SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

Size: px
Start display at page:

Download "SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx"

Transcription

1 SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x of the iterval [ 3, 0]. Observe that for all k,,..., 3}, if x + : x k x x k } x k k + k 5 +, ad similarly sup x + : x k x x k } 5 + k. Thus, lettig f x x +, L f, P 3 k k 3 3, x 3 0} Similarly, U f, P 3 k 5 + k Thus, 6 3 L f, P L f U f U f, P By the Order Limit Theorem ad the algebraic limit theorem with, we have 6 L f U f 6, so L f U f 0 3 x + dx 6.

2 REAL ANALYSIS I FALL 006 b 3 x dx Cosider the partitio P x 0, x +, x +,..., x k + k,..., x 3 + 3, x 3 } of the iterval [, ]. Observe that 3 x x, so the fuctio f x 3 x is decreasig for x 0 ad icreasig for x 0. The, for all k,,..., 3}, sup } 3 x 3 + : x k x x k k if k 3 + k if + k 3, ad if } 3 x 3 + : x k x x k if k k 3 + k if + k 3 Thus, L f, P k k 3 + k k 3 k + 3 k+ 3 k Similarly, U f, P k k 3 + k k + 4 k 3 k k+ + 4 k 3 k Thus, k k 3 k k L f, P L f U f U f, P 6 5. By the Order Limit Theorem ad the algebraic limit theorem with, we have

3 6 L f U f 6, so L f U f c x dx 3 Cosider the partitio SAMPLE QUESTIONS FOR FINAL EXAM 3 3 x dx 6. P x 0 3, x 3 +, x 3 +,......, x , x 4 } of the iterval [ 3, ]. Lettig ψ x x, observe that xk if k 3 because x is decreasig here if ψ x : x [x k, x k ]} x k if k > 3 because x is icreasig here 3 + k if k k. if k > 3 Thus, L ψ, P Note that 3 k 3 k 3 + k + 6 k + 4 k k3+ k 4 k3 4 k3+ 6 k 3 + k k k 4 4 7, k 3 k k k3+ k. so L ψ, P Similarly, 3 + k sup ψ x : x [x k, x k ]} if k k if k > 3,

4 4 REAL ANALYSIS I FALL 006 so ad U ψ, P 4 k3+ 3 k 3 k 3 + k + 6 k k 4 k k 3 k k 4 k3+ 4 k k 6 + k k3+ k, which implies 7 +, U ψ, P Sice L ψ, P L ψ U ψ U ψ, P, we have L ψ U ψ for all N, so that we ca use the order limit theorem as to coclude that the fuctio ψ is itegrable ad that L ψ U ψ 3 x dx 0. 5 Usig the defiitio of Riema itegral, fid ψ x 0 if x 3 7 if x 3 ψ x dx if it exists, if For k N, cosider the partitio P k,, +, } of the iterval [, ]. The 3 k 3 k [ if ψ x : x 3 k, 3 + ]} 0, ad k [ sup ψ x : x 3 k, 3 + ]} 7; k the ifima ad suprema of ψ over the other itervals are zero. Thus, L f, P k U f, P k k k. Sice L f, P k L f U f U f, P k, we have 0 L f U f 4 k

5 SAMPLE QUESTIONS FOR FINAL EXAM 5 for all k N. Usig the order limit theorem as k, we have that L f U f ψ x dx 0. x 6 Prove usig the defiitio that lim x+3. x 3 x Proof: For ay ε > 0, let δ mi ε, } > 0. If 0 < x 3 < δ, the < x < 3 ad x 3 < ε, which implies x x 3 < ε, so that x x 3 x x < ε, or x x + 3 x < ε. 7 Usig the defiitio, prove that each fuctio below is cotiuous o its domai. a g x x+ Proof: For ay ε > 0, if c, let δ mi ε c + 4, c + } > 0. If 4 x c < δ, the 4 c + < x c < c +, so 4 c c + < x < c + c +, or c + c + < x + < c + + c +, so that x + > c + > 0, or c + < x + We also have that x c < δ implies c x < ε 4 c +, which implies c x < ε x + c +, so that c x x + c + < ε, or x + c + < ε. Thus, g is cotiuous at ay c such that c. b h x 4x + 3 Proof: Let c be ay elemet of [ 3,, the domai of h. 4 Case : If c 3, the for ay ε > 0, let δ ε > 0. If x c 4 4 x < δ ad x 3, the 4 4 x < ε, so that 4x + 3 h x h 4 3 < ε. Thus, h is cotiuous at 3 4.

6 6 REAL ANALYSIS I FALL 006 Case : If c > 3, the for ay ε > 0, if δ mi ε c + 3, 3 4c + 3} > 0 ad if 6 x c < δ, the 4x x c c > 4 3 4c c 6 4c + 3, 4 so that 4c + 3 < 4x + 3. Further, agai if x c < δ, The 4 x c < ε 3 4c + 3, so that 4x 4x 4c < ε c + 3, or 4x 4x + 3 4c + 3 < ε c x + 3 4c + 3 4x c + 3 < ε, or 4x + 3 4c + 3 < ε. Thus, h is cotiuous at c. 8 Prove or disprove: If φ : [0, ] R is cotiuous, ad if x is a Cauchy sequece such that x [0, ] for all N, the φ x is Cauchy. True: same proof as 0b below. 9 Usig the defiito, prove that the derivative of x is. x Observe that if x > 0, y x lim y x y x lim y x y + x x by the algebraic limit theorem. 0 Prove that the derivative of is, usig the defiitio. x x Proof: Let f x. If x ad y are i the domai of f, that is x, y R \ 0}, the x y x y x x y yx y x yx. We may ow take the limit as y x of the expressio above, usig the algebraic limit theorem ad the cotiuity of g t algebraic cotiuity theorem. Thus, the limit tx exists ad is f x lim y x y x y x lim y x yx x x x. Assumig Rolle s Theorem, prove the Mea Value Theorem. Hit: Apply Rolle s Theorem to the fuctio g x f x fb fa x. b a Determie if the each series below coverges or diverges, ad prove your aswer.

