7825; t = 5; r = 5. t = ar 5 = Fially, = 7. The wier would have played 7 rouds. Example 5: Relatig to expoetial equatios The world s populatio grows by 2% per year. The world food productio ca sustai a additioal 200 millio people per year. I 987 the populatio was 5 billio, ad food productio could sustai 6 billio people. a) Calculate the populatio i 998, 2009, ad 209. b) Calculate the populatio that food productio could sustai i 998, 2009, 209. c) Whe will the populatio exceed the food supply?

7 7 a) The world s populatio i each of the years startig with 987 ca be cosidered as a geometric sequece. The first term of the sequece will be 5 (billio) ad the commo ratio r will be.02. Fill i the table below with the world populatio for the first five years, startig with 987. t t 2 t 3 t 4 t billio 5 (.02) = 5. billio 5 (.02) 2 = 5.2 billio 5 (.02) 3 = 5.3 billio 5 (.02) 4 = 5.4 billio So the formula for the world populatio i ay year is P = 5 (.02) where positio of that year i the sequece of years startig with 987. is the What is the value of for each of the followig years? 998: = : = : = 33 Now calculate the world populatio i each of these years P = 5 (.02) = 6.2 billio 22 P = 5 (.02) = 7.7 billio 32 P = 5 (.02) = 9.4 billio b) The world s populatio that food productio ca sustai i each of the years startig with 987 ca be cosidered as a arithmetic sequece. The first term t = a of the sequece will be 6 (billio) ad the commo differece d will be 0.2 (billio). Fill i the table below with the world sustaiable populatio for the first five years, startig with 987. t t 2 t 3 t 4 t billio 6 + (2 )0.2 = 6.2 billio 6 + (3 )0.2 = 6.4 billio 6 + (4 )0.2 = 6.6 billio 6 + (5 )0.2 = 6.8 billio

8 8 So the formula for the world populatio i ay year is P = 6 + ( )0.2 where is the positio of that year i the sequece of years startig with 987. Like before, fill i the value of for each of the followig years. 998: = : = : = 33 Now calculate the world sustaiable populatio i each of these years. 998 P = 6 + (2 )0.2 = 8.2 billio 2009 P = 6 + (23 )0.2 = 0.4 billio 209 P = 6 + (33 )0.2 = 2.4 billio c) To fid whe the world populatio will exceed the sustaiable populatio, we equate the two formulas ad solve for. 5 (.02) = 6 + ( )(0.2) We ll use the graphig calculator to solve this rather complex equatio. Sketch the itersectig curves i the blak grid below. Usig the itersect tool, we fid that equals approximately 7 years. Therefore, the world populatio will exceed sustaiable populatio i about the year (7 ) = 2057 whe the world populatio is about

9 9 20 billio. YOU TRY: a. Fid the 8 th term of the sequece 3,6,2, 24, b. A sum of moey is ivested ad compouds aually. Fid the value of $,000 ivested at 6% after 0 years. Geometric Series A series is just the sum of the terms of a sequece Objective: To derive ad apply expressios represetig sums for geometric growth ad to solve problems ivolvig geometric series Defiitio: A geometric series is the sum of the terms of a geometric sequece. Cosider the geometric sequece, 2, 4, 8, 6, 32, 64, 28, 256, 52, 024. If we add the terms of the sequece, we ca write the geometric series as Sum = S = Istead of addig the terms directly, let s evaluate S usig a trick as follows. We will multiply each term of the series by 2 (which is the value of the commo ratio r), realig the result uder the origial series, ad subtract equatio (2) from equatio (). S = () 2S = (2) S 2S = 2048 S = 2047 S = 2047 The above is ot ulike the elimiatio method we used previously i Systems of Liear Equatios.

