# Maximum Likelihood Estimators.

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio of beta distributio later, at this poit we oly eed to kow that this isi a cotiuous distributio o the iterval [0, ]. This ca be doe by typig X=betard(5,2,00,). Let us fit differet distributios by usig a distributio fittig tool dfittool. We try to fit ormal distributio ad beta distributio to this sample ad the results are displayed i figure 2.. Desity samples ~ Beta(5,2) Normal fit Beta fit Cumulative probability samples ~ Beta(5,2) Normal fit Beta fit Figure 2.: Fittig a radom sample of size 00 from Beta(5, 2). (a) Histogram of the data ad p.d.f.s of fitted ormal (solid lie) ad beta (dashed lie) distributios; (b) Empirical c.d.f. ad c.d.f.s of fitted ormal ad beta distributios. Besides the graphs, the distributio fittig tool outputs the followig iformatio: Distributio: Normal Log likelihood:

2 Domai: -If < y < If Mea: Variace: Parameter Estimate Std. Err. mu sigma Estimated covariace of parameter estimates: mu sigma mu e-020 sigma e e-005 Distributio: Beta Log likelihood: Domai: 0 < y < Mea: Variace: Parameter Estimate Std. Err. a b Estimated covariace of parameter estimates: a b a b The value Log likelihood idicates that the tool uses the maximum likelihood estimators to fit the distributio, which will be the topic of the ext few lectures. Notice the Parameter estimates - give the data dfittool estimates the ukow parameters of the distributio ad the graphs the p.d.f. or c.d.f. correspodig to these parameters. Sice the data was geerated from beta distributio, it is ot surprisig that beta distributio fit seems better tha ormal distributio fit, which is particularly clear from figure 2. (b), that compares how estimated c.d.f. fits the empirical c.d.f. Empirical c.d.f. is defied as F (x) = I(X i x) i= where I(X x) is the idicator that X i is x. I other words, F (x) is the proportio of observatios below level x. Oe ca ask several questios about this example:. How to estimate the ukow parameters of a distributio give the data from this distributio? 8

3 2. How good are these estimates, are they close to the actual true parameters? 3. Does the data come from a particular type of distributio, for example, ormal or beta distributio? I the ext few lectures we will study the first two questios ad we will assume that we kow what type of distributio the sample comes from, so we oly do ot kow the parameters of the distributio. I the cotext of the above example, we would be told that the data comes from beta distributio, but the parameters (5, 2) would be ukow. Of course, i geeral we might ot kow what kid of distributio the data comes from - we will study this type of questios later whe we look at the so called goodess-of-fit hypotheses tests. I particular, we will see graphs like 2. (b) agai whe we study the Kolmogorov-Smirov goodess-of-fit test. Example. We cosider a dataset of various body measuremets from [] (dataset ca be dowloaded from joural s website), icludig weight, height, waist girth, abdome girth, etc. First, we use Matlab fittig tool to fit weight ad waist girth of me ad wome (separately) with logormal distributio, see figure 2.2 (a) ad (b). Wikipedia article about ormal distributio gives a referece to a 932 book Problems of Relative Growth by Julia Huxley for the explaatio why the sizes of full-grow aimals are approximately log-ormal. Oe short explaatio is cosistecy betwee liear ad volume dimesios - if liear dimesios are logormal ad volume dimesios are proportioal to cube of liear dimesios the they also are logormal. Assumptio that sizes are ormal would violate this cosistecy, sice the cube of ormal is ot ormal. We observe, hovewer, that the fit of wome s waist with logormal is ot very accurate. Later i the class we will lear several statistical tests to decide if the data comes from a certai distributio or a family of distributios, but here is a preview of what s to come. Chi-squared goodess-of-fit test rejects the hypothesis that the distributio of logarithms of wome s waists is ormal: [h,p,stats]=chi2gof(log_wome_waist) h =, p = e-004 stats = chi2stat: df: 5 edges: [x9 double] O: [ ] E: [x8 double] ad so does Lilliefor s test (adjusted Kolmogorov-Smirov test): [h,p,stats]=lillietest(log_wome_waist) h =, p = 0, stats = The same tests accept the hypotheses that other variables have logormal distributio. Author s i [] suggest that we ca fit wome s waist with Gamma distributio. Sice Gamma 9

