BINOMIAL EXPANSIONS In this section. Some Examples. Obtaining the Coefficients

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients"

Transcription

1 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you will study higher powers of iomials. Some Examples We kow that (x y) 2 x 2 2xy y 2. To fid (x y) 3, we multiply (x y) 2 y x y: (x y) 3 (x 2 2xy y 2 )(x y) (x 2 2xy y 2 )x (x 2 2xy y 2 )y x 3 2x 2 y xy 2 x 2 y 2xy 2 y 3 x 3 3x 2 y 3xy 2 y 3 The sum x 3 3x 2 y 3xy 2 y 3 is called the iomial expasio of (x y) 3. If we agai multiply y x y, we will get the iomial expasio of (x y) 4. This method is rather tedious. However, if we examie these expasios, we ca fid a patter ad lear how to fid iomial expasios without multiplyig. Cosider the followig iomial expasios: (x y) 0 1 (x y) 1 x y (x y) 2 x 2 2xy y 2 (x y) 3 x 3 3x 2 y 3xy 2 y 3 (x y) 4 x 4 4x 3 y 6x 2 y 2 4xy 3 y 4 (x y) 5 x 5 5x 4 y 10x 3 y 2 10x 2 y 3 5xy 4 y 5 Oserve that the expoets o the variale x are decreasig, whereas the expoets o the variale y are icreasig, as we read from left to right. Also otice that the sum of the expoets i each term is the same for that etire lie. For istace, i the fourth expasio the terms x 4, x 3 y, x 2 y 2, xy 3, ad y 4 all have expoets with a sum of 4. If we cotiue the patter, the expasio of (x y) 6 will have seve terms cotaiig x 6, x 5 y, x 4 y 2, x 3 y 3, x 2 y 4, xy 5, ad y 6. Now we must fid the patter for the coefficiets of these terms. Otaiig the Coefficiets If we write out oly the coefficiets of the expasios that we already have, we ca easily see a patter. This triagular array of coefficiets for the iomial expasios is called Pascal s triagle. 1 (x y) (x y) 1 1x 1y (x y) 2 1x 2 2xy 1y (x y) 3 1x 3 3x 2 y 3xy 2 1y (x y) 4 1x 4 4x 3 y 6x 2 y 2 4xy 3 1y Coefficiets i (x y) 5 Notice that each lie starts ad eds with a 1 ad that each etry of a lie is the sum of the two etries aove it i the previous lie. For istace, 4 3 1,

2 12.5 Biomial Expasios (12-27) 653 ad Followig this patter, the sixth ad seveth lies of coefficiets are Pascal s triagle gives us a easy way to get the coefficiets for the iomial expasio with small powers, ut it is impractical for larger powers. For larger powers we use a formula ivolvig factorial otatio.! ( factorial) If is a positive iteger,! (read factorial ) is defied to e the product of all of the positive itegers from 1 through. calculator close-up You ca evaluate the coefficiets usig either the factorial otatio or Cr. The factorial symol ad Cr are foud i the MATH meu uder PRB. For example, 3! , ad We also defie 0! to e 1. Before we state a geeral formula, cosider how the coefficiets for (x y) 4 are foud y usig factorials: 4! Coefficiet of x 4 (or x 4 y 0 ) 4!0! ! !1! Coefficiet of 4x 3 y! !2! Coefficiet of 6x 2 y 2! !3! Coefficiet of 4xy3! !4! Coefficiet of y 4 (or x 0 y 4 ) Note that each expressio has 4! i the umerator, with factorials i the deomiator correspodig to the expoets o x ad y. The Biomial Theorem We ow summarize these ideas i the iomial theorem. The Biomial Theorem I the expasio of (x y) for a positive iteger, there are 1 terms, give y the followig formula: (x y)! x! x 1! y x 2 y 2!0! ( 1)! 1! ( 2)! 2!...! y 0!! r The otatio is ofte used i place of ( Usig this otatio, we write the expasio as 0 1! r)!r! i the iomial expasio. (x y) x x1 y x 2 y 2... y. 2