10 0 We ca use this process to develop a geeral formula for S, the sum of the first terms of a geometric series. I geeral, a geometric series ca be writte as follows, with rs writte udereath. S = a + ar + ar 2 + ar ar -2 + ar -...() rs = ar + ar 2 + ar ar -2 + ar - + ar...(2) S rs = a ar Factorig S, we have S ( r) = a ar Fially, S = a ar = a( r ) r r where r Alteratively, sice t = ar - we ca write S as follows: S = a( r ) r ( ) = a ar = a ar - r = a rt = a rl r r r r where l is the last term of the geometric series (i.e., t or ar ) Summary: The sum of the first terms of a geometric series is give by: S = a( r ) r or where a is the first term, l is the last term, ad r. S = a lr r Example : Determie the sum of 4 terms of the geometric series: S = S = a( r ) r = 6( 34 ) =

11 Example 2: Determie the th term, ad the sum of the first terms of the geometric sequece which has 2, 6, ad 8 as its first three umbers. t = ar - t = 2(3) - a( - r ) S = ( - r) 2( - 3 ) S = = 3 - ( - 3) Example 3: For the geometric series , fid the sum of the first 20 terms. ( ) S = a r r ( ) S 20 = 20 3 = = 3 4 Example 4: While traiig for a race, a ruer icreases her distace by 0% each day. If she rus 2 km o the first day, what will be her total distace for 26 days of traiig? (accurate to 2 decimal places) a = 2 r =. = 26 S 26 = 2 + 2(.) + 2(.) 2 + 2(.) (.) (.) 25 S 26 = a( r ) r = ( ) Ğ = km

12 2 Sigma Notatio Objective: To use sigma otatio to write ad evaluate series A series ca be writte usig the Greek capital letter ( sigma ). This otatio provides us with a mathematical shorthad for writig ad workig with various kids of series. A series writte with sigma otatio could have the followig form. 7 2 = This otatio meas simply that we replace the variable with the umbers through 7 respectively, ad the add the resultig terms. 7 So, 2 = = 40 = Part I: Covertig sigma otatio to expaded form Example : 5 Write the series 2 k i expaded form, ad compute the sum. k= We replace the variable k with the umbers through 5 respectively, ad the add the resultig terms. Example 2: Write the series 5 2 k = = 62 k= 8 (4 5) i expaded form, ad compute the sum. = 3 We replace the variable with the umbers 3 through 8 respectively, ad the add the resultig terms. Note that the bottom idex does ot ecessarily have to equal.

13 3 8 = 3 (4 5) = (4 3 5) + (4 4 5) + (4 5 5) + (4 6 5) + (4 7 5) + (4 8 5) = = 6 2 (7 + 27) = 02 Note that this is a arithmetic series, just a arithmetic sequece with the terms added together. Example 3: 4 Write the series ( ) i 4i i expaded form, ad compute the sum. i = As before, we replace the variable i with the umbers through 4 iclusive, ad the add the resultig terms. 4 i = ( ) i 4i = ( ) 4( )+ ( ) 2 4( 2)+ ( ) 3 4( 3) + ( ) 4 4( 4) = ( ) 0 4( ) + ( ) 4( 2)+ ( ) 2 4( 3) + ( ) 3 4( 4) = 4 + ( 8) ( 6) = 8 Part II: Covertig expaded form to sigma otatio Example 4: Covert the series to sigma otatio. There are two steps i the coversio process. Step Fid a formula for the geeral term t. Sice this is a arithmetic series, we ca compute t as follows. t = a + ( )d = 5 + ( )4 = 4 +

14 4 Step 2 Sice there are 7 terms, we place = uder the letter sigma, ad the idex 7 above the letter sigma. The we write the expressio ( 4 ) to the right of the symbol. Example 5: 7 = (4 ) Covert the series to sigma otatio. Step Fid a formula for the geeral term t. Sice this is a geometric series, we ca compute t as follows. t = ar t = 3 4 Step 2 Sice there are 6 terms, we place = uder the letter sigma, ad the idex 6 above the letter sigma. The we write the expressio 3 4 to the right of the symbol 6 = 3 4 Example 6: How may terms are there i the series 3 k +2? 50 k = 50 terms Example 7: How may terms are there i the series 3 k +2? 9 k=4 You might give the aswer 9 4 = 5 terms, but you ca see by expadig the series that the aswer is actually 6 terms. That is because we start coutig (zero), at the 4 th term which is icluded)