7 SAMPLE QUESTIONS FOR FINAL EXAM 7 a 3 Observe that for, 4, so that 3 4, or 4 3. Thus, for, Sice 0 3 3/ / 4 3 coverges by the p-series test p 3 >, 3/ 3 coverges by the direct compariso test. b Observe that this series is alteratig. Sice 0 < < for all N, sice +3+ lim 0, the Squeeze Theorem implies that lim 0. Next, observe that +3+ for all 4, , so the absolute values of the terms of the series are decreasig. By the alteratig series test, the series coverges. 3 True or False. Prove your respose you may refer to theorems. a If φ : 0, ] R is cotiuous, ad if x is a Cauchy sequece such that x 0, ] for all N, the φ x is Cauchy. False: For example, let φ x which is cotiuous o 0, ] by the algebraic x properties of cotiuous fuctios, ad cosider the sequece x defied by x 0, ]. The x coverges to 0 ad is thus Cauchy, but φ x, ad so h x diverges ad is therefore ot Cauchy. b If φ : [0, ] R is cotiuous, ad if x is a Cauchy sequece such that x 0, for all N, the φ x is Cauchy. True. Sice [0, ] is closed, x coverges to a poit x [0, ]. The, sice φ is cotiuous, φ x coverges to φ x. Thus, φ x is Cauchy, sice it is a coverget sequece. c Every bouded fuctio o [a, b] is cotiuous o [a, b]. False: For example, let a 0, b, ad cosider the fuctio q : [0, ] R defied by if x q x 0 otherwise The q x for all x [0, ], so q is bouded. However, q is ot cotiuous at ; eve though is a limit poit of [0, ], lim q x 0 q 0. x

8 8 REAL ANALYSIS I FALL 006 d Every bouded fuctio o [a, b] is itegrable o [a, b]. False: For example, if if x Q g x 0 otherwise the g is bouded 0 g x x, but each upper sum is b a, ad each lower sum is zero, so the fuctio g is ot Riema itegrable. e If lim x x is a coverget sequece, the the set x N} x} is compact. True: Sice x coverges, the set x N} is bouded, say x B for all N. The every elemet of S x N} x} is bouded i absolute value by max B, x }. Because lim x x, every eighborhood of x cotais all but fiitely may terms of the sequece x. Thus, if y R x}, the if we let ε y x, V ε y V ε x, so that V ε y y} ca cotai at most a fiite umber of terms x,..., x k } of the sequece. Thus, if ε mi ε, y x,..., y x k } > 0, we have that V eε y y}. Thus, y is ot a limit poit of S. We have show that o elemet other tha x is a limit poit of S, so S is closed. Sice S is closed ad bouded, S is compact, by the Heie-Borel Theorem. f Ay bouded set that cotais all of its limit poits is compact. True: Sice such a set would be closed ad bouded, the Heie-Borel Theorem implies that the set is compact. g Ay set that cotais all of its limit poits is compact. False: For example, N is closed but ot bouded, ad so it cotais all of its limit poits there are oe but is ot compact. h The set x R x 3 3x 6 + 7x 7x 00} is closed. True: Call this set A; observe that A f, 00], where f is the fuctio defied by f x x 3 3x 6 +7x 7x. The fuctio f is cotiuous because it is a polyomial, a sum of products of j x x ad costats, ad the algebraic properties of cotiuous fuctios the imply f is cotiuous. The set, 00] is closed, ad its complemet 00, is ope. Observe that B R \ Af 00, is ope because it is the cotiuous iverse image of a ope set. Thus, A R \ B is closed. i If f is cotiuous o,,, the it is also cotiuous o, ] [,. False: Let if x [, ] f x 0 otherwise The fuctio is costat ad thus cotiuous o,,, but f is ot cotiuous at or at. For istace, the defiitio of cotiuous does ot hold at for ε, because for ay δ > 0, f x f > for x δ, eve though x δ < δ. j If the fuctio φ : R R satisfies the itermediate value property, the it is cotiuous. False: For example, let si φ x x if x 0 0 if x 0 The φ is ot cotiuous at 0, because φ δ, δ [, ] for every δ > 0 so the defiitio of cotiuous caot hold at 0 with ε. O the other had, φ satisfies the itermediate value property IVP. Sice φ is cotiuous away from 0,

9 SAMPLE QUESTIONS FOR FINAL EXAM 9 it automatically satisfies the IVP for itervals cotaied i R \ 0}. Next, if [a, b] is ay iterval cotaiig zero, φ [a, b] φ a, b [, ], so there are a ifiite umber of poits x i a, b such that φ x is ay possible itermediate value. k If f is oegative ad itegrable o [0, ] ad if f 0, the f x 0 0 for every x 0,. False: Let f x if x 0 otherwise The this fuctio is oegative, ad it is ot idetically zero o 0,. However, observe that every lower sum will be zero for this fuctio sice every iterval cotais poits x where f x 0. Next, for k >, cosider the partitio P k defied by P k 0,, + },. k k The U f, P k k. k k k Sice L f, P k L f U f U f, P k, ad sice lim U f, P k 0 ad k L f, P k 0, by the algebraic limit theorem, we have 0 L f U f 0, so that f is itegrable ad f 0. 0 l If f ad g are two itegrable fuctios o [, ], the f g f g. True: f g f g f g f g. m If A is bouded, the if A is a limit poit of A. False: For example, the set A, } has o limit poits, but if A. The fuctio 0 if t is ratioal Bubba t t if t is irratioal is cotiuous at 0. True: Give ε > 0, if t 0 < δ ε, the Bubba t Bubba 0 Bubba t 0 0 if t is ratioal t if t is irratioal < ε. o If b f x dx 0, f is cotiuous, ad f x 0 for all x [a, b], the a f x 0 for all x [a, b]. True: Suppose that f x is ot always 0; that is, suppose that f c < 0 for some c [a, b]. The, sice f is cotiuous, lettig ε fc > 0, there exists δ > 0 such

