Mathematical goals. Starting points. Materials required. Time needed

Size: px
Start display at page:

Download "Mathematical goals. Starting points. Materials required. Time needed"

Transcription

1 Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios of algebraic expressios; recogise the order of operatios; recogise equivalet expressios; uderstad the distributive laws of multiplicatio ad divisio over additio (expasio of brackets). This uit develops the ideas preseted i N5 Uderstadig the laws of arithmetic. Learers will eed to recall how to fid the area of simple compoud shapes made from rectagles ad simple idices, ad to uderstad the differece betwee 3 ad 3. For each learer you will eed: mii-whiteboard. For each small group of learers you will eed: Card set A Algebraic expressios; Card set B Explaatios i words; Card set C Tables of umbers; Card set D Areas of shapes; glue stick; felt tip pes; large sheet of paper for makig a poster. From 1 to hours. If your sessios are ormally shorter tha this, you ca split this sessio ito two. Level of challege: C A1 Iterpretig algebraic expressios A1 1

2 Level of challege: C A1 Iterpretig algebraic expressios Suggested approach Begiig the sessio Hold a short questio ad aswer sessio, usig mii-whiteboards, to revise how the order of operatios is represeted algebraically. Show me a algebraic expressio that meas: Multiply by 3, the add 4. Add 4 to, the multiply your aswer by 3. Add to, the divide your aswer by 4. Multiply by, the multiply your aswer by 4. Multiply by, the square your aswer. Workig i groups (1) Arrage learers i pairs or threes. Give each group Card set A Algebraic expressios ad Card set B Explaatios i words. Ask learers to take turs at matchig cards ad explaiig their reasos for each matchig. Poit out that some cards are missig. Learers will eed to make these extra cards themselves. The activity is desiged to help learers iterpret the symbols ad realise that the symbolism defies the order of operatios. Some learers may otice that some expressios are equivalet, e.g. ( + 3) ad +. Do ot commet o this at this stage. Now give learers Card set C Tables of umbers ad ask them to match these to Card sets A ad B. Some tables have umbers missig. Learers will eed to work these out. Learers will soo otice that there are fewer tables tha algebraic expressios. This is because some tables match more tha oe expressio. Allow learers time to discover this for themselves. This activity is desiged to ecourage learers to substitute ito expressios ad thus, agai, to iterpret their meaig. At this stage, they will begi to otice that several expressios are equivalet, but they may ot realise why. For learers who fiish quickly, ask them to fid out if the pairs of expressios always give the same aswer, eve whe fractios or decimals are substituted. Push them further to explai why these pairs match for all umbers. Ecourage those who struggle to substitute umbers for letters i the algebraic expressios. A1

3 Reviewig ad extedig learig (1) Ask learers to suggest reasos why differet expressios always appear to give the same aswer. (You do t eed to provide aswers yourself at this stage). Ca you geerate additioal examples of your ow? Voluteers may like to offer suggestios o the board. Leave ope the questio of why expressios are equivalet. The ext part of the sessio will take these ideas further, so they do ot eed to be resolved at this poit. (If you ru this over two sessios, this would be a good poit to break off.) Workig i groups () Begi this part of the sessio by cosiderig just the Algebraic expressios cards (Set A). Ask learers to try to remember which expressios wet together/were equivalet. If they have forgotte, they should try substitutig some umbers of their ow for. This will ecourage them to iterpret the expressios without the help of the Explaatios i words cards (Set B). Now had out Card set D Areas of shapes. Ask learers to match these with the cards i Set A Algebraic expressios. Whe learers reach agreemet, they should paste their cards oto a large sheet of paper, to make a poster. They should write o the poster why the areas show that differet algebraic expressios are equivalet. These posters may the be displayed for the fial whole group discussio. Reviewig ad extedig learig () Hold a whole group discussio to review what has bee leared durig this sessio. Ask pairs of learers to preset their posters. Use mii-whiteboards ad questioig to begi to geeralise the learig. Draw me a area that shows this expressio: 3(x + 4). Write me a differet expressio that gives the same area. Draw me a area that shows this expressio: (4y). Write me a differet expressio that gives the same area. Draw me a area that shows this expressio: (z + 5). Write me a differet expressio that gives the same area. Level of challege: C A1 Iterpretig algebraic expressios A1 3

