University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution"

Transcription

1 Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio. t distributio. F distributio. Before we discuss the χ, t, ad F distributios here are few importat thigs about the gamma (Γ) distributio. The gamma distributio is useful i modelig skewed distributios for variables that are ot egative. A radom variable X is said to have a gamma distributio with parameters α, β if its probability desity fuctio is give by f(x) = xα 1 e x β, α, β > 0, x 0. β α Γ(α) E(X) = αβ ad σ = αβ. A brief ote o the gamma fuctio: The quatity Γ(α) is kow as the gamma fuctio ad it is equal to: Γ(α) = Useful result: 0 Γ( 1 ) = π. x α 1 e x dx. If we set α = 1 ad β = 1 λ we get f(x) = λe λx. We see that the expoetial distributio is a special case of the gamma distributio. 1

2 The gamma desity for α = 1,, 3, 4 ad β = 1. Gamma distributio desity f(x) Γ(α = 1, β = 1) Γ(α =, β = 1) Γ(α = 3, β = 1) Γ(α = 4, β = 1) x Momet geeratig fuctio of the X Γ(α, β) radom variable: Proof: M X (t) = (1 βt) α M X (t) = Ee tx = Let y = x( 1 βt ) x = β y, ad dx = β β 1 βt M X (t) = M X (t) = 1 β α Γ(α) 0 0 e tx xα 1 e x β β α Γ(α) dx = 1 x α 1 e β α Γ(α) 0 1 βt x( β ) dx dy. Substitute these i the expressio above: 1 βt ( ) α 1 β y α 1 e y β 1 βt 1 βt dy ( ) α 1 1 β β y α 1 e y dy M β α X (t) = (1 βt) α. Γ(α) 1 βt 1 βt 0

3 Theorem: Let Z N(0, 1). The, if X = Z, we say that X follows the chi-square distributio with 1 degree of freedom. We write, X χ 1. Proof: Fid the distributio of X = Z, where f(z) = 1 π e 1 z. Begi with the cdf of X: F X (x) = P (X x) = P (Z x) = P ( x Z x) F X (x) = F Z ( x) F Z ( x). Therefore: f X (x) = 1 x 1 1 π e 1 x + 1 x 1 1 e 1 x = 1 π 1 π x 1 e x, or f X (x) = x 1 e x 1 Γ( 1 ). This is the pdf of Γ( 1, ), ad it is called the chi-square distributio with 1 degree of freedom. We write, X χ 1. The momet geeratig fuctio of X χ 1 is M X (t) = (1 t) 1. Theorem: Let Z 1, Z,..., Z be idepedet radom variables with Z i N(0, 1). If Y = zi Y follows the chi-square distributio with degrees of freedom. We write Y χ. the Proof: Fid the momet geeratig fuctio of Y. Sice Z 1, Z,..., Z are idepedet, M Y (t) = M Z 1 (t) M Z (t)... M Z (t) Each Z i follows χ 1 ad therefore it has mgf equal to (1 t) 1. Coclusio: M Y (t) = (1 t). This is the mgf of Γ(, ), ad it is called the chi-square distributio with degrees of freedom. Theorem: Let X 1, X,..., X idepedet radom variables with X i N(µ, σ). It follows directly form the previous theorem that if Y = ( ) xi µ the Y χ σ. 3

4 We kow that the mea of Γ(α, β) is E(X) = αβ ad its variace var(x) = αβ. Therefore, if X χ it follows that: E(X) =, ad var(x) =. Theorem: Let X χ ad Y χ m. If X, Y are idepedet the X + Y χ +m. Proof: Use momet geeratig fuctios. Shape of the chi-square distributio: I geeral it is skewed to the right but as the degrees of freedom icrease it becomes N(, ). Here is the graph: Χ 3 f(x) x Χ 10 f(x) x Χ 30 f(x) x 4

