CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations


 Bennett Newton
 3 years ago
 Views:
Transcription
1 CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad hoc techique. However, oe very importat class of recurrece relatios ca be explicitly solved i a systematic way. These are the recurrece relatios that express the terms of a sequece as a liear combiatio of previous terms. Defiitio: A liear homogeeous recurrece relatio of degree k with costat coefficiets is a recurrece relatio of the form: a = c 1 a 1 + c a +L+ c k a k where c 1,c,c 3,K,c k are real umbers, ad c k 0. The recurrece relatio i the defiitio is liear sice the righthad side is a sum of multiple of the previous terms of the sequece. The recurrece relatio is homogeeous sice o terms of the recurrece relatio fail to ivolve a previous term of the sequece i some way. The coefficiets of the terms of the sequece are all costats, rather tha fuctios that deped o. The degree is k because a is expressed i terms of the previous k terms of the sequece. A cosequece of strog iductio is that a sequece satisfyig the recurrece relatio i the defiitio is uiquely determied by this recurrece relatio ad the k iitial coditio: a = c 1 a 1 + c a +L+ c k a k a 0 = C 0 a 1 = C 1 KK a k 1 = C k 1 Solvig the Little Mosters The basic approach for solvig liear homogeeous recurrece relatios is to look for solutios of the form a = r, where r is a costat. Note that a = r is a solutio to the recurrece if ad oly if: r = c 1 r 1 + c r + c 3 r 3 +L+ c k r k Whe both sides of the equatio are divided by r k ad the righthad side is subtracted from the left, we obtai the equivalet equatio: r k c 1 r k 1 c r k c 3 r k 3 L c k 1 r c k = 0
2 Cosequetly, the sequece with a = r is a solutio if ad oly if r is a solutio to this last equatio, which is called the characteristic equatio of the recurrece relatio. The solutios of this equatio are called characteristic roots of the recurrece relatio. As we ll see, these characteristic roots ca be used to give a explicit formula for all the solutios of the recurrece relatio. First, we should develop results that deal with liear homogeeous recurrece relatios with costat coefficiets of degree two. The results for secod order relatios ca be exteded to solve higherorder equatios. The mathematics ivolved i provig everythig is really messy, so eve though I ll refer to it i lecture, I do t wat to place it i here, because you might icorrectly thik you re resposible for kowig the proof, ad you re ot. Let s tur our udivided attetio to liear homogeeous recurrece relatios of degree two. First, cosider the case where there are two distict characteristic roots. A Fact Without Proof: Let c 1 ad c be real umbers. Suppose that r rc 1 c = 0 has two distict roots r 1 ad r. The the sequece { a } is a solutio of the recurrece relatio a = c 1 a 1 + c a if ad oly if a = b 1 r 1 + b r for = 0,1,,3,4,5,K where b 1 ad b are costats determied by the iitial coditios of the recurrece relatio. Problem: Fid a explicit solutio to the tilig recurrece relatio we developed last time. You may recall that it wet asomethig like this: T = T 1 + T T 0 = 1 T 1 = 1 Well, we surmise that the solutio will be a liear combiatio or terms havig the form T = r. Followig the rule from above, we just plug i T = r ito out recurrece relatio ad see what costraits are placed o r. Let s liste i: T = T 1 + T guess that T = r r = r 1 + r r = r + 1 r r 1= 0 r 1 = 1+ 5 ;r = 1 5 Well, so the guess that T = r is a good oe provided that r be equal to oe of the two roots above. I fact, ay liear combiatio of 1+ 5 ad iitial coditios for a momet that is, T = b 1 will also satisfy the recurrece if you igore the b for ay costat coefficiets as factors. It s oly whe you supply the iitial coditios that b 1 ad b are required to adopt a specific value. I fact, the iitial coditios here dictate that:
3 3 b b 1 + b = 1 + b 1 5 = 1 Ad after solvig for b 1 ad b do we fially arrive at the uique solutio to our recurrece problem: T = How very satisfyig. Problem: Fid a closed form solutio to the bit strig problem modeled i our last hadout. Welllllll, the recurrece relatio, save the iitial coditios, is exactly the same as it that for the tilig problem; that traslates to a solutio of the same basic form. But the fact that the iitial coditios are differet hits that the costats multiplyig the idividual terms: 1+ 5 B = b b ote same form, but possibly differet costats The differet iitial coditios place differet costrait o the values of b 1 ad b do we. Now the followig system of equatios must be solved: b b 1 + b = 1 + b 1 5 = We ed up with somethig like this as our solutio i this case: B = Problem: Solve the recurrece relatio give below J = J J 0 = 3J 1 = 5 You may be askig, Jerry, where i the world is the J 1 term? Relax it s i there it s just that its multiplyig coefficiet is zero, so I did t bother writig it i. It s still a homogeeous equatio of degree two, so I solve it like ay other recurrece of this type.