4 Level of challege: C A1 Iterpretig algebraic expressios What learers might do ext Further ideas Draw me a area that shows this expressio: w +. Write me a differet expressio that gives the same area. What rules have you foud for rearragig expressios? Ask learers if they ca draw diagrams that might show a set of expressios cotaiig subtractios, such as the followig: (x 3) (x + 3)(x 3) x 9 (x 3) x x + 9 Learers might cotribute their ow questios as a homework activity ad evaluate the work of other learers as a follow-up. This activity uses multiple represetatios to deepe uderstadig of algebra. This type of activity may be used i ay topic where a rage of represetatios is used. Examples i this pack iclude: SS SS7 S5 S Represetig 3D shapes; Trasformig shapes; Iterpretig bar charts, pie charts, box ad whisker plots; Iterpretig frequecy graphs, cumulative frequecy graphs, box ad whisker plots. A1 4

5 A1 Card set A Algebraic expressios E1 E E E4 3 + A1 Iterpretig algebraic expressios E5 ( + 3) E + E7 E8 (3) ( + ) E E E11 E1 + + E13 E14 A1 5

6 A1 Card set B Explaatios i words W1 W3 Multiply by two, the add six. Add six to, the multiply by two. W W4 Multiply by three, the square the aswer. Add six to, the divide by two. A1 Iterpretig algebraic expressios W5 Add three to, the multiply by two. W Add six to, the square the aswer. W7 Multiply by two, the add twelve. W8 Divide by two, the add six. W9 Square, the add six. W10 Square, the multiply by ie. W11 W1 W13 W14 A1

7 A1 Card set C Tables of umbers T As T As A1 Iterpretig algebraic expressios T3 T As As T5 T As As T7 T As 4 5 As A1 7

8 A1 Card set D Areas of shapes A1 A 3 A1 Iterpretig algebraic expressios A3 A4 A5 A A7 A8 1 A1 8

Interpreting Algebraic Expressions

Interpreting Algebraic Expressions CONCEPT DEVELOPMENT Mathematics Assessmet Project CLASSROOM CHALLENGES A Formative Assessmet Lesso Iterpretig Algebraic Expressios Mathematics Assessmet Resource Service Uiversity of Nottigham & UC Berkeley

More information

Revising algebra skills. Jackie Nicholas

Revising algebra skills. Jackie Nicholas Mathematics Learig Cetre Revisig algebra skills Jackie Nicholas c 005 Uiversity of Sydey Mathematics Learig Cetre, Uiversity of Sydey 1 1 Revisio of Algebraic Skills 1.1 Why use algebra? Algebra is used

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

Grade 2. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 2. Strand: Number Specific Learning Outcomes It is expected that students will: [C] Commuicatio [PS] Problem Solvig [CN] Coectios [R] Reasoig [ME] Metal Mathematics [T] Techology ad Estimatio [V] Visualizatio 2.N.1. 2.N.2. 2.N.3. 2.N.4. Strad: Number Specific Learig Outcomes It is

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Grade 3. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 3. Strand: Number Specific Learning Outcomes It is expected that students will: [C] Commuicatio [PS] Problem Solvig [CN] Coectios [R] Reasoig [ME] Metal Mathematics [T] Techology ad Estimatio [V] Visualizatio 3.N.1. 3.N.2. Strad: Number Specific Learig Outcomes It is expected that

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Geometric Sequences. Essential Question How can you use a geometric sequence to describe a pattern?

Geometric Sequences. Essential Question How can you use a geometric sequence to describe a pattern? . Geometric Sequeces Essetial Questio How ca you use a geometric sequece to describe a patter? I a geometric sequece, the ratio betwee each pair of cosecutive terms is the same. This ratio is called the

More information

Now that we know what our sample looks like, we d like to be able to describe it numerically.

Now that we know what our sample looks like, we d like to be able to describe it numerically. Descriptive Statistics: Now that we kow what our sample looks like, we d like to be able to describe it umerically. I other words, istead of havig a lot of umbers (oe for each record), we d like to be

More information

Intro to Sequences / Arithmetic Sequences and Series Levels

Intro to Sequences / Arithmetic Sequences and Series Levels Itro to Sequeces / Arithmetic Sequeces ad Series Levels Level : pg. 569: #7, 0, 33 Pg. 575: #, 7, 8 Pg. 584: #8, 9, 34, 36 Levels, 3, ad 4(Fiboacci Sequece Extesio) See Hadout Check for Uderstadig Level

More information

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1

Mocks.ie Maths LC HL Further Calculus mocks.ie Page 1 Maths Leavig Cert Higher Level Further Calculus Questio Paper By Cillia Fahy ad Darro Higgis Mocks.ie Maths LC HL Further Calculus mocks.ie Page Further Calculus ad Series, Paper II Q8 Table of Cotets:.