15 5 Example 8: How may terms are there i the series 3 k +2? You Try some problems 800 k=4 Rule: Subtract the bottom idex from the top idex, ad add. The umber of terms is (800 4) + = 797. Write each of these i expaded otatio ad the calculate their sums 5 a. 2k k= 4 b. k k= 6 c. (2k 4) k= 4 d. 2 k= 2 k 2. Write the followig series usig Sigma otatio a b c Cosider the sequece 3, 6, 2, 24,. a. fid the 8 th term b. fid the sum of the first 8 terms 4. Cosider the geometric sequece with t = 000 ad r =.05 a. write the first three terms b. fid the sum of the first 20 terms (to two decimal places)

16 6 5. Evaluate: 7 a. 8(.2) k= 3 k 5 5 b. k k= 2 Ifiite Geometric Series Objective: To ivestigate the cocept of ifiite geometric series Ivestigatio: Cosider the geometric series S = Now compute the followig partial sums for the series. S 2 = = 3 4 S 3 = = 7 8 S 4 = = 5 6 S 5 = = 3 32 S 6 = = S 7 = = S 8 = = S 9 = = 5 52 S 0 = = What do you otice about the sums for S as gets larger ad larger?

17 7 The values get closer ad closer to. Whe we icrease the value of eve more, what happes to the values for S? The sums would get eve closer to. To further ivestigate this pheomeo, let s look at the algebraic expressio for S for this particular geometric series. We have a = 2 ad r = 2. S = a( r ) r 2 2 = 2 = 2 As gets larger ad larger, what happes to 2? It gets closer ad closer to 0. As grows larger ad larger, how close to zero will 2 get? As close as you wat Ca 2 ever equal 0? No I other words, by makig sufficietly large, you ca make 2 as close to 0 as you like. This is the foudatio of the mathematical cocept called the limit. (You will lear i depth about limits whe you study calculus.)

18 8 Formally, we say that as icreases without boud, the umber 2 approaches 0, ad therefore, the value of S = 2 approaches. If you were graphig it you see a asymptote. How close ca S = 2 get to? By makig sufficietly large, S ca get as close as you wat to. If the series S = does ot ed at the th term, but rather cotiues o idefiitely, we call it a ifiite series. We also say that the sum of the ifiite series S = is. Geeralizatio: Let s look at the cocept of the sum of a ifiite geometric series usig the formula S = a( r ) r ( r ). If r <, what happes to r as icreases without boud? r gets closer ad closer to 0 How close to 0 ca r get? By makig sufficietly large, as close as you wat Thus if r <, we say that the sum of a ifiite series is S = a( 0) r = a r If r >, what happes to the value of S as gets larger ad larger? S also gets larger ad larger. I other words, it does ot have a fiite sum. e.g., S = We say that the sequece associated with this series diverges, it is a diverget sequece

19 9 Example : Fid the sum of the ifiite series a = 2 ad r = 5 So S = a r = 2 = Example 2: Evaluate: k = 3 k S = We have a = 3 ad r = 3 so S = a 3 r = 3 = 2 Example 3: Fid the sum of the ifiite geometric series S = We have a = 3 0 ad r = 0. So, S = a r = = Note that the series S = is the expaded form of the repeatig decimal = 3

20 20 Example 4: A oil well produces barrels of oil durig its first moth of productio. If its productio drops by 5% each moth, estimate the total productio before the well rus dry. S = (0.95) (0.95) (0.95) (0.95) We have a = ad r = So, S = = barrels Example 5: A ball is dropped from a height of 6 metres. The ball rebouds a half of the height after each bouce. Calculate the total vertical distace the ball travels before comig to rest. We igore the first 6 m i computig the sum of the ifiite series. S = = We have a = 6 ad a = 2. So, S = a r = 6 2 = 32 metres. The total vertical distace travelled by the ball is = 48 metres.