10 0 REAL ANALYSIS I FALL 006 that x c < δ ad x [a, b] implies that f x f c < fc, so f x f c < fc or f x < fc. Thus, b 0 f x dx f x dx + f x dx f x dx a [a,b] I c I c I c f c dx f c δ < 0, I c where I c [a, b] is a iterval of legth δ that icludes c as a edpoit. This is a cotradictio, so f x 0 for all x [a, b]. p Every real umber is a limit poit of the set of real umbers. True, sice every real umber x is a limit of the sequece a defied by a x + for all N. 4 Suppose that F is a differetiable fuctio o R, ad suppose that F 0, F, ad F 4 0. Prove that there is a real umber x 0, 4 such that F x. 3 Proof: By the Mea Value Theorem, there exists c 0, such that F F F 0 c, ad also there exists b, 4 such that F F 4 F b. By the Darboux Theorem, F satisfies the Itermediate Value Property, so sice c < b ad F c < 3 < F b, there exists x c, b 0, 4 such that F x. 3 5 Let p : [0, ] R be a cotiuous fuctio. Which of the followig must be true? Justify your resposes. a There exists a costat a > 0 such that p x p y < a for all x, y [0, ]. True: By the Extreme Value Theorem, a cotious fuctio achieves its maximum ad miimum o a compact set, so sice [0, ] is compact, i particular p is bouded, say p t M for all t [0, ]. The p x p y p x + p y M. So a M + works. b There exists a costat b > 0 such that p x p y < for all x, y [0, ] that satisfy x y < b. True: Sice a cotiuous fuctio o a compact set is uiformly cotiuous, p is uiformly cotiuous o [0, ], which implies the statemet above with ε > 0. c There exists a costat c > 0 such that p x p y < c x y for all x, y [0, ]. p x p y False: You ca costruct a fuctio that is cotiuous o [0, ] so that x y is ubouded. For example, let x si p x x if 0 < x 0 if x 0 Observe that p is cotiuous o 0, ], sice the fuctios defied by g x si x, g x x are cotiuous, ad by the fact that the compositios ad algebraic combiatios of cotiuous fuctios are cotiuous. Observe that 0 is a limit poit of [0, ], ad sice for x > 0, x x si x x ad lim x 0, the Squeeze + Theorem implies that lim x si 0. x 0 + x x 0

11 SAMPLE QUESTIONS FOR FINAL EXAM Thus, p is cotiuous at 0 as well. O the other had, for ay N, we may let x 4 + π, y, ad so x, y [0, ], but 4 π 4 + π p x p y 4 + π si 4 π 4 π si x y 4 + π 4 π 4 + π + 4 π 4 π 4 + π , which is ubouded as. 6 What facts are impicitly used to make the followig deductios? x + y < 4x + y x + > : assumig x + ad 4x + are ozero, 4x + assumig x + ad 4x + are the same sig, ad usig y the fact that r x is a strictly decreasig fuctio. x y > x + 4x + > : assumig first that 4x + y x + ad are both positive ad usig the fact 4x + that s x x is strictly icreasig o 0, ; the assumig that is greater tha ad usig 4x + the fact that x > x if x >. 7 Cosider the fuctio g defied by 0 if x 0 g x x cos x if x [ π, 0 0, π] Is this fuctio bouded? Is this fuctio cotiuous at zero?... differetiable at zero?... Is g x cotious at zero? Provide justificatio. Aswer: The fuctio g is bouded, because g x x π for all x i the domai of x cos x 0 g. If ε > 0, ad if x < δ ε, the x 0 x < ε. Thus, g is differetiable x at zero with g 0 0, ad as a result g is also cotiuous at zero. Observe that by the algebraic properties of derivatives, if x 0, g is differetiable at x, ad g x x cos x x x si 3 x x cos x x x si.

12 REAL ANALYSIS I FALL 006 Observe that g π + π ad x π π π + π cos + π π + π π /, + π si π + π π + π approaches zero ad π / decreases without boud as icreases, so lim g x. We coclude by the sequetial criterio that g x has o limit as x 0. Thus, g is ot cotious at 0. 8 Cosider the fuctio if t is ratioal G t e t if t is irratioal Fid the set S of real umbers at which G is cotiuous. Justify your respose. Solutio: G is cotiuous oly at 0. Observe that sice 0 G t e t, ad sice lim e t 0, the Squeeze Theorem implies that lim G t 0. Thus t 0 t 0 lim G t 0, so that lim G t G 0, which implies that G is cotiuous at t 0 t 0 0. O the other had, if t 0, the for ε et > 0 ad for ay δ > 0, by the desity of Q i R ad of R Q i R, there are irratioal umbers x ad ratioal umbers y such that x t < δ ad y t < δ so that max G x G t, G y G t } mi e t, e x, e y }. The latter quatity is strictly greater tha ε et if δ is sufficietly small, showig that G is ot cotiuous at t. 9 Suppose that f is a sequece of bouded, real-valued fuctios o R. If 3 f k+ x f k x for all x R ad all k N, prove that f x coverges absolutely ad uiformly o R. Proof: Note: Ratio Test does ot work, because you do ot kow that lim f k+x f k x exists. Plus it oly gives you poitwise covergece. Observe that f x f 3 x, ad i geeral if f k x f 3 k x, the f k+ x f 3 k x f 3 k x. By iductio, f x 3 f x for all, ad the equatio is also valid for. Sice f is bouded o R, there exists M > 0 such that f x M for all x R, so that f x 3 M for all x R. Sice 3 M is a coverget geometric series, the Weierstrass M-test implies that f x coverges absolutely ad uiformly o R. 0 Prove that the Taylor series for f x si x that is cetered at zero coverges to si x at each x R.

