AP Calculus BC 2003 Scoring Guidelines Form B

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "AP Calculus BC 2003 Scoring Guidelines Form B"

Transcription

1 AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet Program. Teachers may reproduce them, i whole or i part, i limited quatities for ocommercial, face-to-face teachig purposes. This permissio does ot apply to ay third-party copyrights cotaied herei. This material may ot be mass distributed, electroically or otherwise. These materials ad ay copies made of them may ot be resold, ad the copyright otices must be retaied as they appear here. These materials were produced by Educatioal Testig Service (ETS ), which develops ad admiisters the examiatios of the Advaced Placemet Program for the College Board. The College Board ad Educatioal Testig Service (ETS) are dedicated to the priciple of equal opportuity, ad their programs, services, ad employmet policies are guided by that priciple. The College Board is a atioal oprofit membership associatio whose missio is to prepare, ispire, ad coect studets to college ad opportuity. Fouded i 9, the associatio is composed of more tha, schools, colleges, uiversities, ad other educatioal orgaizatios. Each year, the College Board serves over three millio studets ad their parets,, high schools, ad,5 colleges through major programs ad services i college admissios, guidace, assessmet, fiacial aid, erollmet, ad teachig ad learig. Amog its best-kow programs are the SAT, the PSAT/NMSQT, ad the Advaced Placemet Program (AP ). The College Board is committed to the priciples of equity ad excellece, ad that commitmet is embodied i all of its programs, services, activities, ad cocers. For further iformatio, visit Copyright College Etrace Examiatio Board. All rights reserved. College Board, Advaced Placemet Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Studet Search Service, ad the acor logo are registered trademarks of the College Etrace Examiatio Board. AP Cetral is a trademark owed by the College Etrace Examiatio Board. PSAT/NMSQT is a registered trademark joitly owed by the College Etrace Examiatio Board ad the Natioal Merit Scholarship Corporatio. Educatioal Testig Service ad ETS are registered trademarks of Educatioal Testig Service. Other products ad services may be trademarks of their respective owers. For the College Board s olie home for AP professioals, visit AP Cetral at apcetral.collegeboard.com.

2 SCORING GUIDELINES (Form B) Questio Let f be the fuctio give by fx ( ) = x x, ad let be the lie y = 8 x, where is taget to the graph of f. Let R be the regio bouded by the graph of f ad the x-axis, ad let S be the regio bouded by the graph of f, the lie, ad the x-axis, as show above. (a) Show that is taget to the graph of y = f() x at the poit x =. Fid the area of S. (c) Fid the volume of the solid geerated whe R is revolved about the x-axis. (a) f ( x) = 8x x ; f () = 7 = f () = 6 7 = 9 Taget lie at x = is y = ( x ) + 9 = x + 8, which is the equatio of lie. : fids f() ad f() fids equatio of taget lie or : shows (,9) is o both the graph of f ad lie fx ( ) = at x = The lie itersects the x-axis at x = 6. Area = ()(9) ( x x ) dx = 7.96 or 7.97 OR : itegral for o-triagular regio : limits : itegrad : area of triagular regio : aswer Area = (( 8 ) ( )) x x x dx + ()(8 ) = 7.96 or 7.97 (c) Volume = ( ) x x dx = 56.8 or 9.8 : limits ad costat : : itegrad : aswer Copyright by College Etrace Examiatio Board. All rights reserved.

3 The figure above shows the graphs of the circles AP CALCULUS BC SCORING GUIDELINES (Form B) Questio x + y = ad ( x ) + y =. The graphs itersect at the poits (,) ad (, ). Let R be the shaded regio i the first quadrat bouded by the two circles ad the x-axis. (a) Set up a expressio ivolvig oe or more itegrals with respect to x that represets the area of R. Set up a expressio ivolvig oe or more itegrals with respect to y that represets the area of R. (c) The polar equatios of the circles are r = ad r = cos, respectively. Set up a expressio ivolvig oe or more itegrals with respect to the polar agle that represets the area of R. (a) Area = Area = ( ) ( x ) dx + x dx OR + x dx : itegrad for larger circle : itegrad or geometric area : for smaller circle : limits o itegral(s) Note: < > if o additio of terms Area = ( ( )) y y dy : : limits itegrad < > reversal < > algebra error i solvig for x < > add rather tha subtract < > other errors (c) Area = ( ) d + (cos ) d OR Area = ( ) (cos ) d 8 + : itegrad or geometric area for larger circle : : itegrad for smaller circle : limits o itegral(s) Note: < > if o additio of terms Copyright by College Etrace Examiatio Board. All rights reserved.