5 Example 1 If X χ 16, fid the followig: a. P (X < 8.85). b. P (X > 34.7). c. P (3.54 < X < 8.85). d. If P (X < b) = 0.10, fid b. e. If P (X < c) = 0.950, fid c. The χ distributio - examples Example If X χ 1, fid costats a ad b such that P (a < X < b) = 0.90 ad P (X < a) = Example 3 If X χ 30, fid the followig: a. P (13.79 < X < 16.79). b. Costats a ad b such that P (a < X < b) = 0.95 ad P (X < a) = c. The mea ad variace of X. Example 4 If the momet-geeratig fuctio of X is M X (t) = (1 t) 60, fid: a. E(X). b. V ar(x). c. P (83.85 < X < ). 5

6 Theorem: Let X 1, X,..., X idepedet radom variables with X i N(µ, σ). Defie the sample variace as Proof: S = 1 1 (x i x). The ( 1)S σ χ 1. Example: Let X 1, X,..., X 16 i.i.d. radom variables from N(50, 10). Fid ( ) a. P 796. < (X i 50) < 630. ( b. P 76.1 < ) (X i X) <

7 The χ 1 (1 degree of freedom) - simulatio A radom sample of size = 100 is selected from the stadard ormal distributio N(0, 1). Here is the sample ad its histogram. [1] [5] [9] [13] [17] [1] [5] [9] [33] [37] [41] [45] [49] [53] [57] [61] [65] [69] [73] [77] [81] [85] [89] [93] [97] Histogram of the radom sample of =100 Desity z 7

8 The squared values of the sample above ad their histogram are show below. [1] e e e e+00 [5] e e e e+00 [9].9541e e e e+00 [13] e e e e-01 [17] e e e e-01 [1] e e e e-03 [5] e e e e+00 [9] 5.578e e e e-01 [33] e e e e-01 [37] e e e e+00 [41].33360e e e e-01 [45] e e e e-0 [49] e e e e-01 [53] e e e e-01 [57] e e e e-01 [61] e e e e-01 [65] e e e e-01 [69] e e e e-0 [73] e e e e-01 [77] e e e e+00 [81] e e e e-0 [85].3754e e e e-01 [89] e e e e+00 [93] e e e e-03 [97] e e e e+00 Histogram of the squared values of radom sample of =100 Desity z 8

9 The t distributio Defiitio: Let Z N(0, 1) ad U χ df. If Z, U are idepedet the the ratio Z U df follows the t (or Studet s t) distributio with degrees of freedom equal to df. We write X t df. The probability desity fuctio of the t distributio with df = degrees of freedom is f(x) = +1 Γ( ) ( ) +1 πγ( ) 1 + x, < x <. Let X t. The, E(X) = 0 ad var(x) =. The t distributio is similar to the stadard ormal distributio N(0, 1), but it has heavier tails. However as the t distributio coverges to N(0, 1) (see graph below). f(x) N(0, 1) t 15 t 5 t x 9

10 Applicatio: Let X 1, X,..., X be idepedet ad idetically distributed radom variables each oe havig N(µ, σ). We have see earlier that ( 1)S χ σ 1. We also kow that X µ σ N(0, 1). We ca apply the defiitio of the t distributio (see previous page) to get the followig: X µ σ ( 1)S σ 1 = X µ s. Therefore X µ s t 1. Compare it with X µ σ N(0, 1). Example: Let X ad SX deote the sample mea ad sample variace of a idepedet radom sample of size 10 from a ormal distributio with mea µ = 0 ad variace σ. Fid c so that P X < c = SX 10

11 Defiitio: Let U χ 1 The F distributio ad V χ. If U ad V are idepedet the ratio U 1 V follows the F distributio with umerator d.f. 1 ad deomiator d.f.. We write X F 1,. The probability desity fuctio of X F 1, f(x) = Γ( 1+ ) Γ( 1 )Γ( Mea ad variace: Let X F 1,. The, ) ( 1 is: ) 1 ( x ) 1 1 x ( 1+ ), 0 < x <. E(X) =, ad var(x) = ( 1 + ) 1 ( ) ( 4). Shape: I geeral the F distributio is skewed to the right. The distributio of F 10,3 is show below: f(x) x 11

12 Applicatio: Let X 1, X,..., X i.i.d. radom variables from N(µ X, σ X ). Let Y 1, Y,..., Y m i.i.d. radom variables from N(µ Y, σ Y ). If X ad Y are idepedet the ratio S X σ X S Y σ Y F 1,m 1. Why? Example: Two idepedet samples of size 1 = 6, = 10 are take from two ormal populatios with equal variaces. Fid b such that P ( S 1 < b) = S 1