13 Proof: If p k x SAMPLE QUESTIONS FOR FINAL EXAM 3 k 0 f 0! x is the k th partial sum of the Taylor series of si x, the Lagrage Remaider Theorem implies that for each x R, si x p x f + c x +, +! where c is a umber betwee 0 ad x. Observe that sice d si x cos x, d cos x dx dx si x, si x, ad cos x, we have that f + t for all t R. The 0 si x p x f + c +! x+ x + +!. Next, for fixed x R, cosider the series x + x + x + +!. Observe that for ay +! +! x +, which has a limit of zero as. By the ratio test, the series coverges, so by the divergece criterio for series, lim iequality above, + x +! 0, so by the Squeeze Theorem ad the lim si x p x 0, so the Taylor series for si x coverges to si x for all x R. Prove usig basic priciples that a sequece of cotiuous fuctios that coverges uiformly coverges to a cotiuous fuctio. Proof: Suppose f is a sequece of cotiuous fuctios that coverges uiformly to a fuctio f o A R. Let c be ay elemet of A. By the defiitio of uiform covergece, give ay ε > 0, we may choose N N such that for all N, f x f x < ε 3 for all x A. Next, for that specific N, the cotiuity of f N implies that we may choose δ > 0 so that if x A ad x c < δ the f N x f N c < ε. The if x c < δ, we 3 have f x f c f x f N x + f N x f N c + f N c f c f x f N x + f N x f N c + f N c f c < ε 3 + ε 3 + ε 3 ε. Thus f is cotiuous at c. Give a example of a sequece of cotiuous fuctios that coverges but does ot coverge to a cotious fuctio. Justify your respose. For each N, let α : [0, ] R be defied by α x x ; all of these fuctios are cotiuous by the algebraic cotiuity theorem. The let β x lim α x 0 if 0 x < if x Observe that lim β x 0 β, so β is ot cotiuous at. x 3 Let B be a bouded, oempty set of real umbers, ad let b be the least upper boud of B. If b is ot a elemet of B, which of the followig is ecessarily true? Justify your resposes. a B is closed. False: for example, if B 0,, b / B. b B is ot ope. False: see above. c b is a limit poit of B.

14 4 REAL ANALYSIS I FALL 006 True. By the sup lemma, give ay ε > 0, there is a x B such that b ε < x b, but sice b / B we also have b ε < x < b. Thus, every ε-eighborhood of b cotais a poit x B b} B; thus, b is a limit poit of B. d No sequece i B coverges to b. False. By part c, b is a limit poit of B, so there exists a sequece of poits i B b} B that coverges to b. e There is a ope iterval cotaiig b that cotais o poits of B. False. By part c, b is a limit poit of B. Every ope iterval cotaiig b is a ope set, so there exists ε > 0 so that V ε b is a subset of that iterval. But every such V ε b cotais a poit of B b} B, so the ope iterval does as well. 4 Prove that every oempty ope set i R is a uio of ope itervals. Proof: If A is a oempty ope subset of R, the for every x A, there is a ε > 0 such that V ε x A. The cosider B V ε x. x A,V εx A The otatio above implies that the uio is take over all possible x A ad all possible ε > 0 such that V ε x A. The B is a uio of ope itervals, ad y B, the y V ε x A for some ε > 0 ad some x A, so y A. Next, if y A, there exists ε > 0 such that y V ε y A, so y B. Thus, A B is a uio of itervals. 5 Assumig that f ad g are real-valued fuctios o R, egate the followig statemet: For each s R, there exists r R such that if f r > 0, the g r > 0. Negatio: There exists s R such that for all r R such that f r > 0, we have g r 0. φx 6 Suppose that φ : R R is a fuctio such that lim x 0 x is a real umber L ad φ 0 0. Which of the followig are ecessarily true? Justify your resposes. a φ is differetiable at 0. True: defiitio of the derivative: φ φ x φ 0 0 lim L. x 0 x 0 b L 0. False: For example, if φ x x for all x R, the φ 0 L. c lim φ x 0. x 0 True: Differetiable implies cotiuous at zero, so sice 0 is a limit poit of the domai, lim φ x φ 0 0. x 0 7 Provide a defiitio for the statemet lim f x. x c lim f x, the lim x c x c f x 0. The prove that if The statemet lim f x meas that give M > 0, δ > 0 such that 0 < x c < x c δ ad x domai of f implies f x M. If this is true, the, give ε > 0, choose N N such that < ε. The choose δ as above with M N. The 0 < x c < δ N ad x domai of f \ 0} implies that 0 fx < ε. Thus, lim N x c f x 0. 8 Give a example of a fuctio α : R R that is uiformly cotiuous ad a example of a fuctio β : R R that is ot uiformly cotiuous. Solutio: For example, let α t t. The, give ay ε > 0, if t x < δ ε, the α t α x t x < ε. Thus α is uiformly cotiuous.

15 SAMPLE QUESTIONS FOR FINAL EXAM 5 Next, let β x x. Observe that for every δ > 0, there exists such that δ >, or δ >. The + δ < δ, but β + δ β + δ δ + 4 δ >, so the defiitio of uiformly cotiuous does ot hold for ay ε <. 9 Be able to prove the product ad quotiet rules. OK, I m able. 30 Prove that if f is differetiable o a iterval with f x o that iterval, the f ca have at most oe fixed poit. Note: a fixed poit of f is a umber x such that f x x. Proof: Cosider the fuctio h x f x x. The by hypothesis, h is the sum of differetiable fuctios ad is thus differetiable o the iterval, ad h x 0 o that iterval. Suppose that h a 0 ad h b 0 for some a ad b i the iterval ie both a ad b are fixed by f. The, by Rolle s Theorem, if a b, the there exists c betwee x ad y such that h c 0, which is a cotradictio. Thus, there is at most oe fixed poit for f o that iterval.

Uniform convergence and power series

Uniform convergence and power series Uiform covergece ad power series Review of what we already kow about power series A power series cetered at a R is a expressio of the form c (x a) The umbers c are called the coefficiets of the power series

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Math 230a Homework 4

Math 230a Homework 4 Math 30a Homework 4 Erik Lewis December 0, 006 Rudi. Prove that the covergece of {s } implies the covergece of { s }. Is the coverse true? Proof: Suppose {s } coverges to s. So we kow that s s < ɛ. We

More information

Solutions for problems in the 9 th International Mathematics Competition for University Students

Solutions for problems in the 9 th International Mathematics Competition for University Students Solutios for problems i the 9 th Iteratioal Mathematics Competitio for Uiversity Studets Warsaw, July 9 - July 25, 2002 First Day Problem. A stadard parabola is the graph of a quadratic polyomial y = x

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

A SHORT SUMMARY OF SEQUENCES AND SERIES. by John Alexopoulos

A SHORT SUMMARY OF SEQUENCES AND SERIES. by John Alexopoulos A SHORT SUMMARY OF SEQUENCES AND SERIES by Joh Alexopoulos Last updated o October 2 st, 2005 Cotets Sequeces 3. Defiitios, otatio ad examples...................................... 3.2 More defiitios ad

More information

Lecture 25/26 : Integral Test for p-series and The Comparison test

Lecture 25/26 : Integral Test for p-series and The Comparison test Lecture 5/6 : Itegral Test for p-series ad The Compariso test I this sectio, we show how to use the itegral test to decide whether a series of the form (where p =a a ) coverges or diverges by comparig