3 654 (12-28) Chapter 12 Sequeces ad Series! Aother otatio for is ( r)!r! C r. Usig this otatio, we have (x y) C 0 x C 1 x 1 y C 2 x 2 y 2... C y. E X A M P L E 1 Usig the iomial theorem Write out the first three terms of (x y) 9. Solutio (x y) 9 x 9 x 8 y x 7 y 2 9!0! 8!1! 7!2!... x 9 9x 8 y 36x 7 y 2... E X A M P L E 2 Usig the iomial theorem Write the iomial expasio for (x 2 2a) 5. Solutio We expad a differece y writig it as a sum ad usig the iomial theorem: (x 2 2a) 5 (x 2 (2a)) 5 (x 2 ) 5 (x 2 ) 4 (2a) 1 (x 2 ) 3 (2a) 2 (x 2 ) 2 (2a) 3 5!0! 4!1! 3!2! 2!3! (x 2 )(2a) 4 (2a) 5 1!4! 0! x 10 10x 8 a 40x 6 a 2 80x 4 a 3 80x 2 a 4 32a 5 E X A M P L E 3 calculator close-up Because C! r, we ( r)! r! have 12 C 9 12! 12! ad 3! 12 C 3. 9! 3! So there is more tha oe way to compute 12!( 3!): Fidig a specific term Fid the fourth term of the expasio of (a ) 12. Solutio The variales i the first term are a 12 0, those i the secod term are a 11 1, those i the third term are a 10 2, ad those i the fourth term are a 9 3. So The fourth term is 220a ! a a ! Usig the ideas of Example 3, we ca write a formula for ay term of a iomial expasio. Formula for the kth Term of (x y) For k ragig from 1 to 1, the kth term of the expasio of (x y) is give y the formula! x k1 y k1. ( k 1)!(k 1)!

4 12.5 Biomial Expasios (12-29) 655 E X A M P L E 4 Fidig a specific term Fid the sixth term of the expasio of (a 2 2) 7. Solutio Use the formula for the kth term with k 6 ad 7: 7! (a 2 ) 2 (2) 5 21a 4 (32 5 ) 672a 4 5 (7 6 1)!(6 1)! We ca thik of the iomial expasio as a fiite series. Usig summatio otatio, we ca write the iomial theorem as follows. The Biomial Theorem (Usig Summatio Notatio) For ay positive iteger, (x y) i0! x i y i or (x y) ( i)!i! i0 xi y i. i E X A M P L E 5 Usig summatio otatio Write (a ) 5 usig summatio otatio. Solutio Use 5 i the iomial theorem: (a ) 5 5 i0 a 5i i (5 i)!i! WARM-UPS True or false? Explai your aswer. 1. There are 12 terms i the expasio of (a ) 12. False 2. The seveth term of (a ) 12 is a multiple of a 5 7. False 3. For all values of x, (x 2) 5 x False 4. I the expasio of (x 5) 8 the sigs of the terms alterate. True 5. The eighth lie of Pascal s triagle is True 6. The sum of the coefficiets i the expasio of (a ) 4 is 2 4. True 7. (a ) 3 3 3! a 3i i True i0 (3 i)! i! 8. The sum of the coefficiets i the expasio of (a ) is 2. True 9. 0! 1! True 7! True 5!2!

