FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix"

Transcription

1 FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if there is a o-sigular matrix S of the same size such that the matrix S AS is diagoal. That meas all etries of S AS except possibly diagoal etries are zeros. The umbers which show up o the diagoal of S AS are the eigevalues of A. For a diagoal matrix, it is very easy to calculate its powers. Propositio. Let A a diagaalizable matrix of size m m, ad assume that λ λ... 0 S AS λ m for a o-sigular matrix S. The for a iteger 0 A S λ λ λ m S. Proof. Deote the diagoal matrix by λ λ... 0 Λ, λ m ad observe that, sice it is very easy to multiply diagoal matrices, we have λ λ... 0 ) Λ λ m

2 At the same time sice Λ S AS, we fid that Λ S AS) S AS S AS... S AS S A S because of the obvious cacellatios. We thus coclude that A SΛ S, ad the required idetity follows from ).. Fiboacci umbers ad Kepler s observatio The sequece of Fiboacci umbers F 0,,,, 3,, 8, 3,, 34,, 89, 44,... is defied recursively as follows. Oe begis with F 0 0, ad F. After that every umber is defied to be sum of its two predecessors: F F + F for. The sequece of Fiboacci umbers attract certai iterest for various reasos see, for istace, ). I particular, Johaes Kepler 7 630), oe of the greatest astroomers i the history, observed that the ratio of cosecutive Fiboacci umbers coverges to the golde ratio. Theorem Kepler). F + lim + F I this ote, we make use of liear algebra i order to fid a explicit formula for Fiboacci umbers, ad derive Kepler s observatio from this formula. More specifically, we will prove the followig statemet. Propositio. For F + ) ). We ow show how to derive Kepler s observatio from Propositio. Proof of Kepler s observatio. We simply calculate the limit as follows:

3 3 sice F + lim F as soo as + ) + ) + lim + lim + ) + ) + + ) ) ) ) + ) lim lim + + ) <. + ) ) ) + The rest of the ote is devoted to the proof of Propositio with the help of Liear Algebra, ad Propositio i particular. 3. Liear Algebra iterpretatio of Fiboacci umbers Let L be the liear operator o R represeted by the matrix A 0 with respect to the stadard basis of R. For ay vector v x, y) T, we have that x x + y Lv). 0) y x I particular, for the vector u k whose coordiates are two cosecutive Fiboacci umbers F k, F k ) T, we have that Fk Fk Fk + F Lu k ) A k Fk+ u F k 0 F k F k F k+. k Thus we ca produce a vector whose coordiates are two cosecutive Fiboacci umbers by applyig L may times to the vector u with coordiates F, F 0 ) T, 0): F+ ) A F 0 Equatio is othig but a reformulatio of the defiitio of Fiboacci umbers. This equatio, however, allows us to fid a explicit formula for Fiboacci umbers as soo as we kow how to calculate the powers A of the matrix A with the help of the diagoalizatio.

4 4 4. Diagoalizatio of the matrix A ad proof of Propositio We begi with fidig the eigevalues of A as the roots of its characteristic polyomial λ pλ) deta λi) det λ 0 λ λ. We make use of the quadratic formula to fid the roots as 3) λ + ad λ, ad we coclude, sice the two eigevalues are real ad distict, that the matrix A diogaalizable. I order to diogaalize it, we eed to fid a basis which cosists of eigevectors of the liear operator L. Let us fid the eigevectors from the equatios Lv ) λ v, ad Lv ) λ v or, i coordiates with respect to the stadard basis of R, x x x x λ 0 y, ad λ y 0 y. y We solve these equatios ad fid eigevectors: x λ x, ad y y λ The trasitio matrices betwee the stadard basis ad the basis of eigevectors is thus λ λ S ad S λ λ λ λ λ λ λ λ λ λ λ λ λ λ We ca ow check that, as expected, 4) S AS λ 0. 0 λ We are ow i a positio to prove Propositio with the help of the diogaalizatio 4). Proof of Propositio. Propositio ow implies that A λ S 0 0 λ S, ad we combie this with equatio ) to obtai that F+ A λ S 0 F 0 0 λ S 0 λ λ λ 0 λ λ λ 0 λ λ 0 λ + λ + ) λ λ λ λ.