More information

HOMEWORK P91. Ex P91. Ex

HOMEWORK P91. Ex P91. Ex HOMEWORK 4 SHUANGLIN SHAO 1. P91. Ex. 3.3.3 Proof. If f is cotiuous o [a, b], so is f. By the extreme value theorem, f will attai its maximum at [a, b]. sup x [a,b] f(x) = max x [a,b] f(x). Thus it is

More information

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutios Math 7, Sprig 200 Please sed correctios to herya@math.staford.edu 7.4. Let {a } be a sequece with positive terms such that lim a = L > 0. Let x be a real umber. Prove that lim a x =

More information

Section 10.3: The Integral and Comparison Tests. ne n2. dx = lim 1 x dx. = lim 1 N 2 e x2. N 2 e N ] 2e = 1 2e. = lim 1

Section 10.3: The Integral and Comparison Tests. ne n2. dx = lim 1 x dx. = lim 1 N 2 e x2. N 2 e N ] 2e = 1 2e. = lim 1 Sectio 0.3: The Itegral ad Compariso Tests Theorem: (The Itegral Test) Suppose that a = f(), where f is a positive, cotiuous, decreasig fuctio o [, ). The the series a coverges if ad oly if the improper

More information

To introduce the concept of uniformity, and in particular uniform convergence and continuity, and show why compactness is critical for uniformity.

To introduce the concept of uniformity, and in particular uniform convergence and continuity, and show why compactness is critical for uniformity. Sectio 5.5 1 Uiform Cotiuity Sectio 5.5 Uiformity ity ad Compactess Purpose of Sectio To itroduce the cocept of uiformity, ad i particular uiform covergece ad cotiuity, ad show why compactess is critical

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Math 318 Exam #1 Solutions

Math 318 Exam #1 Solutions Math 318 Exam #1 Solutios 1 (a) Suppose (f ) ad (g ) are two sequeces of fuctios that coverge uiformly o a subset A R Is it true that the sequece (f g ) coverges uiformly o A? Prove or give a couterexample

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

Math 211 Solutions To Sample Exam 2 Problems

Math 211 Solutions To Sample Exam 2 Problems Solutios to Sample Exam Problems Math Math Solutios To Sample Exam Problems. Solve each of the followig differetial equatios / iitial value problems. (a) (+x) dy dx 4y (b) y dy dx x x 6 Solutio: (a) Usig

More information

Exam-3 Solutions, Math n + 2. Solution: First note that this series is a telescoping series. Let S n be the nth partial sum of the series.

Exam-3 Solutions, Math n + 2. Solution: First note that this series is a telescoping series. Let S n be the nth partial sum of the series. Exam-3 Solutios, Math 0560. Fid the sum of the followig series. [ l( + + ] l( + + 3 Solutio: First ote that this series is a telescopig series. Let S be the th partial sum of the series. S l 3 l 3 4 S

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

SERIES AND ERROR n 1. for all n.

SERIES AND ERROR n 1. for all n. SERIES AND ERROR The AP Calculus BC course descriptio icludes two kids of error bouds: Alteratig series with error boud Lagrage error boud for Taylor polyomials Both types of error have bee tested o the

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Midterm Exam I - Review

Midterm Exam I - Review Midterm Exam I - Review Chapter 8 ad Appedices B,H The followig is a list of importat cocepts will be tested o Midterm Exam. This is ot a complete list of the material that you should kow for the course,

More information

MATH 140A - HW 3 SOLUTIONS

MATH 140A - HW 3 SOLUTIONS MATH 40A - HW 3 SOLUTIONS Problem (WR Ch 2 #2). Let K R cosist of 0 ad the umbers / for = 23... Prove that K is compact directly from the defiitio (without usig the Heie-Borel theorem). Solutio. Let {G

More information

Lecture 23 : Sequences

Lecture 23 : Sequences A Sequece is a list of umbers writte i order. Lecture 23 : Sequeces a a 2 a 3... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term a 2 = 2

More information

Solutions to Tutorial 5 (Week 6)

Solutions to Tutorial 5 (Week 6) The Uiversity of Sydey School of Mathematics ad Statistics Solutios to Tutorial 5 (Wee 6 MATH2962: Real ad Complex Aalysis (Advaced Semester, 206 Web Page: http://www.maths.usyd.edu.au/u/ug/im/math2962/

More information

n a n = L, then lim, lim = limit does not exist. lim

n a n = L, then lim, lim = limit does not exist. lim Usig L Hospitals Rule fid the followig its e If f(x) is a cotiuous fuctio ad a = L the f(a ) = f(l). Usig this fid the followig its e/ cos(/) arcta +. To Determie the it of fractios like We take the 4

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

The Integral and Comparison Tests

The Integral and Comparison Tests Sectio 8.3 The Itegral ad Compariso Tests The Itegral ad Compariso Tests The Itegral Test 00 Kiryl Tsishchaka THE INTEGRAL TEST: Suppose f is a cotiuous, positive, decreasig fuctio o [, ) ad let a = f().

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

n a n = L, then lim cos(2/n) = cos(0), lim arctan 2n = π/2, lim = limit does not exist. lim

n a n = L, then lim cos(2/n) = cos(0), lim arctan 2n = π/2, lim = limit does not exist. lim Usig L Hospitals Rule fid the followig its e 0, 0, si(π/ ) π. (l ) If f(x) is a cotiuous fuctio, ad a L, the f(a ) f(l). Usig this fid the followig its 7 +9 +,. e/ e 0, To Determie the it of fractios like

More information

x 2 n cos 1 > 0.54n for n = 2,3,...

x 2 n cos 1 > 0.54n for n = 2,3,... 1 Problem 1 (15 pts) Does the followig sequece coverge or diverge as? Give reasos for your aswer. If it coverges, fid the limit. (a) (7 pts) a = 2 e. Aswer: Let us defie the fuctio f () = 2 e for all 1.

More information

4.4 Monotone Sequences and Cauchy Sequences

4.4 Monotone Sequences and Cauchy Sequences 4.4. MONOTONE SEQUENCES AND CAUCHY SEQUENCES 3 4.4 Mootoe Sequeces ad Cauchy Sequeces 4.4. Mootoe Sequeces The techiques we have studied so far require we kow the limit of a sequece i order to prove the

More information

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set.