13 Distributio related to the ormal distributio χ, t, F - summary 1. The χ distributio: Let Z N(0, 1) the Z χ 1. Let Z 1, Z,, Z i.i.d. radom variables from N(0, 1). The Zi χ. Let X 1, X,, X i.i.d. radom variables from N(µ, σ). The ( X i µ σ ) χ. The distributio of the sample variace: ( 1)S σ χ 1, where S = 1 1 (x i x), x = 1 x i Let X χ, Y χ m. If X, Y are idepedet the X + Y χ +m.. The t distributio: Let Z N(0, 1) ad U χ. Z U t. Let X 1, X,, X i.i.d. radom variables from N(µ, σ). The x µ s t 1, where S = 1 (x i x) 1, x = 1 3. The F distributio: Let U χ ad V χ m. The U V m F,m with umerator d.f., m deomiator d.f. Let X 1, X,, X i.i.d. radom variables from N(µ X, σ X ) ad Let Y 1, Y,, Y m i.i.d. radom variables from N(µ Y, σ Y ) the: x i Useful: S X σ X S Y σ Y F 1,m 1 S X = 1 1 S Y = 1 m 1 t = F 1, where (x i x), x = 1 x i m (y i ȳ), ȳ = 1 m y i ad F α;,m = 1 F 1 α;m, 13

14 Practice questios Let Z 1, Z,, Z 16 be a radom sample of size 16 from the stadard ormal distributio N(0, 1). Let X 1, X,, X 64 be a radom sample of size 64 from the ormal distributio N(µ, 1). The two samples are idepedet. a. Fid P (Z 1 > ). b. Fid P ( 16 Z i > ). c. Fid P ( 16 Z i > 6.91). d. Let S be the sample variace of the first sample. Fid c such that P (S > c) = e. What is the distributio of Y, where Y = 16 Z i + 64 (X i µ)? f. Fid EY. g. Fid V ar(y ). h. Approximate P (Y > 105). i. Fid c such that 16 c Z i F 16,80. Y j. Let Q χ 60. Fid c such that ( ) Z1 P < c = Q k. Use the t table to fid the 80 th percetile of the F 1,30 distributio. l. Fid c such that P (F 60,0 > c) =

15 Cetral limit theorem, χ, t, F distributios - examples Example 1 Suppose X 1,, X is a radom sample from a ormal populatio with mea µ 1 ad stadard deviatio σ = 1. Aother radom sample Y 1,, Y m is selected from a ormal populatio with mea µ ad stadard deviatio σ = 1. The two samples are idepedet. a. What is the distributio of W, where W is (X i X) m + (Y i Ȳ ) b. What is the mea of W? c. What is the variace of W? Example Determie which colums i the F tables are squares of which colums i the t table. Clearly explai your aswer. Example 3 The sample X 1, X,, X 18 comes from a populatio which is ormal N(µ 1, σ 7). The sample Y 1, Y,, Y 3 comes from a populatio which is also ormal N(µ, σ 3). The two samples are idepedet. For these samples we compute the sample variaces S X = (X i X) ad S Y = 1 3 (Y i Ȳ ). For what value of c does the expressio c S X S Y have the F distributio with (17, ) degrees of freedom? Example 4 Supply resposes true or false with a explaatio to each of the followig: a. The stadard deviatio of the sample mea X icreases as the sample icreases. b. The Cetral Limit Theorem allows us to claim, i certai cases, that the distributio of the sample mea X is ormally distributed. c. The stadard deviatio of the sample mea X is usually approximately equal to the ukow populatio σ. d. The stadard deviatio of the total of a sample of observatios exceeds the stadard deviatio of the sample mea. e. If X N(8, σ) the P ( X > 4) is less tha P (X > 4). 15