21 2 SOME FOR YOU TO TRY. Cosider the series a. fid the 6 th term b. fid the sum of the six terms c. fid, to 4 decimal places, the sum of the first six terms d. fid the sum to ifiity 2. Fid the sum of each of these ifiite geometric series: 8 8 a b c Here is a good oe relatig to fractals! A 4 x 4 uit square is divided ito four equal squares. The bottom left square is shaded. The top right square is divided ito 4 equal squares ad its bottom left is shaded, the etc. This is doe forever. a. what is the total area shaded? b. what is the perimeter of all the shaded squares?

22 22 4. Ivestigate this series (it is of course ot arithmetic or geometric): x x x x f ( x) = + + 2! 4! 6! 8! Try pluggig i 2 ad 5 (ie: fid f(2) ad f(5)). Compare that with cosie of 2 ad cosie of 5 (i radias of course). Try graphig f(x) ad cos(x). Compare!

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i,

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i, Sequeces: Defiitio: A sequece is a fuctio whose domai is the set of atural umbers or a subset of the atural umbers. We usually use the symbol a to represet a sequece, where is a atural umber ad a is the

More information

SEQUENCE AND SERIES 1.0 INTRODUCTION. Structure

SEQUENCE AND SERIES 1.0 INTRODUCTION. Structure UNIT 1 SEQUENCE AND SERIES Sequece ad Series Structure 1.0 Itroductio 1.1 Objectives 1. Arithmetic Progressio 1.3 Formula for Sum to Terms of a A.P. 1.4 Geometric Progressio 1.5 Sum to Terms of a G.P.

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

1 a a a a a Write a formula for a 6 in terms of a 5.

1 a a a a a Write a formula for a 6 in terms of a 5. Sectio 1.1 Arithmetic Sequeces ad Series Basic Terms A sequece is a ordered list of umbers. Each umber i a sequece is called a term. Work Together Usig the sequece give at the right. Fid the sixth term

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

ways to complete the second task after the first is completed, c ways to complete the third task after the first two have been completed,, and c

ways to complete the second task after the first is completed, c ways to complete the third task after the first two have been completed,, and c 9. Basic Combiatorics Pre Calculus 9. BASIC COMBINATORICS Learig Targets:. Solve coutig problems usig tree diagrams, lists, ad/or the multiplicatio coutig priciple 2. Determie whether a situatio is couted

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Unit 8 Rational Functions

Unit 8 Rational Functions Uit 8 Ratioal Fuctios Algebraic Fractios: Simplifyig Algebraic Fractios: To simplify a algebraic fractio meas to reduce it to lowest terms. This is doe by dividig out the commo factors i the umerator ad

More information

Geometric Sequences. Essential Question How can you use a geometric sequence to describe a pattern?

Geometric Sequences. Essential Question How can you use a geometric sequence to describe a pattern? . Geometric Sequeces Essetial Questio How ca you use a geometric sequece to describe a patter? I a geometric sequece, the ratio betwee each pair of cosecutive terms is the same. This ratio is called the

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

Mgr. ubomíra Tomková. Limit

Mgr. ubomíra Tomková. Limit Limit I mathematics, the cocept of a "limit" is used to describe the behaviour of a fuctio as its argumet either gets "close" to some poit, or as it becomes arbitrarily large; or the behaviour of a sequece's

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

5.3 Annuities. Question 1: What is an ordinary annuity? Question 2: What is an annuity due? Question 3: What is a sinking fund?