5 656 (12-30) Chapter 12 Sequeces ad Series EXERCISES Readig ad Writig After readig this sectio, write out the aswers to these questios. Use complete seteces. 1. What is a iomial expasio? The sum otaied for a power of a iomial is called a iomial expasio. 2. What is Pascal s triagle ad how do you make it? Pascal s triagle gives the coefficiets for (a ) for 1, 2, 3, ad so o. Each row starts ad eds with a 1. The other terms are otaied y addig the closest two terms i the precedig row. 3. What does! mea? The expressio! is the product of the positive itegers from 1 through. 4. What is the iomial theorem? The iomial theorem gives the expasio of (a ). Evaluate each expressio. 6! !3! 5!1! 8! ! 2!7! Use the iomial theorem to expad each iomial. See Examples 1 ad (r t) 5 r 5 5r 4 t 10r 3 t 2 10r 2 t 3 5rt 4 t (r t) 6 r 6 6r 5 t 15r 4 t 2 20r 3 t 3 15r 2 t 4 6rt 5 t (m ) 3 m 3 3m 2 3m (m ) 4 m 4 4m 3 6m 2 2 4m (x 2a) 3 x 3 6ax 2 12a 2 x 8a (a 3) 4 a 4 12a 3 54a a (x 2 2) 4 x 8 8x 6 24x 4 32x (x 2 a 2 ) 5 x 10 5a 2 x 8 10a 4 x 6 10a 6 x 4 5a 8 x 2 a (x 1) 7 x 7 7x 6 21x 5 35x 4 35x 3 21x 2 7x (x 1) 6 x 6 6x 5 15x 4 20x 3 15x 2 6x 1 Write out the first four terms i the expasio of each iomial. See Examples 1 ad (a 3) 12 a 12 36a a a (x 2y) 10 x 10 20x 9 y 180x 8 y 2 960x 7 y (x 2 5) 9 x 18 45x x 14 10,500x (x 2 1) 20 x 40 20x x x (x 1) 22 x 22 22x x x (2x 1) 8 256x x x x x y a a 2 x x y 5 x 8 2 y x 7 3 y a 7 7 a a Fid the idicated term of the iomial expasio. See Examples 3 ad (a w) 13, 6th term 28. (m ) 12, 7th term 1287a 8 w 5 924m (m ) 16, 8th term 30. (a ) 14, 6th term 11,440m a (x 2y) 8, 4th term 32. (3a ) 7, 4th term 448x 5 y a (2a 2 ) 20, 7th term 34. (a 2 w 2 ) 12, 5th term 635,043,840a a 16 w 8 Write each expasio usig summatio otatio. See Example (a m) (z w) 13 8 i0 8! a 8i m i ! z 13i w i (8 i)!i! (13 i)! i! i0 37. (a 2x) (w 3m) 7 5 i0 ( (5 a 2) i 5i i)! i! xi 7 i 7! (3) w 7i m i (7 i)! i! i0 GETTING MORE INVOLVED 39. Discussio. Fid the triomial expasio for (a c) 3 y usig x a ad y c i the iomial theorem. a 3 3 c 3 3a 2 3a 2 c 3a 2 3ac c 3c 2 6ac 40. Discussio. What prolem do you ecouter whe tryig to fid the fourth term i the iomial expasio for (x y) 120? How ca you overcome this prolem? Fid the fifth term i the iomial expasio for (x 2y) ,840x 117 y 3, 62,739,600x 96 y 4 COLLABORATIVE ACTIVITIES Lotteries Are Series(ous) Roerto ad his rother-i-law Horatio each have a child who will e graduatig from high school i 5 years. Each would like to uy his child a car for a graduatio preset. Horatio decides to uy two lottery tickets each week for the ext 5 years, hopig to wi ad uy a ew car for his child. The lottery tickets are $2.00 each at the local coveiece store. Roerto, who does t Groupig: Two to four studets per group Topic: Sequeces ad series elieve i lotteries, decides to set aside $4.00 each week ad to deposit this moey i a savigs accout each quarter for the ext 5 years to uy a used car. He fids a ak that will pay 5% yearly iterest compouded quarterly.

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

1.3 Binomial Coefficients

1.3 Binomial Coefficients 18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

2.7 Sequences, Sequences of Sets

2.7 Sequences, Sequences of Sets 2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Literal Equations and Formulas

Literal Equations and Formulas . Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif.

SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif. SUMS OF -th OWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION N.A. Draim, Vetura, Calif., ad Marjorie Bickell Wilcox High School, Sata Clara, Calif. The quadratic equatio whose roots a r e the sum or differece

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Checklist. Assignment

Checklist. Assignment Checklist Part I Fid the simple iterest o a pricipal. Fid a compouded iterest o a pricipal. Part II Use the compoud iterest formula. Compare iterest growth rates. Cotiuous compoudig. (Math 1030) M 1030

More information

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9

Counting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9 Coutig II Sometimes we will wat to choose objects from a set of objects, ad we wo t be iterested i orderig them. For example, if you are leavig for vacatio ad you wat to pac your suitcase with three of

More information

THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE and R 2 THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Section 6.1 Radicals and Rational Exponents

Section 6.1 Radicals and Rational Exponents Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Radicals and Fractional Exponents

Radicals and Fractional Exponents Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example Chapter 3 Matheatics of Fiace Sectio 2 Copoud ad Cotiuous Copoud Iterest Copoud Iterest Ulike siple iterest, copoud iterest o a aout accuulates at a faster rate tha siple iterest. The basic idea is that

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

2.3. GEOMETRIC SERIES

2.3. GEOMETRIC SERIES 6 CHAPTER INFINITE SERIES GEOMETRIC SERIES Oe of the most importat types of ifiite series are geometric series A geometric series is simply the sum of a geometric sequece, Fortuately, geometric series

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

x : X bar Mean (i.e. Average) of a sample

x : X bar Mean (i.e. Average) of a sample A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Snap. Jenine's formula. The SNAP probability is

Snap. Jenine's formula. The SNAP probability is Sap The game of SNAP is played with stadard decks of cards. The decks are shuffled ad cards are dealt simultaeously from the top of each deck. SNAP is called if the two dealt cards are idetical (value

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

hp calculators HP 12C Platinum Statistics - correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient

hp calculators HP 12C Platinum Statistics - correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient HP 1C Platium Statistics - correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics - correlatio coefficiet

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

Example: Is a string a palindrome? Recursion. Count the e s in a string. Recursion as a math technique 12/02/2013. Example: Sum the digits in a number

Example: Is a string a palindrome? Recursion. Count the e s in a string. Recursion as a math technique 12/02/2013. Example: Sum the digits in a number Example: Sum the digits i a umber /** retur sum of digits i, give >= 0 */ public static it sum(it ) { if ( < 0) retur ; sum calls itself! // has at least two digits: // retur first digit + sum of rest

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University

Sequences, Series and Convergence with the TI 92. Roger G. Brown Monash University Sequeces, Series ad Covergece with the TI 92. Roger G. Brow Moash Uiversity email: rgbrow@deaki.edu.au Itroductio. Studets erollig i calculus at Moash Uiversity, like may other calculus courses, are itroduced

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

A function f whose domain is the set of positive integers is called a sequence. The values

A function f whose domain is the set of positive integers is called a sequence. The values EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Example Consider the following set of data, showing the number of times a sample of 5 students check their per day:

Example Consider the following set of data, showing the number of times a sample of 5 students check their  per day: Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

Covariance and correlation

Covariance and correlation Covariace ad correlatio The mea ad sd help us summarize a buch of umbers which are measuremets of just oe thig. A fudametal ad totally differet questio is how oe thig relates to aother. Stat 0: Quatitative

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis

Key Ideas Section 8-1: Overview hypothesis testing Hypothesis Hypothesis Test Section 8-2: Basics of Hypothesis Testing Null Hypothesis Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, P-value Type I Error, Type II Error, Sigificace Level, Power Sectio 8-1: Overview Cofidece Itervals (Chapter 7) are

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Introductory Explorations of the Fourier Series by

Introductory Explorations of the Fourier Series by page Itroductory Exploratios of the Fourier Series by Theresa Julia Zieliski Departmet of Chemistry, Medical Techology, ad Physics Momouth Uiversity West Log Brach, NJ 7764-898 tzielis@momouth.edu Copyright

More information