16 Example 5 A selective college would like to have a eterig class of 100 studets. Because ot all studets who are offered admissio accept, the college admits 1500 studets. Past experiece shows that 70% of the studets admitted will accept. Assumig that studets make their decisios idepedetly, the umber who accept X, follows the biomial distributio with = 1500 ad p = a. Write a expressio for the exact probability that at least 1000 studets accept. b. Approximate the above probability usig the ormal distributio. Example 6 A isurace compay wats to audit health isurace claims i its very large database of trasactios. I a quick attempt to assess the level of overstatemet of this database, the isurace compay selects at radom 400 items from the database (each item represets a dollar amout). Suppose that the populatio mea overstatemet of the etire database is $8, with populatio stadard deviatio $0. a. Fid the probability that the sample mea of the 400 would be less tha $6.50. b. The populatio from where the sample of 400 was selected does ot follow the ormal distributio. Why? c. Why ca we use the ormal distributio i obtaiig a aswer to part (a)? d. For what value of ω ca we say that P (µ ω < X < µ + ω) is equal to 80%? e. Let T be the total overstatemet for the 400 radomly selected items. Fid the umber b so that P (T > b) = Example 7 Next to the cash register of the Southlad market is a small bowl cotaiig peies. Customers are ivited to take peies from this bowl to make their purchases easier. For example if a customer has a bill of $.1 might take two peies from the bowl. It frequetly happes that customers put ito the bowl peies that they receive i chage. Thus the umber of peies i the bowl rises ad falls. Suppose that the bowl starts with $.00 i peies. Assume that the et daily chages is a radom variable with mea $0.06 ad stadard deviatio $0.15. Fid the probability that, after 30 days, the value of the peies i the bowl will be below $1.00. Example 8 A telephoe compay has determied that durig oholidays the umber of phoe calls that pass through the mai brach office each hour follows the ormal distributio with mea µ = ad stadard deviatio σ = Suppose that a radom sample of 60 oholiday hours is selected ad the sample mea x of the icomig phoe calls is computed. a. Describe the distributio of X. b. Fid the probability that the sample mea X of the icomig phoe calls for these 60 hours is larger tha c. Is it more likely that the sample average X will be greater tha hours, or that oe hour s icomig calls will be? 16

17 Example 9 Assume that the daily S&P retur follows the ormal distributio with mea µ = ad stadard deviatio σ = a. Fid the 75 th percetile of this distributio. b. What is the probability that i of the followig 5 days, the daily S&P retur will be larger tha 0.01? c. Cosider the sample average S&P of a radom sample of 0 days. i. What is the distributio of the sample mea? ii. What is the probability that the sample mea will be larger tha 0.005? iii. Is it more likely that the sample average S&P will be greater tha 0.007, or that oe day s S&P retur will be? Example 10 Fid the mea ad variace of S = 1 1 (X i X), where X 1, X,, X is a radom sample from N(µ, σ). Example 11 Let X 1, X, X 3, X 4, X 5 be a radom sample of size = 5 from N(0, σ). a. Fid the costat c so that c(x 1 X ) X3 + X 4 + X 5 has a t distributio. b. How may degrees of freedom are associated with this t distributio? Example 1 Let X, Ȳ, ad W ad SX, S Y, ad S W deote the sample meas ad sample variaces of three idepedet radom samples, each of size 10, from a ormal distributio with mea µ ad variace σ. Fid c so that P X + Ȳ W < c = SX + 9S Y + 9S W Example 13 If X has a expoetial distributio with a mea of λ, show that Y = X λ degrees of freedom. has χ distributio with 17