4 SCORING GUIDELINES (Form B) Questio A blood vessel is 6 millimeters (mm) log Distace with circular cross sectios of varyig diameter. x (mm) Diameter The table above gives the measuremets of the B(x) (mm) diameter of the blood vessel at selected poits alog the legth of the blood vessel, where x represets the distace from oe ed of the blood vessel ad Bx () is a twice-differetiable fuctio that represets the diameter at that poit. (a) Write a itegral expressio i terms of Bx () that represets the average radius, i mm, of the blood vessel betwee x = ad x = 6. Approximate the value of your aswer from part (a) usig the data from the table ad a midpoit Riema sum with three subitervals of equal legth. Show the computatios that lead to your aswer. 75 Bx () (c) Usig correct uits, explai the meaig of dx 5 i terms of the blood vessel. (d) Explai why there must be at least oe value x, for < x < 6, such that B ( x) =. (a) 6 Bx () dx 6 : limits ad costat : itegrad B(6) B(8) B() + + = 6 [ 6( + + )] = 6 : B(6) + B(8) + B() : aswer (c) Bx ( ) Bx ( ) is the radius, so is the area of the cross sectio at x. The expressio is the volume i mm of the blood vessel betwee 5 : volume i mm : betwee x = 5 ad x = 75 mm ad 75 mm from the ed of the vessel. (d) By the MVT, B ( c) = for some c i (6, 8) ad B ( c) = for some c i (, 6). The MVT applied to B ( x) shows that B () x = for some x i the iterval ( c c ),. : explais why there are two values of x where B( x) has the same value : explais why that meas B ( x) = for < x < 6 Copyright by College Etrace Examiatio Board. All rights reserved. Note: max / if oly explais why B ( x) = at some x i (, 6).

5 SCORING GUIDELINES (Form B) Questio A particle moves i the xy-plae so that the positio of the particle at ay time t is give by ( ) 7 x t e t e t = + ad ( ) t t y t = e e. (a) Fid the velocity vector for the particle i terms of t, ad fid the speed of the particle at time t =. Fid dy dy i terms of t, ad fid lim. dx t dx (c) Fid each value t at which the lie taget to the path of the particle is horizotal, or explai why oe exists. (d) Fid each value t at which the lie taget to the path of the particle is vertical, or explai why oe exists. 7 (a) x () t = 6e t 7e y () t = 9e + e t t t t 7t t t Velocity vector is < 6e 7 e, 9e + e > : : x( t) : y( t) : speed Speed = x() + y() = ( ) + = dy dy dt 9e + e = = dx dx 6e 7e dt t t t 7t dy : i terms of t dx : limit t t dy 9e + e 9 lim = lim = = dx t t 7t 6e 7e 6 t (c) Need y t t () t =, but 9e + e > for all t, so oe exists. : cosiders y( t) = : explais why oe exists (d) Need x () t = ad y() t. t 7t e = e t e = 6 7 t = l 6 ( ) : cosiders x( t) = : solutio Copyright by College Etrace Examiatio Board. All rights reserved. 5

6 SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the x fuctio give by gx ( ) = ftdt ( ). (a) Fid g (, ) g ( ), ad g ( ). Fid the average rate of chage of g o the iterval x. (c) For how may values c, where < c <, is g () c equal to the average rate foud i part? Explai your reasoig. (d) Fid the x-coordiate of each poit of iflectio of the graph of g o the iterval < x < 7. Justify your aswer. (a) g() = f( t) dt = ( + ) = g () = f() = g() = f() = = : : g() : g() : g() g() g() = () ftdt 7 ()() + ( + ) = = ( ) : g() g() = f( t) dt : aswer (c) There are two values of c. We eed 7 = g( c) = f( c) The graph of f itersects the lie places betwee ad. 7 y = at two : aswer of : reaso Note: / if aswer is by MVT (d) x = ad x = 5 because g = f chages from icreasig to decreasig at x =, ad from decreasig to icreasig at x = 5. : x = ad x = 5 oly : justificatio (igore discussio at x = ) Copyright by College Etrace Examiatio Board. All rights reserved. 6

7 SCORING GUIDELINES (Form B) Questio 6 The fuctio f has a Taylor series about x = that coverges to fx ( ) for all x i the iterval of ( +! ) ( ) covergece. The th derivative of f at x = is give by f ( ) = for, ad f ( ) =. (a) Write the first four terms ad the geeral term of the Taylor series for f about x =. Fid the radius of covergece for the Taylor series for f about x =. Show the work that leads to your aswer. (c) Let g be a fuctio satisfyig g ( ) = ad g ( x) = f( x) for all x. Write the first four terms ad the geeral term of the Taylor series for g about x =. (d) Does the Taylor series for g as defied i part (c) coverge at x =? Give a reaso for your aswer.!!! (a) f () = ; f () = ; f () = ; f () =!! fx ( ) = + ( x ) + ( x ) + ( x ) +!! ( + )! ( ) + + x +! = + ( x ) + ( x ) + ( x ) + + ( ) + + x + : ( f ) () : coefficiets i! first four terms : powers of ( x ) i first four terms : geeral term + ( ) + + x + lim = lim x + ( ) x + = x < whe x < The radius of covergece is. : : sets up ratio : limit : applies ratio test to coclude radius of covergece is (c) g () = ; g () = f() ; g() = f() ; g() = f() gx ( ) = + ( x ) + ( x ) + ( x ) + : first four terms : geeral term ( ) x (d) No, the Taylor series does ot coverge at x = because the geometric series oly coverges o the iterval x <. : aswer with reaso Copyright by College Etrace Examiatio Board. All rights reserved. 7

