NATIONAL SENIOR CERTIFICATE GRADE 11

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "NATIONAL SENIOR CERTIFICATE GRADE 11"

Transcription

1 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over

2 Mathematics/P DoE/November 007 INSTRUCTIONS AND INFORMATION Read the followig istructios carefully before aswerig the questios: This questio paper cosists of 0 questios. Aswer ALL the questios. Show clearly ALL calculatios, diagrams, graphs, etc. which you have used i determiig the aswers. A approved scietific calculator (o-programmable ad o-graphical) may be used, uless stated otherwise. If ecessary, aswers should be rouded off to TWO decimal places, uless stated otherwise. Number the aswers correctly accordig to the umberig system used i this questio paper. Diagrams are NOT ecessarily draw to scale. It is i your ow iterest to write legibly ad to preset the work eatly. A iformatio sheet with formulae is attached. Please tur over

3 Mathematics/P 3 DoE/November 007 QUESTION. Solve for x (correct to TWO decimal places where ecessary):.. (a) ( x + 3 )( x ) = x + (b) Hece or otherwise, solve for x if x + 3x 4 < 0 (3).. x + 3x = (5). Solve simultaeously for x ad y i the followig system of equatios: x + y = 3 ad x + y = 5xy (9).3 If f ( x) = x x, show by completig the square that ( x ) = ( x ) f. [5] QUESTION. Simplify: x 8x + 36x. Give: M = + x + 5 x.... Show that M is a ratioal umber if x =,5 Determie the values of x for which M is a real umber. (3) (3).3 Eri had to fid the product of 007 ad ad the calculate the sum of the digits of the aswer. Eri arrived at a aswer of. Is she correct? Show ALL the calculatios to motivate your aswer. (5) [5] Please tur over

4 Mathematics/P 4 DoE/November 007 QUESTION 3 The umber patter, 5,, 9, is such that the sequece of 'secod differeces' is a costat. 3. Determie the 5 th umber i the patter. () Derive a formula for the th umber i the patter. What is the 00 th umber i the patter? (7) () [0] QUESTION 4 A rubber ball is bouced from a height of 4 metres ad bouces cotiuously as show i the diagram below. Each successive bouce reaches a height that is half the previous height. 4 bouce bouce bouce If the patter of the maximum height reached durig each bouce cotiues, what maximum height will the ball reach durig the 6 th bouce? Determie a algebraic expressio for the maximum height reached i the th bouce. () 4.3 After how may bouces will the ball reach a maximum height of metres? 5 [0] Please tur over

5 Mathematics/P 5 DoE/November 007 QUESTION 5 5. After 4 years of reducig balace depreciatio, a asset has a 4 of its origial value. The origial value was R Calculate the depreciatio iterest rate, as a percetage. (Correct your aswer to decimal place.) (5) 5. Jabu ivests a certai sum of moey for 5 years. She receives iterest of % per aum compouded mothly for the first two years. The iterest rate chages to 4% per aum compouded semi-aually for the remaiig term. The moey grows to R at the ed of the 5-year period Calculate the effective iterest rate per aum durig the first year. Calculate how much moey Jabu ivested iitially. (6) 5.3 The expediture of the Departmet of Health (i billios of rads) is idicated i the followig table. (We take 003 as t = 0, 004 as t = ad so o.) Year Time (t), i years 0 3 Expediture (E), i billios of rads,5 3 3, Plot the four data poits i your aswer book, as accurately as you ca. () 5.3. Make a cojecture about the relatioship betwee the expediture ad time. () Use your cojecture to write dow the equatio of E as a fuctio of t. () Use your equatio to predict the expediture of the Departmet of Health i 00 (i billios of rads) () [] Please tur over

6 Mathematics/P 6 DoE/November 007 QUESTION 6 Below is a sketch graph of parabola, f, ad straight lie, g. P(; 8) is the turig poit of f. f cuts the y-axis at (0; 6) ad g cuts the y-axis at (0; ). f ad g itersect at B ad C. B is a poit o the x-axis y P(; 8) 6 f A O B g x > C 6. Show that f ( x) = x + 4x + 6. (6) 6. Calculate the average gradiet of ( x) f betwee x = ad x = 3. (3) 6.3 Show that the equatio of g is g ( x) = x. (3) Calculate the coordiates of C. (6) 6.5 If h(x) = f( x), explai how the graph of h may be obtaied from the graph of f. () 6.6 Write dow the equatio of h. () [] Please tur over