4 Cumulative probability wome s weight logormal fit wome me s weight logormal fit me Cumulative probability wome s waist logormal fit wome me s waist logormal fit me Cumulative probability wome s waist (shifted) Gamma fit ormal fit Figure 2.2: Fittig weight (upper left) ad waist girth (upper right) with logormal distributio. Lower left: fittig wome s waist with shifted Gamma ad ormal distributios. does ot have a traslatio (shift) parameter, whe we fit Gamma distributio we ca either add to it a shift parameter or istead shift all data to start at zero. I figure 2.2 (c) we fit Gamma ad, for the sake of illustratio, ormal distributio, to wome s waist sample. As we ca see, Gamma fits the data better tha logormal ad much better tha ormal. To fid the parameters of fitted Gamma distributio we use Matlab gamfit fuctio: param=gamfit(wome_waist_shift) param = Chi-squared goodess-of-fit test for a specific (fitted) Gamma distributio: [h,p,stats]=chi2gof(wome_waist_shift, 0

5 h = 0, p = , stats = chi2stat: , df: 7 accepts the hypothesis that the sample has Gamma distributio (2.87, 4.496). This test is ot accurate i some sese, which will be explaied later. Oe ca also check that Gamma distributio fits well other variables - me s waist girth, weight of me ad weight of wome. Let us cosider a family of distributios P idexed by a parameter (which could be a vector of parameters) ϕ that belogs to a set. For example, we could cosider a family of ormal distributios N(, α 2 ) i which case the parameter would be ϕ = (, α 2 ) - the mea ad variace of the distributio. Let f(x ϕ) be either a probability fuctio (i case of discrete distributio) or a probability desity fuctio (cotiuous case) of the distributio P. Suppose we are give a i.i.d. sample X,..., X with ukow distributio P from this family, i.e. parameter ϕ is ukow. A likelihood fuctio is defied by (ϕ) = f(x ϕ)... f(x ϕ). We thik of the sample X,..., X as give umbers ad we thik of as a fuctio of the parameter ϕ oly. The likelihood fuctio has a clear iterpretatio. For example, if our distributios are discrete the the probability fuctio f(x ϕ) = P (X = x) is the probability to observe a poit x ad the likelihood fuctio (ϕ) = f(x ϕ)... f(x ϕ) = P (X )... P (X ) = P (X,..., X ) is the probability to observe the sample X,..., X whe the parameters of the distributio are equal to ϕ. I the cotiuous case the likelihood fuctio (ϕ) is the probability desity fuctio of the vector (X,..., X ). Defiitio: (Maximum Likelihood Estimators.) Suppose that there exists a parameter ϕˆ that maximizes the likelihood fuctio (ϕ) o the set of possible parameters, i.e. (ϕˆ) = max (ϕ). The ϕˆ is called the Maximum Likelihood Estimator (MLE). Whe fidig the MLE it sometimes easier to maximize the log-likelihood fuctio sice (ϕ) maximize log (ϕ) maximize maximizig is equivalet to maximizig log. Log-likelihood fuctio ca be writte as log (ϕ) = log f(x i ϕ). i= Let us give several examples of computig the MLE.