4 4 J = J J 0 = 3J 1 = 5 J = J r = 1 r 1 = 0 r 1 = 1;r = 1 J = b 1 ( 1) +b ( 1) =b 1 +b ( 1) Fuy little twist droppig the ( 1), sice it s trasparet to us ayway. b 1 + b = 5 b 1 b = 5 3 b 1 = 3,b = 5 3 J = ( 1) Solvig Coupled Recurrece Relatios The first recurreces hadout icluded examples where solutios ivolved coupled recurrece relatios. The circular Tower of Haoi Problem, the 3 tilig problem, the pillar problem, ad the Martia DNA problem were all complex eough to require (or at least beefit from) the ivetio of a secod coutig problem ad a secod recurrece variable. Remember the pillar recurrece? If ot, here it is oce more: 1 S = S 1 + S + 4T 1 = 0 = 1 0 T = 1 S 1 + T 1 = 0 = 1 Because S ad T are defied i terms of oe aother, it s possible to use the secod recurrece of the two to elimiate all occurreces or T from the first. It takes a algebra ad a little igeuity, but whe we rid of the secod variable, we are ofte left with a sigle recurrece relatio which ca be solved like other recurreces we ve see before. The above system of recurreces reduces to a sigle liear, homogeeous, costatcoefficiet equatio oce we get rid of T. Do t believe me? Read o, Thomas. Problem: Solve the above system of recurreces for S by elimiatig T ad solvig the liear equatio that results. I wat to completely elimiate all traces of T ad arrive at (what will tur out to be) a (cubic) recurrece relatio for just S, ad the solve it. First thigs first: We wat to get rid of the T 1 term from the recurrece relatio for S, ad to do that, I make the eat little observatio that the secod equality below follows from the first by replacig by 1: S = S 1 + S + 4T 1 S 1 = S + S 3 + 4T Subtractig the secod equatio from the first, we get:
5 5 ( ) ( S + S 3 + 4T ) S S 1 = S 1 + S + 4T 1 = S 1 S S 3 + 4T 1 4T S = 3S 1 S S 3 + 4T 1 4T ( ) = 3S 1 S S T 1 T Believe it or ot, this is progress, because I have somethig very iterestig to say about T 1 T it s always equal to S. Just look at the crafty maipulatios I work up from the T recurrece relatio: T = S 1 + T 1 T 1 = S + T T 1 T = S + T T = S How crafty! Now I ca eradicate ay metio of T from the S recurrece relatio, ad I do so likea this: S = 3S 1 S S 3 + 4( T 1 T ) = 3S 1 S S 3 + 4S = 3S 1 + 3S S 3 Therefore, a ucoupled recurrece relatio for S ca be expressed as follows: 1 S = S 1 + S 0 + 4T 1 = 9 3S 1 + 3S S 3 = 0 = 1 = 3 Admittedly, that was a lot of work, but this is pretty excitig, because we re o the verge of takig what is clearly a homogeeous, costatcoefficiet equatio ad comig up with a closed form solutio. As always, guess a solutio of the form S = a ad substitute to see what values of a make everythig work out regardless of the iitial coditios. More algebra: S S = a = 3S 1 + 3S S 3 S =a a = 3a 1 + 3a a 3 a 3 = 3a + 3a 1 0 = a 3 3a 3a + 1 ( ) ( )( a 3) 0 = ( a + 1) a 4a = ( a + 1) a + 3 a = 1, ± 3 That meas that the geeral solutio to our recurrece (igorig the iitial coditios) is ( ) + y( 3) + z 1 S = x + 3 require that: ( ), where x, y, ad z ca be ay real umbers. Boudary coditios
6 6 S 0 = x + y + z = 1 S 1 = ( + 3 )x + ( 3)y z = S = ( )x + ( 1 4 3)y + z = 9 This is a system of three liear equatios for three ukows, ad it admits exactly oe solutio. Solvig for x, y, ad z is a matter of algebra, ad after all that algebra is over, we coverge o a closed formula of S = ( ), which is ( ) ( 6 3 ) ( ) +1 rouded to the earest iteger. Neat! Problem: Revisit the Martia DNA problem, ad show that the umber of valid Martia DNA strads of legth is give as a + b = F 3 + (yes, the Fiboacci umber!) Let s brig back the recurrece that defied a ad b. 0 = 0 a = = 1 a 1 + b 1 1 = 0 b = 3 = 1 a 1 + 3b 1 Elimiate oe of