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Laws of Exponents Learning Strategies

Laws of Exponents Learning Strategies Laws of Epoets Learig Strategies What should studets be able to do withi this iteractive? Studets should be able to uderstad ad use of the laws of epoets. Studets should be able to simplify epressios that

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Arithmetic Sequences

Arithmetic Sequences . Arithmetic Sequeces Essetial Questio How ca you use a arithmetic sequece to describe a patter? A arithmetic sequece is a ordered list of umbers i which the differece betwee each pair of cosecutive terms,

More information

Solving Inequalities

Solving Inequalities Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK-12

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

The interval and radius of convergence of a power series

The interval and radius of convergence of a power series The iterval ad radius of covergece of a power series Bro. David E. Brow, BYU Idaho Dept. of Mathematics. All rights reserved. Versio 1.1, of April, 014 Cotets 1 Itroductio 1 The ratio ad root tests 3 Examples

More information

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i,

Example: Consider the sequence {a i = i} i=1. Starting with i = 1, since a i = i, Sequeces: Defiitio: A sequece is a fuctio whose domai is the set of atural umbers or a subset of the atural umbers. We usually use the symbol a to represet a sequece, where is a atural umber ad a is the

More information

STATISTICS AND PROBABILITY

STATISTICS AND PROBABILITY CHAPTER 4 STATISTICS AND PROBABILITY (A) Mai Cocepts ad Results Statistics Meaig of statistics, Primary ad secodary data, Raw/ugrouped data, Rage of data, Grouped data-class itervals, Class marks, Presetatio

More information

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The

Newton s method is a iterative scheme for solving equations by finding zeros of a function. The Usig Iterative Methods to Solve Equatios Newto s method is a iterative scheme for solvig equatios by fidig zeros of a fuctio. The f Newto iteratio 1 f fids the zeros of f by fidig the fied poit of g f

More information

GEOMETRIC SEQUENCES BY JAMES D. NICKEL

GEOMETRIC SEQUENCES BY JAMES D. NICKEL I a arithmetic sequece, a commo differece separates each term i the sequece. For example, i the sequece 5,, 5, 0, 5,, the commo differece betwee terms is 5. I a geometric sequece, you calculate each successive

More information

G r a d e. 5 M a t h e M a t i c s. Patterns and relations

G r a d e. 5 M a t h e M a t i c s. Patterns and relations G r a d e 5 M a t h e M a t i c s Patters ad relatios Grade 5: Patters ad Relatios (Patters) (5.PR.1) Edurig Uderstadigs: Number patters ad relatioships ca be represeted usig variables. Geeral Outcome:

More information

6.1 Evaluate nth Roots and Use Rational Exponents

6.1 Evaluate nth Roots and Use Rational Exponents 6.1 Evaluate th Roots ad Use Ratioal Expoets Goal Evaluate th roots ad study ratioal expoets. VOCABULARY th root of a For a iteger greater tha 1, if b = a, the b is a th root of a. Idex of a radical A

More information

Chapter 8: Confidence Intervals. Symbol (Best single point estimate) Population Mean µ Sample Mean x Population Standard Deviation

Chapter 8: Confidence Intervals. Symbol (Best single point estimate) Population Mean µ Sample Mean x Population Standard Deviation Last Name First Name Class Time Chapter 8-1 Chapter 8: Cofidece Itervals Parameters are calculatios based o usig data from the etire populatio. As a result, it is RARE to be able to successfully calculate

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

Sequences and Series Binomial Theorem

Sequences and Series Binomial Theorem Mrs. Turer s Precalculus page 0 Sequeces ad Series Biomial Theorem This is the Golde Spiral a special ratio that occurs i ature Name: Period: Mrs. Turer s Precalculus page 8. Sequeces ad Series Notes What

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Section Symmetric across a vertical line called the axis of symmetry that runs through the vertex.