5.3 Annuities. Question 1: What is an ordinary annuity? Question 2: What is an annuity due? Question 3: What is a sinking fund? 5.3 Auities Questio 1: What is a ordiary auity? Questio : What is a auity due? Questio 3: What is a sikig fud? A sequece of paymets or withdrawals made to or from a accout at regular time itervals is called

More information

SEQUENCE AND SERIES. Chapter Overview

SEQUENCE AND SERIES. Chapter Overview Chapter 9 SEQUENCE AND SERIES 9.1 Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a 1, a,..., etc., the subscript deotes

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

GEOMETRIC SEQUENCES BY JAMES D. NICKEL

GEOMETRIC SEQUENCES BY JAMES D. NICKEL I a arithmetic sequece, a commo differece separates each term i the sequece. For example, i the sequece 5,, 5, 0, 5,, the commo differece betwee terms is 5. I a geometric sequece, you calculate each successive

More information

NCERT. , a 3. ,... give the same value, i.e., if a k + 1. ,... if the differences a 2. a k

NCERT. , a 3. ,... give the same value, i.e., if a k + 1. ,... if the differences a 2. a k ARITHMETIC PROGRESSIONS (A) Mai Cocepts ad Results A arithmetic progressio (AP) is a list of umbers i which each term is obtaied by addig a fixed umber d to the precedig term, except the first term a.

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

Intro to Sequences / Arithmetic Sequences and Series Levels

Intro to Sequences / Arithmetic Sequences and Series Levels Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

addtionalmathematicsprogressionsad dtionalmathematicsprogressionsaddti onalmathematicsprogressionsaddtion almathematicsprogressionsaddtional

addtionalmathematicsprogressionsad dtionalmathematicsprogressionsaddti onalmathematicsprogressionsaddtion almathematicsprogressionsaddtional addtioalmathematicsprogressiosad dtioalmathematicsprogressiosaddti oalmathematicsprogressiosaddtio almathematicsprogressiosaddtioal PROGRESSION mathematicsprogressiosaddtioalma Name thematicsprogressiosaddtioalmathe...

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

MATHEMATICS Learner s Study and Revision Guide for Grade 12 SEQUENCES & SERIES

MATHEMATICS Learner s Study and Revision Guide for Grade 12 SEQUENCES & SERIES MATHEMATIC Learer s tudy ad Revisio Guide for Grade EQUENCE & ERIE Revisio Notes, Exercises ad olutio Hits by Roseies Phahle Examiatio Questios by e Departmet of Basic Educatio Preparatio for e Maematics

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,

More information

Chapter 11: Sequences and Series

Chapter 11: Sequences and Series Algebra II Hoors Chapter : Sequeces ad Series Sequeces ad Summatio Notatio A sequece is a ordered list of umbers; for example,, /4, 5/9, 7/6, The graph of a sequece is a series of ucoected poits with domai,,,

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

Geometric Series -- QUESTIONS -- Geometric Series Diploma Style Practice Exam 1

Geometric Series -- QUESTIONS -- Geometric Series Diploma Style Practice Exam 1 Geometric Series -- QUESTIONS -- Geometric Series Diploma Style Practice Exam www.puremath30.com Geometric Series Diploma Style Practice Exam Formulas These are the formulas for Geometric Series you will

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Sequences and Series Binomial Theorem

Sequences and Series Binomial Theorem Mrs. Turer s Precalculus page 0 Sequeces ad Series Biomial Theorem This is the Golde Spiral a special ratio that occurs i ature Name: Period: Mrs. Turer s Precalculus page 8. Sequeces ad Series Notes What

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

Some review problems for Midterm 1

Some review problems for Midterm 1 Some review problems for Midterm February 6, 05 Problems Here are some review problems to practice what we ve leared so far. Problems a,b,c,d ad p,q,r,s are t from the book, ad are a little tricky. You