18 Example 14 Suppose that X 1, X,, X 40 deotes a radom sample of measuremets o the proportio of impurities i iro ore samples. Let each X i have a probability desity fuctio give by f(x) = 3x, 0 x 1. The ore is to be rejected by the potetial buyer if X exceeds 0.7. Fid P ( X > 0.7) for the sample of size 40. Example 15 If Y has a χ distributio with degrees of freedom, the Y could be represeted by Y = X i where X i s are idepedet, each havig a χ distributio with 1 degree of freedom. a. Show that Z = Y has a asymptotic stadard ormal distributio. b. A machie i a heavy-equipmet factory produces steel rods of legth Y, where Y is a ormal radom variable with µ = 6 iches ad σ = 0.. The cost C of repairig a rod that is ot exactly 6 iches i legth is proportioal to the square of the error ad is give, i dollars, by C = 4(Y µ). If 50 rods with idepedet legths are produced i a give day, approximate that the total cost for repairs for that day exceeds $48. Example 16 Suppose that five radom variables X 1,, X 5 are i.i.d., ad each has a stadard ormal distributio. Determie a costat c such that the radom variable c(x 1 + X ) X3 + X 4 + X 5 will have a t distributio. Example 17 Suppose that a radom variable X has a F distributio with 3 ad 8 degrees of freedom. Determie the value of c such that P (X < c) = Example 18 Suppose that a radom variable X has a F distributio with 1 ad 8 degrees of freedom. Use the table of the t distributio to determie the value of c such that P (X > c) = 0.. Example 19 Suppose that a poit (X, Y, Z) is to be chose at radom i 3-dimesioal space, where X, Y, ad Z are idepedet radom variables ad each has a stadard ormal distributio. What is the probability that the distace from the origi to the poit will be less tha 1 uit? Example 0 Suppose that X 1,, X 6 form a radom sample from a stadard ormal distributio ad let Y = (X 1 + X + X 3 ) + (X 4 + X 5 + X 6 ). Determie a value of c such that the radom variable cy will have a χ distributio. 18

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

STATISTICAL METHODS FOR BUSINESS

STATISTICAL METHODS FOR BUSINESS STATISTICAL METHODS FOR BUSINESS UNIT 7: INFERENTIAL TOOLS. DISTRIBUTIONS ASSOCIATED WITH SAMPLING 7.1.- Distributios associated with the samplig process. 7.2.- Iferetial processes ad relevat distributios.

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Multi-server Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu

Multi-server Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu Multi-server Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio -coectio

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

10-705/36-705 Intermediate Statistics

10-705/36-705 Intermediate Statistics 0-705/36-705 Itermediate Statistics Larry Wasserma http://www.stat.cmu.edu/~larry/=stat705/ Fall 0 Week Class I Class II Day III Class IV Syllabus August 9 Review Review, Iequalities Iequalities September

More information

Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists

Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists Iteral Report SUF PFY/96 Stockholm, December 996 st revisio, 3 October 998 last modificatio September 7 Had-book o STATISTICAL DISTRIBUTIONS for experimetalists by Christia Walck Particle Physics Group

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

OMG! Excessive Texting Tied to Risky Teen Behaviors

OMG! Excessive Texting Tied to Risky Teen Behaviors BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9

More information

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

THE TWO-VARIABLE LINEAR REGRESSION MODEL

THE TWO-VARIABLE LINEAR REGRESSION MODEL THE TWO-VARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part

More information

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

More information

CONDITIONAL TAIL VARIANCE AND CONDITIONAL TAIL SKEWNESS IN FINANCE AND INSURANCE. Liang Hong *, Assistant Professor Bradley University

CONDITIONAL TAIL VARIANCE AND CONDITIONAL TAIL SKEWNESS IN FINANCE AND INSURANCE. Liang Hong *, Assistant Professor Bradley University CONDTONAL TAL VARANCE AND CONDTONAL TAL SKEWNESS N FNANCE AND NSURANCE Liag Hog *, Assistat Professor Bradley Uiversity Ahmed Elshahat, Assistat Professor Bradley Uiversity ABSTRACT Two risk measures Value

More information

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

More information

2 Time Value of Money

2 Time Value of Money 2 Time Value of Moey BASIC CONCEPTS AND FORMULAE 1. Time Value of Moey It meas moey has time value. A rupee today is more valuable tha a rupee a year hece. We use rate of iterest to express the time value

More information

Actuarial Models for Valuation of Critical Illness Insurance Products

Actuarial Models for Valuation of Critical Illness Insurance Products INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES Volume 9, 015 Actuarial Models for Valuatio of Critical Illess Isurace Products P. Jidrová, V. Pacáková Abstract Critical illess

More information

ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA

ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA The Aals of Statistics 2009, Vol. 37, No. 5A, 2202 2244 DOI: 10.1214/08-AOS640 Istitute of Mathematical Statistics, 2009 ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS IN HIGH FREQUENCY DATA BY YACINE AÏT-SAHALIA

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

MEP Pupil Text 9. The mean, median and mode are three different ways of describing the average.