Section Symmetric across a vertical line called the axis of symmetry that runs through the vertex. 1 Sectio 3.1 I. Quadratic Fuctio (Parabolas) f ( x) ax bx c, for a 0 Properties of Parabolas: 1. Symmetric across a vertical lie called the axis of symmetry that rus through the vertex.. Vertex- the maximum/miimum

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Final. Mark Scheme. Linear Mathematics 4365H. (Specification 4365) Paper 1 Higher Tier 43651H. General Certificate of Secondary Education June 2013

Final. Mark Scheme. Linear Mathematics 4365H. (Specification 4365) Paper 1 Higher Tier 43651H. General Certificate of Secondary Education June 2013 Versio 1.0 Geeral Certificate of Secodary Educatio Jue 013 Liear Mathematics 4365H (Specificatio 4365) Paper 1 Higher Tier 43651H Fial Mark Scheme Mark schemes are prepared by the Pricipal Examier ad cosidered,

More information

2 2 i. 8.3 POLAR FORM AND DEMOIVRE S THEOREM. Definition of Polar Form of a Complex Number

2 2 i. 8.3 POLAR FORM AND DEMOIVRE S THEOREM. Definition of Polar Form of a Complex Number SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 445. Describe the set of poits i the complex plae that satisfy the followig. (a) z 4 (b) z i (c) z i (d) z. (a) Evaluate for,,, 4, ad 5. (b) Calculate i 57

More information

Chapter 11: Sequences and Series

Chapter 11: Sequences and Series Algebra II Hoors Chapter : Sequeces ad Series Sequeces ad Summatio Notatio A sequece is a ordered list of umbers; for example,, /4, 5/9, 7/6, The graph of a sequece is a series of ucoected poits with domai,,,

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

Unit 25 Hypothesis Tests about Proportions

Unit 25 Hypothesis Tests about Proportions Uit 25 Hypothesis Tests about Proportios Objectives: To perform a hypothesis test comparig two populatio proportios Now that we have discussed hypothesis tests to compare meas we wat to discuss a hypothesis

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Unit 8 Rational Functions

Unit 8 Rational Functions Uit 8 Ratioal Fuctios Algebraic Fractios: Simplifyig Algebraic Fractios: To simplify a algebraic fractio meas to reduce it to lowest terms. This is doe by dividig out the commo factors i the umerator ad

More information

G r a d e. 2 M a t h e M a t i c s. statistics and Probability

G r a d e. 2 M a t h e M a t i c s. statistics and Probability G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

2. Introduction to Statistics and Sampling

2. Introduction to Statistics and Sampling . Defiitios. Itroductio to Statistics ad Samplig.. Populatio.. Sample..3 Probability..4 Cotiuous vs. discrete variables we will cocetrate o cotiuous variables. Graphical Represetatio of a Fiite Sample

More information

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov

Winter Camp 2012 Sequences Alexander Remorov. Sequences. Alexander Remorov Witer Camp 202 Sequeces Alexader Remorov Sequeces Alexader Remorov alexaderrem@gmail.com Warm-up Problem : Give a positive iteger, cosider a sequece of real umbers a 0, a,..., a defied as a 0 = 2 ad =

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

Bridging Units: Resource Pocket 4

Bridging Units: Resource Pocket 4 Bridgig Uits: Resource Pocket 4 Iterative methods for solvig equatios umerically This pocket itroduces the cocepts of usig iterative methods to solve equatios umerically i cases where a algebraic approach

More information

UNIT TWO EXPONENTS AND LOGARITHMS MATH 621A 20 HOURS

UNIT TWO EXPONENTS AND LOGARITHMS MATH 621A 20 HOURS UNIT TWO EXPONENTS AND LOGARITHMS MATH 621A 20 HOURS Revised May 16, 02 29 SCO: By the ed of grade 12, studets will be expected to: B23 uderstad the relatioship that exists betwee the arithmetic operatios

More information

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS

GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS GOOD PRACTICE CHECKLIST FOR INTERPRETERS WORKING WITH DOMESTIC VIOLENCE SITUATIONS I the sprig of 2008, Stadig Together agaist Domestic Violece carried out a piece of collaborative work o domestic violece

More information

3.4 The Water Park. A Solidify Understanding Task

3.4 The Water Park. A Solidify Understanding Task 16 3.4 The Water Park A Solidify Uderstadig Task CC BY Jeff Golde https://flic.kr/p/srgbdx Aly ad Daye work at a water park ad have to drai the water at the ed of each moth for the ride they supervise.