A) is empty. B) is a finite set. C) can be a countably infinite set. D) can be an uncountable set. M.A./M.Sc. (Mathematics) Etrace Examiatio 016-17 Max Time: hours Max Marks: 150 Istructios: There are 50 questios. Every questio has four choices of which exactly oe is correct. For correct aswer, 3 marks

More information

2.5. THE COMPARISON TEST

2.5. THE COMPARISON TEST SECTION. THE COMPARISON TEST 69.. THE COMPARISON TEST We bega our systematic study of series with geometric series, provig the Geometric Series Test: ar coverges if ad oly if r. The i the last sectio we

More information

First, it is important to recall some key definitions and notations before discussing the individual series tests.

First, it is important to recall some key definitions and notations before discussing the individual series tests. Ifiite Series Tests Coverget or Diverget? First, it is importat to recall some key defiitios ad otatios before discussig the idividual series tests. sequece - a fuctio that takes o real umber values a

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

if, for every ǫ > 0, no matter how small, there exists a number N for which

if, for every ǫ > 0, no matter how small, there exists a number N for which Chapter 2 Ifiite Series 2. Sequeces A sequece of complex umbers {z } is a coutably ifiite set of umbers, z, z 2, z 3,...,z,... (2.) That is, for every positive iteger k, there is a umber, the kth term

More information

NOTES ON INFINITE SEQUENCES AND SERIES

NOTES ON INFINITE SEQUENCES AND SERIES NOTES ON INFINITE SEQUENCES AND SERIES MIGUEL A. LERMA. Sequeces.. Sequeces. A ifiite sequece of real umbers is a ordered uedig list of real umbers. E.g.:, 2, 3, 4,... We represet a geeric sequece as a,a

More information

Mgr. ubomíra Tomková. Limit

Mgr. ubomíra Tomková. Limit Limit I mathematics, the cocept of a "limit" is used to describe the behaviour of a fuctio as its argumet either gets "close" to some poit, or as it becomes arbitrarily large; or the behaviour of a sequece's

More information

Chapter 1 : Numerical Series.

Chapter 1 : Numerical Series. Chapter : Numerical Series. Defiitio ad first properties Defiitio.. Give a sequece of real or complex umbers a (a, we defie the sequece (s (a of partial sums by s (a a k. k The series associated to a is

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Math 115 HW #4 Solutions

Math 115 HW #4 Solutions Math 5 HW #4 Solutios From 2.5 8. Does the series coverge or diverge? ( ) 3 + 2 = Aswer: This is a alteratig series, so we eed to check that the terms satisfy the hypotheses of the Alteratig Series Test.

More information

Math 115 HW #3 Solutions

Math 115 HW #3 Solutions Math 5 HW # Solutios From. 0. Determie whether the geometric series = e is coverget or diverget. If it is coverget, fid its sum. Aswer: I ca re-write the terms as Therefore, the series = e ( e e ) = e

More information

Chapter Eleven. Taylor Series. (x a) k. c k. k= 0

Chapter Eleven. Taylor Series. (x a) k. c k. k= 0 Chapter Eleve Taylor Series 111 Power Series Now that we are kowledgeable about series, we ca retur to the problem of ivestigatig the approximatio of fuctios by Taylor polyomials of higher ad higher degree

More information

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S, Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

More information

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i,

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i, Sequeces: Defiitio: A sequece is a fuctio whose domai is the set of atural umbers or a subset of the atural umbers. We usually use the symbol a to represet a sequece, where is a atural umber ad a is the

More information

MATH 140A - HW 5 SOLUTIONS

MATH 140A - HW 5 SOLUTIONS MATH 40A - HW 5 SOLUTIONS Problem WR Ch 3 #8. If a coverges, ad if {b } is mootoic ad bouded, rove that a b coverges. Solutio. Theorem 3.4 states that if a the artial sums of a form a bouded sequece; b

More information

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n = Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b 00 0.0 poits Rewrite the fiite

More information

ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS

ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS ABSOLUTE CONVERGENCE AND THE RATIO AND ROOT TESTS. Absolute Covergece Give ay series a we ca cosider a related series a a + a 2 +... + a +... whose terms are the absolute values of the terms of the origial

More information

MATH 1D, WEEK 3 THE RATIO TEST, INTEGRAL TEST, AND ABSOLUTE CONVERGENCE

MATH 1D, WEEK 3 THE RATIO TEST, INTEGRAL TEST, AND ABSOLUTE CONVERGENCE MATH D, WEEK 3 THE RATIO TEST, INTEGRAL TEST, AND ABSOLUTE CONVERGENCE INSTRUCTOR: PADRAIC BARTLETT Abstract. These are the lecture otes from week 3 of Mad, the Caltech mathematics course o sequeces ad

More information

2. Uniform distribution mod 1

2. Uniform distribution mod 1 MAGIC Ergodic Theory Lecture 2 2. Uiform distributio mod 2. Itroductio Recall that ergodicity is cocered with how a typical orbit of a dyamical system is distributed throughout the phase space. I this

More information

Section 1.3 Convergence Tests

Section 1.3 Convergence Tests Sectio.3 Covergece Tests We leared i the previous sectio that for ay geometric series, we kow exactly whether it coverges ad the value it coverges to. For most series, however, there is o exact formula

More information

is called the nth-degree Taylor polynomial for f at c. named after Brook Taylor, an English mathematician. f x e

is called the nth-degree Taylor polynomial for f at c. named after Brook Taylor, an English mathematician. f x e Taylor Polyomials ad Approimatios Polyomial fuctios ca be used to approimate other elemetary fuctios such as si, y si 3 5 y ad compare. 3! 5! e, ad l. O your calculator, graph: Defiitio of a th-degree

More information

MA122 - SERIES AND MULTIVARIABLE CALCULUS: TESTS FOR CONVERGENCE OF INFINITE SERIES

MA122 - SERIES AND MULTIVARIABLE CALCULUS: TESTS FOR CONVERGENCE OF INFINITE SERIES MA22 - SERIES AND MULTIVARIABLE CALCULUS: TESTS FOR CONVERGENCE OF INFINITE SERIES ALVARO LOZANO-ROBLEDO Geometric Series Test, p-test, Divergece Test, Compariso Test, Limit Compariso Test, Itegral Test,