7 Mathematics/P 7 DoE/November 007 QUESTION 7 8 = x 8 Give: f ( x) Write dow the domai of f. For what value of x is f (x) = 0? Determie the value of p, if A (0; p) lies o the graph of f. Write dow the equatios of the asymptotes of f. Draw a eat sketch graph of f, idicatig the asymptotes ad itercepts with the axes, o the diagram sheet provided. () () () () [] QUESTION 8 The graph of ( ) x f x = + a. (a is a costat) passes through the origi as show below. y f O x Show that a =. Determie the value of f ( 5) correct to FIVE decimal places. Determie the value of x, if P (x; 0,5) lies o the graph of f. If the graph of f is shifted uits to the right to give the fuctio h, write dow the equatio of h. () () (3) () [9] Please tur over

8 Mathematics/P 8 DoE/November 007 QUESTION 9 Give the fuctio f (x) = cos (x 30º) for x [-360º; 360º]. O 0 Determie: 9. The period of the fuctio g, if g (x) = f (x) () 9. The rage of the fuctio h, if h (x) = f (x) () 9.3 The amplitude of the fuctio q, if q (x) = f (x) + () [6] Please tur over

9 Mathematics/P 9 DoE/November 007 QUESTION 0 Two fragraces A ad B are used to make the perfumes Laughter ad Joy. Laughter You require 3 g of fragrace A ad 4 g of fragrace B to produce litre of Laughter. Oe litre of Joy requires 9 g of fragrace A ad 6 g of fragrace B. At least 3 litres of Laughter eeds to be produced per week. At the begiig of a particular week the compay has 7 g of fragrace A ad 30 g of fragrace B. Let x ad y be the umber of litres of Laughter ad Joy respectively that are produced per week State algebraically, i terms of x ad y, the costraits that apply to this problem for this week. Represet the costraits graphically o the graph paper provided ad shade the feasible regio. If the profit o l of Laughter is R30 ad the profit o l of Joy is R50, express the profit, P, i terms of x ad y. Determie how may litres of each perfume must be produced i this week to esure a maximum profit. Calculate the maximum possible profit. TOTAL: (5) (8) () () [] 50

10 Mathematics/P DoE/November 007 NAME/EXAMINATION NUMBER: DIAGRAM SHEET QUESTION 0 0.

11 b ± x = b 4 ac a INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE A = P( + i) A = P( i) A = P( i) i= = A = P( + i) i= ( + ) i = ( a + ( i ) d ) = ( a + ( ) d ) i= i= ar x F = f i ( r ) a = r [( + i) ] i f ( x + h) f ( x) '( x) = lim h 0 h ; r = i a r i ar = ; < r < x[ ( + i) ] P = i d = ( x ) ( ) x + y y M x + x y + y ; y = mx + c y y = m x ) y y m = m = taθ x x ( x a) + ( y b) = r ( x I ABC: si a A b c = = a b c = + bc. cos A area ABC = ab. si C si B si C ( α + β ) = siα.cos β cosα. siα si( α β ) = siα.cos β cosα. siα si + cos ( α + β ) = cosα.cos β siα. si β cos ( α β ) = cosα.cos β + siα. si β cos α si α cos α = si α si α = siα. cosα cos α ( xi x) = i= fx x ( A) P( A) = P(A or B) = P(A) + P(B) P(A ad B) ( S ) =

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12

MATHEMATICS P1 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE GRADE 12 Mathematics/P1 1 Jue 014 Commo Test MATHEMATICS P1 COMMON TEST JUNE 014 NATIONAL SENIOR CERTIFICATE GRADE 1 Marks: 15 Time: ½ hours N.B: This questio paper cosists of 7 pages ad 1 iformatio sheet. Please

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 009() MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad diagram sheet. Please tur over Mathematics/P DoE/November

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 0 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages, diagram sheet ad iformatio sheet. Please tur over Mathematics/P DBE/November 0

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

SENIOR CERTIFICATE EXAMINATIONS

SENIOR CERTIFICATE EXAMINATIONS SENIOR CERTIFICATE EXAMINATIONS MATHEMATICS P1 016 MARKS: 150 TIME: 3 hours This questio paper cosists of 9 pages ad 1 iformatio sheet. Please tur over Mathematics/P1 DBE/016 INSTRUCTIONS AND INFORMATION

More information

NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE 11 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a -page formula sheet. Please tur over Mathematics/P DoE/Exemplar

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P FEBRUARY/MARCH 009 MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad 3 diagram sheets. Please tur over Mathematics/P DoE/Feb.