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

AP Calculus AB 2003 Scoring Guidelines Form B

AP Calculus AB 2003 Scoring Guidelines Form B AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

AP Calculus AB 2004 Free-Response Questions

AP Calculus AB 2004 Free-Response Questions AP Calculus AB 2004 Free-Response Questions The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

AP Calculus BC 2004 Scoring Guidelines

AP Calculus BC 2004 Scoring Guidelines AP Calculus BC Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

AP Calculus AB 2003 Scoring Guidelines

AP Calculus AB 2003 Scoring Guidelines AP Calculus AB Scoring Guidelines The materials included in these files are intended for use y AP teachers for course and exam preparation; permission for any other use must e sought from the Advanced

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

AP Calculus BC 2006 Free-Response Questions

AP Calculus BC 2006 Free-Response Questions AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

AP Calculus AB 2005 Free-Response Questions

AP Calculus AB 2005 Free-Response Questions AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming.

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming. COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE Richard A. Weida Lycomig College Williamsport, PA 17701 weida@lycomig.edu Abstract: Lycomig College is a small, private, liberal

More information

AP Calculus AB 2006 Scoring Guidelines

AP Calculus AB 2006 Scoring Guidelines AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

AP United States Government & Politics 2003 Scoring Commentary

AP United States Government & Politics 2003 Scoring Commentary AP United States Government & Politics 2003 Scoring Commentary The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

AP Calculus AB 2011 Scoring Guidelines

AP Calculus AB 2011 Scoring Guidelines AP Calculus AB Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 9, the

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

Sample Activity: The Least Expensive Cable

Sample Activity: The Least Expensive Cable Sample Activity: The Least Expensive Cable from the Pre-AP workshop Pre-AP : Topics for AP Vertical Teams in Mathematics For more information, see apcentral.collegeboard.com/preapworkshops. Copyright 2004

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum

More information

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12 Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

AP Calculus BC 2010 Free-Response Questions

AP Calculus BC 2010 Free-Response Questions AP Calculus BC 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded

More information

Predictive Modeling Data. in the ACT Electronic Student Record

Predictive Modeling Data. in the ACT Electronic Student Record Predictive Modelig Data i the ACT Electroic Studet Record overview Predictive Modelig Data Added to the ACT Electroic Studet Record With the release of studet records i September 2012, predictive modelig

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

AP Macroeconomics 2003 Scoring Guidelines Form B

AP Macroeconomics 2003 Scoring Guidelines Form B AP Macroeconomics 2003 Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over Mathematics/P DoE/November

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

AP Microeconomics 2003 Scoring Guidelines

AP Microeconomics 2003 Scoring Guidelines AP Microeconomics 2003 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Making training work for your business

Making training work for your business Makig traiig work for your busiess Itegratig core skills of laguage, literacy ad umeracy ito geeral workplace traiig makes sese. The iformatio i this pamphlet will help you pla for ad build a successful

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

Decomposition of Gini and the generalized entropy inequality measures. Abstract

Decomposition of Gini and the generalized entropy inequality measures. Abstract Decompositio of Gii ad the geeralized etropy iequality measures Stéphae Mussard LAMETA Uiversity of Motpellier I Fraçoise Seyte LAMETA Uiversity of Motpellier I Michel Terraza LAMETA Uiversity of Motpellier

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

AP Calculus AB 2013 Free-Response Questions

AP Calculus AB 2013 Free-Response Questions AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

AP Calculus AB 2007 Scoring Guidelines Form B

AP Calculus AB 2007 Scoring Guidelines Form B AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

A GUIDE TO LEVEL 3 VALUE ADDED IN 2013 SCHOOL AND COLLEGE PERFORMANCE TABLES

A GUIDE TO LEVEL 3 VALUE ADDED IN 2013 SCHOOL AND COLLEGE PERFORMANCE TABLES A GUIDE TO LEVEL 3 VALUE ADDED IN 2013 SCHOOL AND COLLEGE PERFORMANCE TABLES Cotets Page No. Summary Iterpretig School ad College Value Added Scores 2 What is Value Added? 3 The Learer Achievemet Tracker

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information