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

SECTION 8-4 Binomial Formula

SECTION 8-4 Binomial Formula 8- Biomial Formula 581 poit of view it appears that he will ever fiish the race. This famous paradox is attributed to the Gree philosopher Zeo, 95 35 B.C. If we assume the ruer rus at 0 yards per miute,

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

CHAPTER 19 NUMBER SEQUENCES

CHAPTER 19 NUMBER SEQUENCES EXERCISE 77 Page 167 CHAPTER 19 NUMBER SEQUENCES 1. Determie the ext two terms i the series: 5, 9, 13, 17, It is oticed that the sequece 5, 9, 13, 17,... progressively icreases by 4, thus the ext two terms

More information

Lesson 12. Sequences and Series

Lesson 12. Sequences and Series Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or

More information

Math : Sequences and Series

Math : Sequences and Series EP-Program - Strisuksa School - Roi-et Math : Sequeces ad Series Dr.Wattaa Toutip - Departmet of Mathematics Kho Kae Uiversity 00 :Wattaa Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou. Sequeces

More information

CHAPTER 12 SEQUENCES, PROBABILITY, AND STATISTICS

CHAPTER 12 SEQUENCES, PROBABILITY, AND STATISTICS CHAPTER SEQUENCES, PROBABILITY, AND STATISTICS PRE-CALCULUS: A TEACHING TEXTBOOK Lesso 77 Sequeces We ve fiished with coic sectios, so ow we re goig to switch gears ad talk about sequeces. I simple laguage,

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Russian Math Circle Problems

Russian Math Circle Problems Russia Math Circle Problems April 1, 2011 Istructios: Work as may problems as you ca. Eve if you ca t solve a problem, try to lear as much as you ca about it. Please write a complete solutio to each problem

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Chapter One BASIC MATHEMATICAL TOOLS

Chapter One BASIC MATHEMATICAL TOOLS Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

More information

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov Witer Camp 202 Sequeces Alexader Remorov Sequeces Alexader Remorov alexaderrem@gmail.com Warm-up Problem : Give a positive iteger, cosider a sequece of real umbers a 0, a,..., a defied as a 0 = 2 ad =

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

Radicals and Fractional Exponents

Radicals and Fractional Exponents Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

PREALGEBRA REVIEW DEFINITIONS

PREALGEBRA REVIEW DEFINITIONS 1. Subtractio is the iverse of additio: A. If a - b c, the c + b a B. So if 10-7, the 7 + 10 2. Divisio is the iverse of multiplicatio: A. If a b c, the c b a B. So if 45 9 5, the 5 9 45 PREALGEBRA REVIEW

More information

Revising algebra skills. Jackie Nicholas

Revising algebra skills. Jackie Nicholas Mathematics Learig Cetre Revisig algebra skills Jackie Nicholas c 005 Uiversity of Sydey Mathematics Learig Cetre, Uiversity of Sydey 1 1 Revisio of Algebraic Skills 1.1 Why use algebra? Algebra is used

More information

THE SUM OF A GEOMETRIC SERIES

THE SUM OF A GEOMETRIC SERIES THE SUM OF GEOMETRIC SERIES S T T T... T T 1 3 1 1... a ar ar ar ar (1) Multiplyig lie (1) by r gives 1 rs ar ar... ar ar ar () () (1) rs S ar a Makig S the subject: S ( r1) a( r 1) S ar ( 1) r 1 The above

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Mathematics of Finance

Mathematics of Finance 5 Mathematics of Fiace Compoud Iterest Auities Amortizatio ad Sikig Fuds Arithmetic ad Geometric Progressios (Optioal) Simple Iterest Formula Simple Iterest - iterest that is compouded o the origial pricipal

More information

The interval and radius of convergence of a power series

The interval and radius of convergence of a power series The iterval ad radius of covergece of a power series Bro. David E. Brow, BYU Idaho Dept. of Mathematics. All rights reserved. Versio 1.1, of April, 014 Cotets 1 Itroductio 1 The ratio ad root tests 3 Examples

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

HW 3 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson

HW 3 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson HW 3 Solutios Math 5, Witer 009, Prof. Yitzhak Katzelso 7.4 a) Let x =. The lim x = 0 (as you may easily check - for ǫ > 0, just let N be ǫ ), which is ratioal, eve though all the x are irratioal. b) Cosider

More information

Section Symmetric across a vertical line called the axis of symmetry that runs through the vertex.