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NTIONL SENIOR ERTIFITE GRDE MTHEMTIS P EXEMPLR 04 MRKS: 50 TIME: 3 hours This questio paper cosists of pages, 3 diagram sheets ad iformatio sheet. Please tur over Mathematics/P DE/04 NS Grade Eemplar INSTRUTIONS

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

More information

MESSAGE TO TEACHERS: NOTE TO EDUCATORS:

MESSAGE TO TEACHERS: NOTE TO EDUCATORS: MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers

More information

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x

Exponential function: For a > 0, the exponential function with base a is defined by. f(x) = a x MATH 11011 EXPONENTIAL FUNCTIONS KSU AND THEIR APPLICATIONS Defiitios: Expoetial fuctio: For a > 0, the expoetial fuctio with base a is defied by fx) = a x Horizotal asymptote: The lie y = c is a horizotal

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

MATH 083 Final Exam Review

MATH 083 Final Exam Review MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

More information

MATHEMATICS P2 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE

MATHEMATICS P2 COMMON TEST JUNE 2014 NATIONAL SENIOR CERTIFICATE Mathematics/P Jue 04 Cmm Test MATHEMATICS P COMMON TEST JUNE 04 NATIONAL SENIOR CERTIFICATE GRADE Marks: 5 Time: ½ hurs N.B. This questi paper csists f 9 pages, diagram sheets ad ifrmati sheet. Mathematics/P

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

More information

Checklist. Assignment

Checklist. Assignment Checklist Part I Fid the simple iterest o a pricipal. Fid a compouded iterest o a pricipal. Part II Use the compoud iterest formula. Compare iterest growth rates. Cotiuous compoudig. (Math 1030) M 1030

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Exponential Growth and Decay

Exponential Growth and Decay Sectio 3. Expoetial Growth ad Decay 010 Kiryl Tsishchaka Expoetial Growth ad Decay I may atural pheomea such as populatio growth, radioactive decay, etc.), quatities grow or decay at a rate proportioal

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

2 Time Value of Money

2 Time Value of Money 2 Time Value of Moey BASIC CONCEPTS AND FORMULAE 1. Time Value of Moey It meas moey has time value. A rupee today is more valuable tha a rupee a year hece. We use rate of iterest to express the time value

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

INTRODUCTION TO ENGINEERING ECONOMICS. Types of Interest

INTRODUCTION TO ENGINEERING ECONOMICS. Types of Interest INTRODUCTION TO ENGINEERING ECONOMICS A. J. Clark School of Egieerig Departmet of Civil ad Evirometal Egieerig by Dr. Ibrahim A. Assakkaf Sprig 2000 Departmet of Civil ad Evirometal Egieerig Uiversity

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

Math 152 Final Exam Review

Math 152 Final Exam Review Math 5 Fial Eam Review Problems Math 5 Fial Eam Review Problems appearig o your i-class fial will be similar to those here but will have umbers ad fuctios chaged. Here is a eample of the way problems selected

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Literal Equations and Formulas

Literal Equations and Formulas . Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum or

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Chapter One BASIC MATHEMATICAL TOOLS

Chapter One BASIC MATHEMATICAL TOOLS Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

The shaded region above represents the region in which z lies.

The shaded region above represents the region in which z lies. GCE A Level H Maths Solutio Paper SECTION A (PURE MATHEMATICS) (i) Im 3 Note: Uless required i the questio, it would be sufficiet to just idicate the cetre ad radius of the circle i such a locus drawig.

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

FI A CIAL MATHEMATICS

FI A CIAL MATHEMATICS CHAPTER 7 FI A CIAL MATHEMATICS Page Cotets 7.1 Compoud Value 117 7.2 Compoud Value of a Auity 118 7.3 Sikig Fuds 119 7.4 Preset Value 122 7.5 Preset Value of a Auity 122 7.6 Term Loas ad Amortizatio 123

More information

Alternatives To Pearson s and Spearman s Correlation Coefficients

Alternatives To Pearson s and Spearman s Correlation Coefficients Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

More information

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR

USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR USING STATISTICAL FUNCTIONS ON A SCIENTIFIC CALCULATOR Objective:. Improve calculator skills eeded i a multiple choice statistical eamiatio where the eam allows the studet to use a scietific calculator..