5 Equatig the etries of the vectors i the last formula we obtai i view of 3) that F λ λ + ) ) λ λ as claimed i Propositio. Remark. Usig the explicit formula from Propositio oe may address some other questios about Fiboacci umbers. Remark. It was Liear Algebra, specifically the diagoalizatio procedure, which allowed us to obtai the explicit formula i Propositio. This is ot the oly way to prove the formula. Remark 3. The sequece of Fiboacci is a very simple example of a sequece give by a recursive relatio. Oe may apply similar methods i order to ivestigate other sequeces give by recurrece relatios.

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Analysis Notes (only a draft, and the first one!)

Analysis Notes (only a draft, and the first one!) Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

A Constant-Factor Approximation Algorithm for the Link Building Problem

A Constant-Factor Approximation Algorithm for the Link Building Problem A Costat-Factor Approximatio Algorithm for the Lik Buildig Problem Marti Olse 1, Aastasios Viglas 2, ad Ilia Zvedeiouk 2 1 Ceter for Iovatio ad Busiess Developmet, Istitute of Busiess ad Techology, Aarhus

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

Overview on S-Box Design Principles

Overview on S-Box Design Principles Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutions to Exercises Chapter 4: Recurrence relations and generating functions Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

Terminology for Bonds and Loans

Terminology for Bonds and Loans ³ ² ± Termiology for Bods ad Loas Pricipal give to borrower whe loa is made Simple loa: pricipal plus iterest repaid at oe date Fixed-paymet loa: series of (ofte equal) repaymets Bod is issued at some

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

DIRECTED GRAPHS AND THE JACOBI-TRUDI IDENTITY

DIRECTED GRAPHS AND THE JACOBI-TRUDI IDENTITY Ca. J. Math., Vol. XXXVII, No. 6, 1985, pp. 1201-1210 DIRECTED GRAPHS AND THE JACOBI-TRUDI IDENTITY I. P. GOULDEN 1. Itroductio. Let \a i L X deote the X determiat with (/', y)-etry a-, ad h k = h k (x

More information

AMS 2000 subject classification. Primary 62G08, 62G20; secondary 62G99

AMS 2000 subject classification. Primary 62G08, 62G20; secondary 62G99 VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS Jia Huag 1, Joel L. Horowitz 2 ad Fegrog Wei 3 1 Uiversity of Iowa, 2 Northwester Uiversity ad 3 Uiversity of West Georgia Abstract We cosider a oparametric

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

Chair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics

Chair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to

More information

ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS

ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS JÓZSEF BALOGH, DHRUV MUBAYI, AND ANDRÁS PLUHÁR Abstract The edge-badwidth of a graph G is the badwidth of the lie graph of G We show asymptotically tight bouds o

More information

How to set up your GMC Online account

How to set up your GMC Online account How to set up your GMC Olie accout Mai title Itroductio GMC Olie is a secure part of our website that allows you to maage your registratio with us. Over 100,000 doctors already use GMC Olie. We wat every

More information

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

A sharp Trudinger-Moser type inequality for unbounded domains in R n

A sharp Trudinger-Moser type inequality for unbounded domains in R n A sharp Trudiger-Moser type iequality for ubouded domais i R Yuxiag Li ad Berhard Ruf Abstract The Trudiger-Moser iequality states that for fuctios u H, 0 (Ω) (Ω R a bouded domai) with Ω u dx oe has Ω

More information

Characterizing End-to-End Packet Delay and Loss in the Internet

Characterizing End-to-End Packet Delay and Loss in the Internet Characterizig Ed-to-Ed Packet Delay ad Loss i the Iteret Jea-Chrysostome Bolot Xiyu Sog Preseted by Swaroop Sigh Layout Itroductio Data Collectio Data Aalysis Strategy Aalysis of packet delay Aalysis of

More information

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE

ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE Proceedigs of the Iteratioal Coferece o Theory ad Applicatios of Mathematics ad Iformatics ICTAMI 3, Alba Iulia ON AN INTEGRAL OPERATOR WHICH PRESERVE THE UNIVALENCE by Maria E Gageoea ad Silvia Moldoveau

More information

4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.