More information

CHAPTER 9: ESTIMATING THE VALUE OF A PARAMETER USING CONFIDENCE INTERVALS

CHAPTER 9: ESTIMATING THE VALUE OF A PARAMETER USING CONFIDENCE INTERVALS CHAPTER 9: ESTIMATING THE VALUE OF A PARAMETER USING CONFIDENCE INTERVALS 1 By: Wadi Dig 1. Poit estimate: is the value of a statistic that estimates the value of a parameter. For eample, the sample mea

More information

Understanding Rational Exponents and Radicals

Understanding Rational Exponents and Radicals x Locker LESSON. Uderstadig Ratioal Expoets ad Radicals Name Class Date. Uderstadig Ratioal Expoets ad Radicals Essetial Questio: How are radicals ad ratioal expoets related? A..A simplify umerical radical

More information

Grade 4. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 4. Strand: Number Specific Learning Outcomes It is expected that students will: 4.N.1. Grade 4 Strad: Number Specific Learig Outcomes It is expected that studets will: Represet ad describe whole umbers to 10 000, pictorially ad symbolically. [C, CN, V] 4.N.2. Compare ad order umbers

More information

Sum of Exterior Angles of Polygons TEACHER NOTES

Sum of Exterior Angles of Polygons TEACHER NOTES Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).

More information

If ( ), then this means that the 2002 of its conjugate. It is better to see

If ( ), then this means that the 2002 of its conjugate. It is better to see Problems from AMC 1 (Solutios) 1) Fid the umber of ordered pairs of real umbers ( ab, ) such that Solutio: e) a) 1001 b)100 c)001 d)00 e)004 a+ bi = a ib a+ ib 00 ( a + bi) = a bi. 00 th If ( ), the this

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Calculus B Practice Problems for Exam III

Calculus B Practice Problems for Exam III Calculus B Practice Problems for Eam III The upcomig eam o Friday, May will cover the material i sectios.,.5,.6,.7, ad.8. Note that the followig problems do ot represet all of the possible types of problems

More information

Russian Math Circle Problems

Russian Math Circle Problems Russia Math Circle Problems April 1, 2011 Istructios: Work as may problems as you ca. Eve if you ca t solve a problem, try to lear as much as you ca about it. Please write a complete solutio to each problem

More information

Mgr. ubomíra Tomková. Limit

Mgr. ubomíra Tomková. Limit Limit I mathematics, the cocept of a "limit" is used to describe the behaviour of a fuctio as its argumet either gets "close" to some poit, or as it becomes arbitrarily large; or the behaviour of a sequece's

More information

2. Introduction to Statistics and Sampling

2. Introduction to Statistics and Sampling 2. Itroductio to Statistics ad Samplig 2. Itroductio 2.. Defiitio of statistics, statistic 2.2.2 Why study Statistics? 2.2 Defiitios 2.2. Populatio 2.2.2 Sample 2.2.3 Probability 2.2.4 Cotiuous vs. discrete

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships

Biology 171L Environment and Ecology Lab Lab 2: Descriptive Statistics, Presenting Data and Graphing Relationships Biology 171L Eviromet ad Ecology Lab Lab : Descriptive Statistics, Presetig Data ad Graphig Relatioships Itroductio Log lists of data are ofte ot very useful for idetifyig geeral treds i the data or the

More information

Sources of Economic Growth Revised: January 12, 2007

Sources of Economic Growth Revised: January 12, 2007 Global Ecoomy Chris Edmod Sources of Ecoomic Growth Revised: Jauary 12, 2007 You will hear may reasos why coutries differ so widely i their levels ad growth rates of output, most of it speculatio. We impose

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Lecture 2: The real numbers

Lecture 2: The real numbers Lecture 2: The real umbers The purpose of this lecture is for us to develop the real umber system. This might seem like a very strage thig for us to be doig. It must seem to you that you have bee studyig

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

More information

This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Understanding Sampling Distributions: Statistics as Random Variables

This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Understanding Sampling Distributions: Statistics as Random Variables This week: Chapter 9 (will do 9.6 to 9.8 later, with Chap. 11) Uderstadig Samplig Distributios: Statistics as Radom Variables ANNOUNCEMENTS: Shadog Mi will give the lecture o Friday. See website for differet

More information

hp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases

hp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases Numbers i Differet Bases Practice Workig with Numbers i Differet Bases Numbers i differet bases Our umber system (called Hidu-Arabic) is a decimal system (it s also sometimes referred to as deary system)

More information

AQA Further Pure 4. Vectors. Section 4: Intersections and angles. Finding the intersection of a line and a plane