MEP Pupil Text 9. The mean, median and mode are three different ways of describing the average. 9 Data Aalysis 9. Mea, Media, Mode ad Rage I Uit 8, you were lookig at ways of collectig ad represetig data. I this uit, you will go oe step further ad fid out how to calculate statistical quatities which

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

arxiv:0908.3095v1 [math.st] 21 Aug 2009

arxiv:0908.3095v1 [math.st] 21 Aug 2009 The Aals of Statistics 2009, Vol. 37, No. 5A, 2202 2244 DOI: 10.1214/08-AOS640 c Istitute of Mathematical Statistics, 2009 arxiv:0908.3095v1 [math.st] 21 Aug 2009 ESTIMATING THE DEGREE OF ACTIVITY OF JUMPS

More information

A Guide to the Pricing Conventions of SFE Interest Rate Products

A Guide to the Pricing Conventions of SFE Interest Rate Products A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING

A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING A PROBABILISTIC VIEW ON THE ECONOMICS OF GAMBLING MATTHEW ACTIPES Abstract. This paper begis by defiig a probability space ad establishig probability fuctios i this space over discrete radom variables.

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Installment Joint Life Insurance Actuarial Models with the Stochastic Interest Rate

Installment Joint Life Insurance Actuarial Models with the Stochastic Interest Rate Iteratioal Coferece o Maagemet Sciece ad Maagemet Iovatio (MSMI 4) Istallmet Joit Life Isurace ctuarial Models with the Stochastic Iterest Rate Nia-Nia JI a,*, Yue LI, Dog-Hui WNG College of Sciece, Harbi

More information

Universal coding for classes of sources

Universal coding for classes of sources Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

More information

An optical illusion. A statistical illusion. What is Statistics? What is Statistics? An Engineer, A Physicist And A Statistician.

An optical illusion. A statistical illusion. What is Statistics? What is Statistics? An Engineer, A Physicist And A Statistician. A optical illusio Yalçı Akçay CASE 7 56 yakcay@ku.edu.tr A statistical illusio A Egieer, A Physicist Ad A Statisticia Real estate aget sellig a house to a sob customer: typical mothly icome i the eighborhood

More information

TI-83, TI-83 Plus or TI-84 for Non-Business Statistics

TI-83, TI-83 Plus or TI-84 for Non-Business Statistics TI-83, TI-83 Plu or TI-84 for No-Buie Statitic Chapter 3 Eterig Data Pre [STAT] the firt optio i already highlighted (:Edit) o you ca either pre [ENTER] or. Make ure the curor i i the lit, ot o the lit

More information

Beta-Binomial Model and Its Generalizations in the Demand Forecasting for Multiple Slow-Moving

Beta-Binomial Model and Its Generalizations in the Demand Forecasting for Multiple Slow-Moving Beta-Biomial Model ad Its Geeralizatios i the Demad Forecastig for Multiple Slow-Movig Alexadre Dolgui Idustrial Egieerig ad Computer Sciece, Ecole des Mies de Sait-tiee, Frace Maksim Pashkevich Exploratory

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

UM USER SATISFACTION SURVEY 2011. Final Report. September 2, 2011. Prepared by. ers e-research & Solutions (Macau)

UM USER SATISFACTION SURVEY 2011. Final Report. September 2, 2011. Prepared by. ers e-research & Solutions (Macau) UM USER SATISFACTION SURVEY 2011 Fial Report September 2, 2011 Prepared by ers e-research & Solutios (Macau) 1 UM User Satisfactio Survey 2011 A Collaboratio Work by Project Cosultat Dr. Agus Cheog ers

More information

THE PROBABLE ERROR OF A MEAN. Introduction

THE PROBABLE ERROR OF A MEAN. Introduction THE PROBABLE ERROR OF A MEAN By STUDENT Itroductio Ay experimet may he regarded as formig a idividual of a populatio of experimets which might he performed uder the same coditios. A series of experimets

More information

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Convention Paper 6764

Convention Paper 6764 Audio Egieerig Society Covetio Paper 6764 Preseted at the 10th Covetio 006 May 0 3 Paris, Frace This covetio paper has bee reproduced from the author's advace mauscript, without editig, correctios, or