4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph. 4. Trees Oe of the importat classes of graphs is the trees. The importace of trees is evidet from their applicatios i various areas, especially theoretical computer sciece ad molecular evolutio. 4.1 Basics

More information

Floating Codes for Joint Information Storage in Write Asymmetric Memories

Floating Codes for Joint Information Storage in Write Asymmetric Memories Floatig Codes for Joit Iformatio Storage i Write Asymmetric Memories Axiao (Adrew Jiag Computer Sciece Departmet Texas A&M Uiversity College Statio, TX 77843-311 ajiag@cs.tamu.edu Vaske Bohossia Electrical

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Concept: Types of algorithms

Concept: Types of algorithms Discrete Math for Bioiformatics WS 10/11:, by A. Bockmayr/K. Reiert, 18. Oktober 2010, 21:22 1001 Cocept: Types of algorithms The expositio is based o the followig sources, which are all required readig:

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Perfect Packing Theorems and the Average-Case Behavior of Optimal and Online Bin Packing

Perfect Packing Theorems and the Average-Case Behavior of Optimal and Online Bin Packing SIAM REVIEW Vol. 44, No. 1, pp. 95 108 c 2002 Society for Idustrial ad Applied Mathematics Perfect Packig Theorems ad the Average-Case Behavior of Optimal ad Olie Bi Packig E. G. Coffma, Jr. C. Courcoubetis

More information

Lecture 7: Stationary Perturbation Theory

Lecture 7: Stationary Perturbation Theory Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

Universal coding for classes of sources

Universal coding for classes of sources Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

Betting on Football Pools

Betting on Football Pools Bettig o Football Pools by Edward A. Beder I a pool, oe tries to guess the wiers i a set of games. For example, oe may have te matches this weeked ad oe bets o who the wiers will be. We ve put wiers i

More information

summary of cover CONTRACT WORKS INSURANCE

summary of cover CONTRACT WORKS INSURANCE 1 SUMMARY OF COVER CONTRACT WORKS summary of cover CONTRACT WORKS INSURANCE This documet details the cover we ca provide for our commercial or church policyholders whe udertakig buildig or reovatio works.

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

MTO-MTS Production Systems in Supply Chains

MTO-MTS Production Systems in Supply Chains NSF GRANT #0092854 NSF PROGRAM NAME: MES/OR MTO-MTS Productio Systems i Supply Chais Philip M. Kamisky Uiversity of Califoria, Berkeley Our Kaya Uiversity of Califoria, Berkeley Abstract: Icreasig cost

More information

Extreme changes in prices of electricity futures

Extreme changes in prices of electricity futures Isurace Marets ad Compaies: Aalyses ad Actuarial Computatios, Volume 2, Issue, 20 Roald Huisma (The Netherlads), Mehtap Kilic (The Netherlads) Extreme chages i prices of electricity futures Abstract The

More information

Firewall Modules and Modular Firewalls

Firewall Modules and Modular Firewalls Firewall Modules ad Modular Firewalls H. B. Acharya Uiversity of Texas at Austi acharya@cs.utexas.edu Aditya Joshi Uiversity of Texas at Austi adityaj@cs.utexas.edu M. G. Gouda Natioal Sciece Foudatio

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

The Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract

The Gompertz Makeham coupling as a Dynamic Life Table. Abraham Zaks. Technion I.I.T. Haifa ISRAEL. Abstract The Gompertz Makeham couplig as a Dyamic Life Table By Abraham Zaks Techio I.I.T. Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 32000, Haifa, Israel Abstract A very famous

More information

SUPPORT UNION RECOVERY IN HIGH-DIMENSIONAL MULTIVARIATE REGRESSION 1

SUPPORT UNION RECOVERY IN HIGH-DIMENSIONAL MULTIVARIATE REGRESSION 1 The Aals of Statistics 2011, Vol. 39, No. 1, 1 47 DOI: 10.1214/09-AOS776 Istitute of Mathematical Statistics, 2011 SUPPORT UNION RECOVERY IN HIGH-DIMENSIONAL MULTIVARIATE REGRESSION 1 BY GUILLAUME OBOZINSKI,

More information

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011

15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011 15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes high-defiitio

More information

Structural Analysis of Viral Spreading Processes in Social and Communication Networks Using Egonets

Structural Analysis of Viral Spreading Processes in Social and Communication Networks Using Egonets 1 Structural alysis of Viral Spreadig Processes i Social ad Commuicatio Networs Usig Egoets Victor M. Preciado, Member, IEEE, Moez Draief, ad li Jadbabaie, Seior Member, IEEE arxiv:1209.0341v1 math.oc]