AQA Further Pure 4. Vectors. Section 4: Intersections and angles. Finding the intersection of a line and a plane AQA Further Pure 4 Vectors Sectio 4: Itersectios ad agles Notes ad Examples These otes cotai subsectios o Fidig the itersectio of a lie ad a plae The itersectio of two plaes The agle betwee a lie ad a

More information

4.1 Polynomial Functions and Models

4.1 Polynomial Functions and Models 41 Polyomial Fuctios ad Models Sectio 41 Notes Page 1 Polyomial Fuctio: a x a 1 x a x a 1 1 o The i the formula above is called the degree, ad this is the largest expoet of the polyomial A polyomial ca

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

ways to complete the second task after the first is completed, c ways to complete the third task after the first two have been completed,, and c

ways to complete the second task after the first is completed, c ways to complete the third task after the first two have been completed,, and c 9. Basic Combiatorics Pre Calculus 9. BASIC COMBINATORICS Learig Targets:. Solve coutig problems usig tree diagrams, lists, ad/or the multiplicatio coutig priciple 2. Determie whether a situatio is couted

More information

Chapter 9: Correlation and Regression: Solutions

Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

LINEST in Excel 2007

LINEST in Excel 2007 LINEST i Excel 2007 The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

5.3 Annuities. Question 1: What is an ordinary annuity? Question 2: What is an annuity due? Question 3: What is a sinking fund?

5.3 Annuities. Question 1: What is an ordinary annuity? Question 2: What is an annuity due? Question 3: What is a sinking fund? 5.3 Auities Questio 1: What is a ordiary auity? Questio : What is a auity due? Questio 3: What is a sikig fud? A sequece of paymets or withdrawals made to or from a accout at regular time itervals is called

More information

10.1 Mean and standard deviation single data

10.1 Mean and standard deviation single data Masterig the Calculator usig the Sharp EL-531WH 27 10. Statistics 10.1 Mea ad stadard deviatio sigle data The formula for the mea is x x ----- The formulas for the sample stadard deviatio are s x i x 2

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

Universität Duisburg-Essen FCE 1. Experiment 3. Flip-flops, Design of a counter

Universität Duisburg-Essen FCE 1. Experiment 3. Flip-flops, Design of a counter Uiversität Duisburg-Esse PRACTICAL TRAINING TO THE LECTURE FCE Experimet Flip-flops, Desig of a couter Name: First Name: Tutor: Matriculatio-Number: Group-Number: Date: All questios marked with to must

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 009() MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad diagram sheet. Please tur over Mathematics/P DoE/November

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

7.3 Estimating a Population Mean when Standard Deviation is Known:

7.3 Estimating a Population Mean when Standard Deviation is Known: 7.3 stimatig a Populatio Mea whe Stadard Deviatio is Kow: Objectives: 1. Fid critical values.. Determie margi of error. 3. Fid poit estimate for the populatio mea. 4. Costruct cofidece iterval for mea

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

SECTION 8-4 Binomial Formula

SECTION 8-4 Binomial Formula 8- Biomial Formula 581 poit of view it appears that he will ever fiish the race. This famous paradox is attributed to the Gree philosopher Zeo, 95 35 B.C. If we assume the ruer rus at 0 yards per miute,

More information

4.4 Monotone Sequences and Cauchy Sequences

4.4 Monotone Sequences and Cauchy Sequences 4.4. MONOTONE SEQUENCES AND CAUCHY SEQUENCES 3 4.4 Mootoe Sequeces ad Cauchy Sequeces 4.4. Mootoe Sequeces The techiques we have studied so far require we kow the limit of a sequece i order to prove the

More information

Section 6.1 Radicals and Rational Exponents

Section 6.1 Radicals and Rational Exponents Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

log X log X

log X log X LECTURE # 26 Geometric mea, Harmoic mea & relatioship betwee them Geometric mea Harmoic mea Relatio betwee the arithmetic, geometric ad harmoic meas Some other measures of cetral tedecy GEOMETRIC MEAN:

More information

11.1 Radical Expressions and Rational Exponents

11.1 Radical Expressions and Rational Exponents 1 m Locker LESSON 11.1 Radical Expressios ad Ratioal Expoets Name Class Date 11.1 Radical Expressios ad Ratioal Expoets Essetial Questio: How are ratioal expoets related to radicals ad roots? Resource

More information