More information

1. Continuous functions between metric spaces

1. Continuous functions between metric spaces . Cotiuous fuctios betwee metric spaces Cotiuous fuctios preserve properties of metric spaces ad allow to describe deformatio of oe metric space ito aother. There are three differet (but equivalet) ways

More information

From compound interest to the natural exponential function

From compound interest to the natural exponential function From compoud iterest to the atural expoetial fuctio Abstract The most commo itroductio to the atural expoetial fuctio occurs i coectio with compoud iterest. I this paper we will show how to build o this

More information

Math 129 Midterm 3 Study Guide

Math 129 Midterm 3 Study Guide Math 29 Midterm Study Guide As is usually the case, this is ot iteded to be comprehesive but merely to serve as a guide to help make your study time more e ciet. Brief Review Sectio 8.5 Work will be covered

More information

Strategy for Testing Series

Strategy for Testing Series Strategy for Testig Series We ow have several ways of testig a series for covergece or divergece; the problem is to decide which test to use o which series. I this respect testig series is similar to itegratig

More information

2.7 Sequences, Sequences of Sets

2.7 Sequences, Sequences of Sets 2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

Taylor and Maclaurin series, Part 2.

Taylor and Maclaurin series, Part 2. MATH 101 - A1 - Sprig 2009 1 Taylor ad Maclauri series, Part 2. Recall the Biomial Theorem says if k is a positive iteger, we may expad (1+x) k usig the formula k (1 + x) k = x Here ( k ) deote the biomial

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

Section 8.3: The Integral and Comparison Tests; Estimating Sums

Section 8.3: The Integral and Comparison Tests; Estimating Sums Sectio 8.3: The Itegral ad Compariso Tests; Estimatig Sums Practice HW from Stewart Textbook (ot to had i) p. 585 # 3, 6-, 3-5 odd I this sectio, we wat to determie other methods for determiig whether

More information

The interval and radius of convergence of a power series

The interval and radius of convergence of a power series The iterval ad radius of covergece of a power series Bro. David E. Brow, BYU Idaho Dept. of Mathematics. All rights reserved. Versio 1.1, of April, 014 Cotets 1 Itroductio 1 The ratio ad root tests 3 Examples

More information

8.5 Alternating infinite series

8.5 Alternating infinite series 65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,

More information

Measurable Functions

Measurable Functions Measurable Fuctios Dug Le 1 1 Defiitio It is ecessary to determie the class of fuctios that will be cosidered for the Lebesgue itegratio. We wat to guaratee that the sets which arise whe workig with these

More information

Lecture Notes 4 Convergence (Chapter 5)

Lecture Notes 4 Convergence (Chapter 5) Radom Samples Lecture Notes 4 Covergece Chapter 5 Let X,..., X F. A statistic is ay fuctio T = gx,..., X. Recall that the sample mea is X = X i ad sample variace is S 2 = Let µ = EX i ad σ 2 = VarX i.

More information

MATH Testing a Series for Convergence

MATH Testing a Series for Convergence MATH 0 - Testig a Series for Covergece Dr. Philippe B. Laval Keesaw State Uiversity October 4, 008 Abstract This hadout is a summary of the most commoly used tests which are used to determie if a series

More information

5.3 The Integral Test and Estimates of Sums

5.3 The Integral Test and Estimates of Sums 5.3 The Itegral Test ad Estimates of Sums Bria E. Veitch 5.3 The Itegral Test ad Estimates of Sums The ext few sectios we lear techiques that help determie if a series coverges. I the last sectio we were

More information

7. Convergence in Probability Lehmann 2.1; Ferguson 1

7. Convergence in Probability Lehmann 2.1; Ferguson 1 7. Covergece i robability ehma 2.1; Ferguso 1 Here, we cosider sequeces X 1, X 2,... of radom variables istead of real umbers. As with real umbers, we d like to have a idea of what it meas to coverge.

More information

The Integral Test. and. n 1. either both converge or both diverge. f i f 2 f 3... f n. f i f 1 f 2... f n 1. f i f x dx n 1. f i. i 1.

The Integral Test. and. n 1. either both converge or both diverge. f i f 2 f 3... f n. f i f 1 f 2... f n 1. f i f x dx n 1. f i. i 1. 0_090.qd //0 :5 PM Page 7 SECTIO 9. The Itegral Test ad p-series 7 Sectio 9. The Itegral Test ad p-series Use the Itegral Test to determie whether a ifiite series coverges or diverges. Use properties of

More information

In this section starting on page 390 the book introduces the notion of left sum and right sum. The left sum of n rectangles is denoted by L

In this section starting on page 390 the book introduces the notion of left sum and right sum. The left sum of n rectangles is denoted by L Supplemet to Sectio 6 ad 65 I this sectio startig o page 9 the book itroduces the otio of left sum ad right sum The left sum of rectagles is deoted by L The right sum of rectagles is deoted by R It is

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

MATH 215 Mathematical Analysis Lecture Notes

MATH 215 Mathematical Analysis Lecture Notes MATH 25 Mathematical Aalysis Lecture Notes Aıl Taş September 2005 M.A. studet at the Departmet of Ecoomics, Bilket Uiversity, Bilket, 06800, Akara, Turkey. E-mail: ailtas@bilket.edu.tr. This course was

More information

Some review problems for Midterm 1

Some review problems for Midterm 1 Some review problems for Midterm February 6, 05 Problems Here are some review problems to practice what we ve leared so far. Problems a,b,c,d ad p,q,r,s are t from the book, ad are a little tricky. You

More information

MA2108S Tutorial 5 Solution

MA2108S Tutorial 5 Solution MA08S Tutorial 5 Solutio Prepared by: LuJigyi LuoYusheg March 0 Sectio 3. Questio 7. Let x := / l( + ) for N. (a). Use the difiitio of limit to show that lim(x ) = 0. Proof. Give ay ɛ > 0, sice ɛ > 0,

More information

Continued Fractions continued. 3. Best rational approximations

Continued Fractions continued. 3. Best rational approximations Cotiued Fractios cotiued 3. Best ratioal approximatios We hear so much about π beig approximated by 22/7 because o other ratioal umber with deomiator < 7 is closer to π. Evetually 22/7 is defeated by 333/06