6 Example. Beroulli distributio B(p). X = {0, }, P(X = ) = p, P(X = 0) = p, p [0, ]. Probability fuctio i this case is give by p, x = f(x p) = p, x = 0 = p x ( p) x. Likelihood fuctio is (p) = f(x p)f(x 2 p)... f(x p) # of s ( p) # of 0 s X +...+X = p = p ( p) (X +...+X ) ad the log-likelihood fuctio is log (p) = (X X ) log p + ( (X X )) log( p). To maximize this over p [0, ] let us fid the critical poit (log (p)) = 0, (X X ) ( (X X )) = 0. p p Solvig this for p gives, X X p = = X ad, therefore, the proportio of successes pˆ = X i the sample is the MLEstimator of the ukow true probability of success, which is a very atural ad ituitive estimator. For example, by law of large umbers, we kow that X EX = p i probability (we will recall this defiitio i the ext lecture), which meas that our estimate will approximate the ukow parameter p well whe we get more ad more data. Remark. I each example, oce we compute the estimate of parameters, we ca try to prove directly, usig the explicit form of the estimate, that it approximates well the ukow parameters, as we did i Example. However, i the ext lecture we will describe i a geeral settig that MLE has good properties. Example 2. Normal distributio N(, α 2 ). The p.d.f. of ormal distributio is ad, therefore, likelihood fuctio is (X ) f(x (, α 2 )) = 2α e. (, α 2 ) = e (X i ) α i= 2

7 ad log-likelihood fuctio is log (, α 2 ) = (X i ) 2 log log α 2 2α 2 i= d (X i ) 2 = 2 (X i ) = 0 log log α (X i X ) (X i X ) 2 = 0 α α 3 αˆ2 = (X X ) 2 i. The ormal distributio fit i figure 2. correspods to these parameters (ˆ, αˆ2). Exercise. Geerate a ormal sample i Matlab ad fit it with a ormal distributio usig dfittool. The plot a p.d.f. or c.d.f. correspodig to MLE above ad compare this with dfittool. Let us give oe more example of MLE. Uiform distributio U[0, ϕ] o the iterval [0, ϕ]. This distributio has p.d.f., 0 x ϕ, f(x ϕ) = 0, otherwise. = log log α (X i ) α 2 We wat to maximize the log-likelihood with respect to < < ad α 2 > 0. First, obviously, for ay α we eed to miimize (X i ) 2 over. The critical poit coditio is d i= i= ad solvig this for we get that ˆ = X. We ca plug this estimate i the log-likelihood ad it remais to maximize over α. The critical poit coditio reads, 2α 2 i= ad solvig this for α we obtai that the MLE of α 2 is i= i= The likelihood fuctio (ϕ) = f(x i ϕ) = i= = ϕ I(X,..., X [0, ϕ]) ϕ I(max(X,..., X ) ϕ). 3

8 Here the idicator fuctio I(A) equals to if evet A happes ad 0 otherwise. What the idicator above meas is that the likelihood will be equal to 0 if at least oe of the factors is 0 ad this will happe if at least oe observatio X i will fall outside of the allowed iterval [0, ϕ]. Aother way to say it is that the maximum amog observatios will exceed ϕ, i.e. ad (ϕ) = 0 if ϕ < max(x,..., X ), (ϕ) = if ϕ max(x,..., X ). ϕ Therefore, lookig at the figure 2.3 we see that ϕˆ = max(x,..., X ) is the MLE (ϕ) PSfrag replacemets max(x,..., X ) ϕ Figure 2.3: MLE for the uiform distributio. Sometimes it is ot so easy to fid the maximum of the likelihood fuctio as i the examples above ad oe might have to do it umerically. Also, MLE does ot always exist. Here is a example: let us cosider uiform distributio U[0, ϕ) ad defie the desity by, 0 x < ϕ, f(x ϕ) = 0, otherwise. The differece is that we excluded the poit ϕ by settig f(ϕ ϕ) = 0. The the likelihood fuctio is ϕ i= (ϕ) = f(x i ϕ) = I(max(X,..., X ) < ϕ) 4

9 ad the maximum at the poit ϕˆ = max(x,..., X ) is ot achieved. Of course, this is a artificial example that shows that sometimes oe eeds to be careful. Refereces: [] Grete Heiz, Louis J. Peterso, Roger W. Johso, Carter J. Kerk, (2003) Explorig Relatioships i Body Dimesios. Joural of Statistics Educatio, Volume, Number 2. 5

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Overview of some probability distributions.

Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

### University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

### Sampling Distribution And Central Limit Theorem

() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,

### Chapter 14 Nonparametric Statistics

Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

### Normal Distribution.

Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

### Lesson 17 Pearson s Correlation Coefficient

Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

### One-sample test of proportions

Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

### 1. C. The formula for the confidence interval for a population mean is: x t, which was

s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

### 1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

### CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

### 5: Introduction to Estimation

5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

### Hypothesis testing. Null and alternative hypotheses

Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

### Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

### Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

### Confidence Intervals for One Mean

Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

### Lecture 4: Cheeger s Inequality

Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

### Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

### Math C067 Sampling Distributions

Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### , a Wishart distribution with n -1 degrees of freedom and scale matrix.

UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

### Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Discrete distributions: (e.g., yes/no; above normal, normal, below normal)

6 Parametric (theoretical) probability distributios. (Wilks, Ch. 4) Note: parametric: assume a theoretical distributio (e.g., Gauss) No-parametric: o assumptio made about the distributio Advatages of assumig

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

### Descriptive Statistics

Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

### Lesson 15 ANOVA (analysis of variance)

Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

### GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

### Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

### Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### BASIC STATISTICS. f(x 1,x 2,..., x n )=f(x 1 )f(x 2 ) f(x n )= f(x i ) (1)

BASIC STATISTICS. SAMPLES, RANDOM SAMPLING AND SAMPLE STATISTICS.. Radom Sample. The radom variables X,X 2,..., X are called a radom sample of size from the populatio f(x if X,X 2,..., X are mutually idepedet

### Inference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval

Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT - Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio

### Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

### Chapter 7: Confidence Interval and Sample Size

Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

### Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

### Confidence Intervals

Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

### Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

### MEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)

MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:

### 1 The Gaussian channel

ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

### 15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

### The Stable Marriage Problem

The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

### Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

### A probabilistic proof of a binomial identity

A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

### A gentle introduction to Expectation Maximization

A getle itroductio to Expectatio Maximizatio Mark Johso Brow Uiversity November 2009 1 / 15 Outlie What is Expectatio Maximizatio? Mixture models ad clusterig EM for setece topic modelig 2 / 15 Why Expectatio

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

### UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

### Unit 8: Inference for Proportions. Chapters 8 & 9 in IPS

Uit 8: Iferece for Proortios Chaters 8 & 9 i IPS Lecture Outlie Iferece for a Proortio (oe samle) Iferece for Two Proortios (two samles) Cotigecy Tables ad the χ test Iferece for Proortios IPS, Chater

### Determining the sample size

Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### THE TWO-VARIABLE LINEAR REGRESSION MODEL

THE TWO-VARIABLE LINEAR REGRESSION MODEL Herma J. Bieres Pesylvaia State Uiversity April 30, 202. Itroductio Suppose you are a ecoomics or busiess maor i a college close to the beach i the souther part

### Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

### Statistical inference: example 1. Inferential Statistics

Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

### Confidence intervals and hypothesis tests

Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate

### LECTURE 13: Cross-validation

LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### Now here is the important step

LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

### Hypergeometric Distributions

7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

### FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

### Mathematical goals. Starting points. Materials required. Time needed

Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

### FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

### AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

### Mann-Whitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)

No-Parametric ivariate Statistics: Wilcoxo-Ma-Whitey 2 Sample Test 1 Ma-Whitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo-) Ma-Whitey (WMW) test is the o-parametric equivalet of a pooled

### PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

### Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

### Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### Modified Line Search Method for Global Optimization

Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

### A Test of Normality. 1 n S 2 3. n 1. Now introduce two new statistics. The sample skewness is defined as:

A Test of Normality Textbook Referece: Chapter. (eighth editio, pages 59 ; seveth editio, pages 6 6). The calculatio of p values for hypothesis testig typically is based o the assumptio that the populatio

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### Practice Problems for Test 3

Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

### Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

### Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### 3 Basic Definitions of Probability Theory

3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

### Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The