More information

On the Capacity of Hybrid Wireless Networks

On the Capacity of Hybrid Wireless Networks O the Capacity of Hybrid ireless Networks Beyua Liu,ZheLiu +,DoTowsley Departmet of Computer Sciece Uiversity of Massachusetts Amherst, MA 0002 + IBM T.J. atso Research Ceter P.O. Box 704 Yorktow Heights,

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

Approximate Option Pricing

Approximate Option Pricing Approximate Optio Pricig PRASAD CHALASANI Los Alamos Natioal Laboratory chal@lal.gov http://www.c3.lal.gov/chal SOMESH JHA Caregie Mello Uiversity sjha@cs.cmu.edu http://www.cs.cmu.edu/sjha ISAAC SAIAS

More information

A CUSUM TEST OF COMMON TRENDS IN LARGE HETEROGENEOUS PANELS

A CUSUM TEST OF COMMON TRENDS IN LARGE HETEROGENEOUS PANELS A CUSUM TEST OF COMMON TRENDS IN LARGE HETEROGENEOUS PANELS JAVIER HIDALGO AND JUNGYOON LEE A. This paper examies a oparametric CUSUM-type test for commo treds i large pael data sets with idividual fixed

More information

Pre-Suit Collection Strategies

Pre-Suit Collection Strategies Pre-Suit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process

More information

Ramsey-type theorems with forbidden subgraphs

Ramsey-type theorems with forbidden subgraphs Ramsey-type theorems with forbidde subgraphs Noga Alo Jáos Pach József Solymosi Abstract A graph is called H-free if it cotais o iduced copy of H. We discuss the followig questio raised by Erdős ad Hajal.

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Eigenvalues of graphs are useful for controlling many graph

Eigenvalues of graphs are useful for controlling many graph Spectra of radom graphs with give expected degrees Fa Chug, Liyua Lu, ad Va Vu Departmet of Mathematics, Uiversity of Califoria at Sa Diego, La Jolla, CA 92093-02 Edited by Richard V. Kadiso, Uiversity

More information

Data Analysis and Statistical Behaviors of Stock Market Fluctuations

Data Analysis and Statistical Behaviors of Stock Market Fluctuations 44 JOURNAL OF COMPUTERS, VOL. 3, NO. 0, OCTOBER 2008 Data Aalysis ad Statistical Behaviors of Stock Market Fluctuatios Ju Wag Departmet of Mathematics, Beijig Jiaotog Uiversity, Beijig 00044, Chia Email:

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Information about Bankruptcy

Information about Bankruptcy Iformatio about Bakruptcy Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea What is the? The Isolvecy Service of Irelad () is a idepedet

More information

Guido Walz. Nr.86. November 1988. Oll Generalized Bernstein Polynomials in CAGD , ' ;.' _. ",.' ",...,.,.'. 'i-'.,,~~...

Guido Walz. Nr.86. November 1988. Oll Generalized Bernstein Polynomials in CAGD , ' ;.' _. ,.' ,...,.,.'. 'i-'.,,~~... Oll Geeralized Berstei Polyomials i CAGD Guido Walz Nr.86 November 1988 'i-'.,,~~.......... :'>'-. "',.,- ~. ~,..._.. w. ",... -i. _. ",.' ",...,.,.'., ' ;.' ~-.,."""",:.... _...~...'-.... _,, O Geeralized

More information

WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS

WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS WHICH MEAN DO YOU MEAN? AN EXPOSITION ON MEANS A Thesis Submitted to the Graduate Faculty of the Louisiaa State Uiversity ad Agricultural ad Mechaical College i partial fulfillmet of the requiremets for

More information

HOSPITAL NURSE STAFFING SURVEY

HOSPITAL NURSE STAFFING SURVEY 2012 Ceter for Nursig Workforce St udies HOSPITAL NURSE STAFFING SURVEY Vacacy ad Turover Itroductio The Hospital Nurse Staffig Survey (HNSS) assesses the size ad effects of the ursig shortage i hospitals,

More information

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff,

NEW HIGH PERFORMANCE COMPUTATIONAL METHODS FOR MORTGAGES AND ANNUITIES. Yuri Shestopaloff, NEW HIGH PERFORMNCE COMPUTTIONL METHODS FOR MORTGGES ND NNUITIES Yuri Shestopaloff, Geerally, mortgage ad auity equatios do ot have aalytical solutios for ukow iterest rate, which has to be foud usig umerical