Section Symmetric across a vertical line called the axis of symmetry that runs through the vertex. 1 Sectio 3.1 I. Quadratic Fuctio (Parabolas) f ( x) ax bx c, for a 0 Properties of Parabolas: 1. Symmetric across a vertical lie called the axis of symmetry that rus through the vertex.. Vertex- the maximum/miimum

More information

Section 1.1 1, 1 2, 1 4, 1 8,...

Section 1.1 1, 1 2, 1 4, 1 8,... Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over Mathematics/P DoE/November

More information

Sample. Activity Library: Volume II. Activity Collections. Featuring real-world context collections:

Sample. Activity Library: Volume II. Activity Collections. Featuring real-world context collections: Activity Library: Volume II Sample Activity Collectios Featurig real-world cotext collectios: Arithmetic II Fractios, Percets, Decimals III Fractios, Percets, Decimals IV Geometry I Geometry II Graphig

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

AQA Statistics 1. Numerical measures. Section 2: Measures of spread

AQA Statistics 1. Numerical measures. Section 2: Measures of spread Notes ad Eamples AQA Statistics 1 Numerical measures Sectio : Measures of spread Just as there are several differet measures of cetral tedecy (averages), there are a variety of statistical measures of

More information

Essential Question How can you use properties of exponents to simplify products and quotients of radicals?

Essential Question How can you use properties of exponents to simplify products and quotients of radicals? . Properties of Ratioal Expoets ad Radicals Essetial Questio How ca you use properties of expoets to simplify products ad quotiets of radicals? Reviewig Properties of Expoets Work with a parter. Let a

More information

First, it is important to recall some key definitions and notations before discussing the individual series tests.

First, it is important to recall some key definitions and notations before discussing the individual series tests. Ifiite Series Tests Coverget or Diverget? First, it is importat to recall some key defiitios ad otatios before discussig the idividual series tests. sequece - a fuctio that takes o real umber values a

More information

Is mathematics discovered or

Is mathematics discovered or 112 Chapter 11 Sequeces, Iductio, ad Probability Sectio 11. Objectives Evaluate a biomial coefficiet. Expad a biomial raised to a power. Fid a particular term i a biomial expasio. The Biomial Theorem Galaxies

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

6.1 Evaluate nth Roots and Use Rational Exponents

6.1 Evaluate nth Roots and Use Rational Exponents 6.1 Evaluate th Roots ad Use Ratioal Expoets Goal Evaluate th roots ad study ratioal expoets. VOCABULARY th root of a For a iteger greater tha 1, if b = a, the b is a th root of a. Idex of a radical A

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

MISCELLANEOUS SEQUENCES & SERIES QUESTIONS

MISCELLANEOUS SEQUENCES & SERIES QUESTIONS MISCELLANEOUS SEQUENCES & SERIES QUESTIONS Questio (***+) Evaluate the followig sum 30 r ( 2) 4r 78. 3 MP2-V, 75,822,200 Questio 2 (***+) Three umbers, A, B, C i that order, are i geometric progressio

More information

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x MATH 11011 EXPONENTIAL FUNCTIONS KSU AND THEIR APPLICATIONS Defiitios: Expoetial fuctio: For a > 0, the expoetial fuctio with base a is defied by fx) = a x Horizotal asymptote: The lie y = c is a horizotal