More information

Example: Probability ($1 million in S&P 500 Index will decline by more than 20% within a

Example: Probability ($1 million in S&P 500 Index will decline by more than 20% within a Value at Risk For a give portfolio, Value-at-Risk (VAR) is defied as the umber VAR such that: Pr( Portfolio loses more tha VAR withi time period t)

More information

Systems Design Project: Indoor Location of Wireless Devices

Systems Design Project: Indoor Location of Wireless Devices Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 698-5295 Email: bcm1@cec.wustl.edu Supervised

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

More information

Data Analysis and Statistical Behaviors of Stock Market Fluctuations

Data Analysis and Statistical Behaviors of Stock Market Fluctuations 44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Simulation-based Analysis of Service Levels in Stable Production- Inventory Systems

Simulation-based Analysis of Service Levels in Stable Production- Inventory Systems Simulatio-based Aalysis of Service Levels i Stable Productio- Ivetory Systems Jayedra Vekateswara, Kaushik Margabadu#, D. Bijulal*, N. Hemachadra, Idustrial Egieerig ad Operatios Research, Idia Istitute

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

Question 2: How is a loan amortized?

Question 2: How is a loan amortized? Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

More information

Exploratory Data Analysis

Exploratory Data Analysis 1 Exploratory Data Aalysis Exploratory data aalysis is ofte the rst step i a statistical aalysis, for it helps uderstadig the mai features of the particular sample that a aalyst is usig. Itelliget descriptios

More information

RANDOM GRAPHS WITH FORBIDDEN VERTEX DEGREES

RANDOM GRAPHS WITH FORBIDDEN VERTEX DEGREES RANDOM GRAPHS WITH FORBIDDEN VERTEX DEGREES GEOFFREY GRIMMETT AND SVANTE JANSON Abstract. We study the radom graph G,λ/ coditioed o the evet that all vertex degrees lie i some give subset S of the oegative

More information

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12 WidWise Educatio T rasformig the Eergy of Wid ito Powerful Mids A Curriculum for Grades 6 12 Notice Except for educatioal use by a idividual teacher i a classroom settig this work may ot be reproduced

More information

0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% Sectio 10 Aswer Key: 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1) A simple radom sample of New Yorkers fids that 87 are

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016

NOTES ON PROBABILITY Greg Lawler Last Updated: March 21, 2016 NOTES ON PROBBILITY Greg Lawler Last Updated: March 21, 2016 Overview This is a itroductio to the mathematical foudatios of probability theory. It is iteded as a supplemet or follow-up to a graduate course

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Extreme changes in prices of electricity futures

Extreme changes in prices of electricity futures Isurace Marets ad Compaies: Aalyses ad Actuarial Computatios, Volume 2, Issue, 20 Roald Huisma (The Netherlads), Mehtap Kilic (The Netherlads) Extreme chages i prices of electricity futures Abstract The

More information

ARTICLE IN PRESS. Statistics & Probability Letters ( ) A Kolmogorov-type test for monotonicity of regression. Cecile Durot

ARTICLE IN PRESS. Statistics & Probability Letters ( ) A Kolmogorov-type test for monotonicity of regression. Cecile Durot STAPRO 66 pp: - col.fig.: il ED: MG PROD. TYPE: COM PAGN: Usha.N -- SCAN: il Statistics & Probability Letters 2 2 2 2 Abstract A Kolmogorov-type test for mootoicity of regressio Cecile Durot Laboratoire

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

Consider a category of product variants distinguished by some attribute such as color or

Consider a category of product variants distinguished by some attribute such as color or O the Relatioship Betwee Ivetory Costs ad Variety Beefits i Retail Assortmets Garrett va Ryzi Siddharth Mahaja Graduate School of Busiess, Columbia Uiversity, Uris Hall, 3022 Broadway, New York, New York

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Chapter 5: Basic Linear Regression

Chapter 5: Basic Linear Regression Chapter 5: Basic Liear Regressio 1. Why Regressio Aalysis Has Domiated Ecoometrics By ow we have focused o formig estimates ad tests for fairly simple cases ivolvig oly oe variable at a time. But the core

More information