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A-2

SOLUTION & ANSWER FOR KCET-2009 VERSION A-2 SOLUTION & ANSWER FOR KCET-9 VERSION A- [MATHEMATICS]. cos ec( a) cos ecd si a [ si( a) cos ec] + C Sol. : si[ ( a) sicos(-a) cos si( a) cos ec( a) cos ecd d si a si( a) [ cot( a) cot ] d si a si( a) +

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

Quadratics - Revenue and Distance

Quadratics - Revenue and Distance 9.10 Quadratics - Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

GRADE 12 SEPTEMBER 2014 MATHEMATICS P2

GRADE 12 SEPTEMBER 2014 MATHEMATICS P2 NATIONAL SENIOR CERTIFICATE GRADE 1 SEPTEMBER 014 MATHEMATICS P MARKS: 150 TIME: 3 hours *MATHE* This question paper consists of 15 pages, including diagram sheets and 1 information sheet. MATHEMATICS

More information

Time Value of Money, NPV and IRR equation solving with the TI-86

Time Value of Money, NPV and IRR equation solving with the TI-86 Time Value of Moey NPV ad IRR Equatio Solvig with the TI-86 (may work with TI-85) (similar process works with TI-83, TI-83 Plus ad may work with TI-82) Time Value of Moey, NPV ad IRR equatio solvig with

More information

Chapter 9: Correlation and Regression: Solutions

Chapter 9: Correlation and Regression: Solutions Chapter 9: Correlatio ad Regressio: Solutios 9.1 Correlatio I this sectio, we aim to aswer the questio: Is there a relatioship betwee A ad B? Is there a relatioship betwee the umber of emploee traiig hours

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n = Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b 00 0.0 poits Rewrite the fiite

More information

A Guide to the Pricing Conventions of SFE Interest Rate Products

A Guide to the Pricing Conventions of SFE Interest Rate Products A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Page 2 of 14 = T(-2) + 2 = [ T(-3)+1 ] + 2 Substitute T(-3)+1 for T(-2) = T(-3) + 3 = [ T(-4)+1 ] + 3 Substitute T(-4)+1 for T(-3) = T(-4) + 4 After i

Page 2 of 14 = T(-2) + 2 = [ T(-3)+1 ] + 2 Substitute T(-3)+1 for T(-2) = T(-3) + 3 = [ T(-4)+1 ] + 3 Substitute T(-4)+1 for T(-3) = T(-4) + 4 After i Page 1 of 14 Search C455 Chapter 4 - Recursio Tree Documet last modified: 02/09/2012 18:42:34 Uses: Use recursio tree to determie a good asymptotic boud o the recurrece T() = Sum the costs withi each level

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Distributions of Order Statistics

Distributions of Order Statistics Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1

More information

Bond Pricing Theorems. Floyd Vest

Bond Pricing Theorems. Floyd Vest Bod Pricig Theorems Floyd Vest The followig Bod Pricig Theorems develop mathematically such facts as, whe market iterest rates rise, the price of existig bods falls. If a perso wats to sell a bod i this

More information

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa

Fourier Analysis. f () t = + cos[5 t] + cos[10 t] + sin[5 t] + sin[10 t] x10 Pa Fourier Aalysis I our Mathematics classes, we have bee taught that complicated uctios ca ote be represeted as a log series o terms whose sum closely approximates the actual uctio. aylor series is oe very

More information

7.1 Finding Rational Solutions of Polynomial Equations

7.1 Finding Rational Solutions of Polynomial Equations 4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example

Chapter 3. Compound Interest. Section 2 Compound and Continuous Compound Interest. Solution. Example Chapter 3 Matheatics of Fiace Sectio 2 Copoud ad Cotiuous Copoud Iterest Copoud Iterest Ulike siple iterest, copoud iterest o a aout accuulates at a faster rate tha siple iterest. The basic idea is that

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Measures of Central Tendency

Measures of Central Tendency Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information