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

A PRESENTATION THEOREM FOR CONTINUOUS LOGIC AND METRIC ABSTRACT ELEMENTARY CLASSES

A PRESENTATION THEOREM FOR CONTINUOUS LOGIC AND METRIC ABSTRACT ELEMENTARY CLASSES A PRESENTATION THEOREM FOR CONTINUOUS LOGIC AND METRIC ABSTRACT ELEMENTARY CLASSES WILL BONEY Cotets 1. Itroductio 1 2. Models ad Theories 3 3. Elemetary Substructure 11 4. Types ad Saturatio 13 5. T dese

More information

MAXIMUM LIKELIHOODESTIMATION OF DISCRETELY SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH. By Yacine Aït-Sahalia 1

MAXIMUM LIKELIHOODESTIMATION OF DISCRETELY SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH. By Yacine Aït-Sahalia 1 Ecoometrica, Vol. 7, No. 1 (Jauary, 22), 223 262 MAXIMUM LIKELIHOODESTIMATION OF DISCRETEL SAMPLED DIFFUSIONS: A CLOSED-FORM APPROXIMATION APPROACH By acie Aït-Sahalia 1 Whe a cotiuous-time diffusio is

More information

1.3. VERTEX DEGREES & COUNTING

1.3. VERTEX DEGREES & COUNTING 35 Chapter 1: Fudametal Cocepts Sectio 1.3: Vertex Degrees ad Coutig 36 its eighbor o P. Note that P has at least three vertices. If G x v is coected, let y = v. Otherwise, a compoet cut off from P x v

More information

Present Values, Investment Returns and Discount Rates

Present Values, Investment Returns and Discount Rates Preset Values, Ivestmet Returs ad Discout Rates Dimitry Midli, ASA, MAAA, PhD Presidet CDI Advisors LLC dmidli@cdiadvisors.com May 2, 203 Copyright 20, CDI Advisors LLC The cocept of preset value lies

More information

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

More information

THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY

THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY - THE ROLE OF EXPORTS IN ECONOMIC GROWTH WITH REFERENCE TO ETHIOPIAN COUNTRY BY: FAYE ENSERMU CHEMEDA Ethio-Italia Cooperatio Arsi-Bale Rural developmet Project Paper Prepared for the Coferece o Aual Meetig

More information

Asymptotic normality of the Nadaraya-Watson estimator for non-stationary functional data and applications to telecommunications.

Asymptotic normality of the Nadaraya-Watson estimator for non-stationary functional data and applications to telecommunications. Asymptotic ormality of the Nadaraya-Watso estimator for o-statioary fuctioal data ad applicatios to telecommuicatios. L. ASPIROT, K. BERTIN, G. PERERA Departameto de Estadística, CIMFAV, Uiversidad de

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

arxiv:1506.03481v1 [stat.me] 10 Jun 2015

arxiv:1506.03481v1 [stat.me] 10 Jun 2015 BEHAVIOUR OF ABC FOR BIG DATA By Wetao Li ad Paul Fearhead Lacaster Uiversity arxiv:1506.03481v1 [stat.me] 10 Ju 2015 May statistical applicatios ivolve models that it is difficult to evaluate the likelihood,

More information

Multi-server Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu

Multi-server Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu Multi-server Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio -coectio

More information

CS85: You Can t Do That (Lower Bounds in Computer Science) Lecture Notes, Spring 2008. Amit Chakrabarti Dartmouth College

CS85: You Can t Do That (Lower Bounds in Computer Science) Lecture Notes, Spring 2008. Amit Chakrabarti Dartmouth College CS85: You Ca t Do That () Lecture Notes, Sprig 2008 Amit Chakrabarti Dartmouth College Latest Update: May 9, 2008 Lecture 1 Compariso Trees: Sortig ad Selectio Scribe: William Che 1.1 Sortig Defiitio 1.1.1

More information

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical

More information

HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1

HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1 1 HOW MANY TIMES SHOULD YOU SHUFFLE A DECK OF CARDS? 1 Brad Ma Departmet of Mathematics Harvard Uiversity ABSTRACT I this paper a mathematical model of card shufflig is costructed, ad used to determie

More information