More information

HW 3 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson

HW 3 Solutions Math 115, Winter 2009, Prof. Yitzhak Katznelson HW 3 Solutios Math 5, Witer 009, Prof. Yitzhak Katzelso 7.4 a) Let x =. The lim x = 0 (as you may easily check - for ǫ > 0, just let N be ǫ ), which is ratioal, eve though all the x are irratioal. b) Cosider

More information

MATH 361 Homework 9. Royden Royden Royden

MATH 361 Homework 9. Royden Royden Royden MATH 61 Homework 9 Royde..9 First, we show that for ay subset E of the real umbers, E c + y = E + y) c traslatig the complemet is equivalet to the complemet of the traslated set). Without loss of geerality,

More information

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The Usig Iterative Methods to Solve Equatios Newto s method is a iterative scheme for solvig equatios by fidig zeros of a fuctio. The f Newto iteratio 1 f fids the zeros of f by fidig the fied poit of g f

More information

ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

9. (Calculator Permitted) Use your answer from problem 1 to approximate f to four decimal places.

9. (Calculator Permitted) Use your answer from problem 1 to approximate f to four decimal places. Calculus Maimus WS.: Taylor Polyomials Taylor Polyomials O problems -5, fid a Maclauri polyomial of degree for each of the followig.. f( ) = e, =. f( ) = e, = 4. f( ) = cos, = 8 4. f( ) = e, = 4 5. f(

More information

CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS PART I: THE COMPARISON AND INTEGRAL TESTS. Math 112

CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS PART I: THE COMPARISON AND INTEGRAL TESTS. Math 112 CONVERGENCE TESTS FOR SERIES: COMMENTS AND PROOFS PART I: THE COMPARISON AND INTEGRAL TESTS Math 112 The covergece tests for series have ice ituitive reasos why they wor, ad these are fairly easy to tur

More information

0,1 is an accumulation

0,1 is an accumulation Sectio 5.4 1 Accumulatio Poits Sectio 5.4 Bolzao-Weierstrass ad Heie-Borel Theorems Purpose of Sectio: To itroduce the cocept of a accumulatio poit of a set, ad state ad prove two major theorems of real

More information

INEQUALITIES. Theorem 1. Let x 1,...,x n > 0 be positive real numbers. Then their geometric mean is no greater then their arithmetic mean, i.e.

INEQUALITIES. Theorem 1. Let x 1,...,x n > 0 be positive real numbers. Then their geometric mean is no greater then their arithmetic mean, i.e. INEQUALITIES Books: 1. Hardy, Littlewood, Polya Iequalities.. M. Steele The Cauchy-Schwarz Master Class. 0.1. AM-GM (Arithmetic mea geometric mea iequality). Theorem 1. Let x 1,...,x > 0 be positive real

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Determine which of the following series converge absolutely, converge conditionally or diverge. sin( n. converges so series is absolutely convergent.

Determine which of the following series converge absolutely, converge conditionally or diverge. sin( n. converges so series is absolutely convergent. EXERCISES FOR CHAPTER 4: Alteratig Series Determie which of the followig series coverge absolutely, coverge coditioally or diverge. si(. () + ) Solutio (a) coverges so series is absolutely coverget. (b)

More information

Probability Theory II

Probability Theory II Probability Theory II These otes begi with a brief discussio of idepedece, ad the discuss the three mai foudatioal theorems of probability theory: the weak law of large umbers, the strog law of large umbers,

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Homework 1 Solutions

Homework 1 Solutions Homewor 1 Solutios Math 171, Sprig 2010 Please sed correctios to herya@math.staford.edu 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that (f g h = f (g h. Solutio. Let x X. Note that ((f g h(x = (f g(h(x

More information

6.10 The Binomial Series

6.10 The Binomial Series 6 THE BINOMIAL SERIES 375 6 The Biomial Series 6 Itroductio This sectio focuses o derivig a Maclauri series for fuctios of the form f x) + x) for ay umber We use the results we obtaied i the sectio o Taylor

More information

Measure Theory, MA 359 Handout 1

Measure Theory, MA 359 Handout 1 Measure Theory, M 359 Hadout 1 Valeriy Slastikov utum, 2005 1 Measure theory 1.1 Geeral costructio of Lebesgue measure I this sectio we will do the geeral costructio of σ-additive complete measure by extedig

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Approximating the Sum of a Convergent Series

Approximating the Sum of a Convergent Series Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

More information

Selected Problems in Real Analysis (with solutions) Dr Nikolai Chernov

Selected Problems in Real Analysis (with solutions) Dr Nikolai Chernov Cotets Selected Problems i Real Aalysis (with solutios) Dr Nikolai Cherov Lebesgue measure 2 Measurable fuctios 4 3 Lebesgue itegral: defiitio via simple fuctios 5 4 Lebesgue itegral: geeral 7 5 Lebesgue

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum or

More information

COMPLEX ANALYSIS: SOLUTIONS (i) Use Cauchy s integral formula for derivatives to compute. e z

COMPLEX ANALYSIS: SOLUTIONS (i) Use Cauchy s integral formula for derivatives to compute. e z COMPLEX ANALYSIS: SOLUTIONS 4. (i) Use Cauchy s itegral formula for derivatives to compute e z, r > 0. 2πi z r z+ (ii) Use part (i) alog with Cauchy s estimate to prove that! e. Solutio: (i) From Cauchy

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

7) an = 7 n 7n. Solve the problem. Answer the question. n=1. Solve the problem. Answer the question. 16) an =

7) an = 7 n 7n. Solve the problem. Answer the question. n=1. Solve the problem. Answer the question. 16) an = Eam Name MULTIPLE CHOICE. Choose the oe alterative that best comletes the statemet or aswers the questio. ) Use series to estimate the itegral's value to withi a error of magitude less tha -.. l( + )d..79.9.77

More information

Continuous Random Variables

Continuous Random Variables Cotiuous Radom Variables Math 394 1 (Almost bullet-proof) Defiitio of Expectatio Assume we have a sample space Ω, with a σ algebra of subsets F, ad a probability P, satisfyig our axioms. Defie a radom

More information