More information

V. Adamchik 1. Recursions. Victor Adamchik Fall of 2005

V. Adamchik 1. Recursions. Victor Adamchik Fall of 2005 V. Adamchik Recursios Victor Adamchik Fall of 005 Pla. Solvig Liear Recurreces with Costat Coefficiets. Iteratios. Characteristic equatio.3 Geeral solutio.4 Higher order equatios.5 Multiple roots Solvig

More information

3.2 Introduction to Infinite Series

3.2 Introduction to Infinite Series 3.2 Itroductio to Ifiite Series May of our ifiite sequeces, for the remaider of the course, will be defied by sums. For example, the sequece S m := 2. () is defied by a sum. Its terms (partial sums) are

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

SENIOR CERTIFICATE EXAMINATIONS

SENIOR CERTIFICATE EXAMINATIONS SENIOR CERTIFICATE EXAMINATIONS MATHEMATICS P1 016 MARKS: 150 TIME: 3 hours This questio paper cosists of 9 pages ad 1 iformatio sheet. Please tur over Mathematics/P1 DBE/016 INSTRUCTIONS AND INFORMATION

More information

MATH Testing a Series for Convergence

MATH Testing a Series for Convergence MATH 0 - Testig a Series for Covergece Dr. Philippe B. Laval Keesaw State Uiversity October 4, 008 Abstract This hadout is a summary of the most commoly used tests which are used to determie if a series

More information

Randomized Algorithms I, Spring 2016, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 29, 2016)

Randomized Algorithms I, Spring 2016, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 29, 2016) Radomized Algorithms I, Sprig 0, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 9, 0). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

2 2 i. 8.3 POLAR FORM AND DEMOIVRE S THEOREM. Definition of Polar Form of a Complex Number

2 2 i. 8.3 POLAR FORM AND DEMOIVRE S THEOREM. Definition of Polar Form of a Complex Number SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 445. Describe the set of poits i the complex plae that satisfy the followig. (a) z 4 (b) z i (c) z i (d) z. (a) Evaluate for,,, 4, ad 5. (b) Calculate i 57

More information

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The Usig Iterative Methods to Solve Equatios Newto s method is a iterative scheme for solvig equatios by fidig zeros of a fuctio. The f Newto iteratio 1 f fids the zeros of f by fidig the fied poit of g f

More information

Sequences and Series. Growth of $5,000 investment per year. Amount (in thousands of dollars) 150. Time (years)

Sequences and Series. Growth of $5,000 investment per year. Amount (in thousands of dollars) 150. Time (years) C H A P T E R Sequeces ad Series Amout (i thousads of dollars) 50 00 50 0 Growth of $5,000 ivestmet per year 3 4 5 6 7 8 9 0 Time (years) veryoe realizes the importace of ivestig for the future. Some people

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Unit 2 Sequences and Series

Unit 2 Sequences and Series Accelerated Mathematics III Frameworks Studet Editio Uit Sequeces ad Series d Editio April, 011 Table of Cotets INTRODUCTION:... 3 Reaissace Festival Learig Task... 8 Fasciatig Fractals Learig Task...

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

Solutions to Problem Set 0: Math 149S

Solutions to Problem Set 0: Math 149S Solutios to Problem Set 0: Math 49S Matthew Roglie September 8, 009 Some terms or cocepts here may be ufamiliar to you. We will cover them later, but i the meatime you are strogly ecouraged to google them!

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Summing Up Geometric Series

Summing Up Geometric Series Summig Up Geometric Series About the Lesso I this activity, studets will explore ifiite geometric series ad the partial sums of geometric series. The studets will determie the limits of these sequeces

More information

Unit 2 Sequences and Series

Unit 2 Sequences and Series Mathematics IV Uit 1 st Editio Mathematics IV Frameworks Studet Editio Uit Sequeces ad Series 1 st Editio Kathy Cox, State Superitedet of Schools Uit : Page 1 of 35 Mathematics IV Uit 1 st Editio Table

More information