the recurrece terms i order to get a closed solutio (though this time we ll ultimately eed to solve for both variables, because you re iterested i their sum.) a = a 1 + b 1 b = a 1 + 3b 1 Notice that the first oe tells us somethig about a a 1, so let s subtract a shifted versio of the secod equatio from the origial to get at somethig that s all b ad o a. b = a 1 + 3b 1 b 1 = a + 3b b b 1 = a 1 a ( ) + 3b 1 3b ( ) + 3b 1 3b b = b 1 + a 1 a The first equatio tells us that a 1 a = b. Substitutio yields b = b 1 + 4b + 3b 1 3b = 4b 1 + b The characteristic equatio here is r 4r 1 = 0 ; b = c 1 ( + 5 ) + c ( 5). Because b 0 = 1 ad b 1 = 3, we determie c 1, c by solvig the followig two equatios:
7 7 c 1 + c = 1 ( + 5)c 1 + ( 5)c = 3 c 1 = 5 + 5, c = 5 5. b = ( + 5) ( 5). You might thik you have to do the same thig for a, ad i theory you re right i that you eed to solve it, but we more or less have. Because b = a 1 + 3b 1 we actually kow that b = a 1 + 3b 1 a 1 = b 3b 1 a 1 = 1 b 3 b 1 a = 1 b +1 3 b a + b = 1 b +1 3 b + b = 1 b +1 1 b Recall that we re really just iterested i a + b, ad sice it ca be defied just i terms of the b, we get: a + b = 1 b +1 3 b + b = 1 b +1 1 b = 1 = 1 = 1 = = ( + 5) (( + 5) 1) ( + 5) ( 1 + 5) ( + 5) ( + 5) ( + 5) ( 5) (( 5) 1) 5 ( 5) ( 1 5) 5 ( 5) ( ) ( + 5) ( ) ( 5) That s typically the closedform you d leave it i, but we also wat to show that a + b = F 3 +. Here goes:
8 8 F 3 + = 1 5 = 1 5 = 1 5 = = = = ( + 5) ( + 5) ( + 5) ( + 5) ( + 5) Therefore, a + b = F 3 +, ad we rejoice. ( + 5) ( + 5) ( + 5) Problem: What about the Circular Tower of Haoi recurrece? Why ca t we solve that oe as easily? Well, you probably already oticed that both the pillar ad the DNA recurreces did t have ay ihomogeeous terms aywhere. That s ot the case with the Circular Tower of Haoi recurrece, so while we are certaily ivited to elimiate oe of the variables from the set of recurreces, there s ot much hope for solvig it like we did for Martia DNA. Q = 0; R if = 0 if > 0 R = 0; Q + Q if = 0 if > 0 Clearly, it s a piece of cake to defie Q i terms of previous Qs, but these 1s just are t goig to go away. so that Q = R ( ) + 1 = Q 1 + Q + 1 = Q 1 + Q Q = 1 Q + Q if = 0 if = 1 if > 1 We re sorta bummig because of that ihomogeeous 3. There is a trick to solvig this oe, but it s ot somethig I m formally goig to require you to kow, sice there s little pedagogical value i memorizig tricks. For those of you with othig to do o a Friday
9 9 ight, try substitutig Q = A 1 1 ito the above system (makig sure to adjust those base cases as well.) Solve for A, the take whatever you got there ad subtract 1 from it to get Q. Geeral Approach to Solvig all Liear FirstOrder Recurreces There is a geeral techique that ca reduce virtually ay recurrece of the form a T = b T 1 + c to a sum. The idea is to multiply both sides by a summatio factor, s, to arrive at s a T = s b T 1 + s c. This factor s is chose to make s b = s 1 a 1. The if we write S = s a T we have a sumrecurrece for S as: S = S 1 + s c Hece S = s 0 a 0 T 0 + s k c k = s 1b 1 T 0 + s k c k 1 k 1 T = s s a 1 b 1 T 0 + s k c k. 1 k 1 k ad the solutio to the origial recurrece becomes So, you ask: How ca we be clever eough to fid the perfect s? Well, the relatio s = s 1 a 1 be ufolded by repeated substitutio for the s i to tell us that the fractio: b ca s = a 1 a a 3 Ka 1 b b 1 b Kb (or ay coveiet costat multiple of this value) will be a suitable summatio factor. Problem: Solve V = 5 =0 V 1 + 3! 1 factor. by fidig the appropriate summatio Derivatio of the solutio just follows protocol. You're specifically told to use summatio factors here, so we should do that. Notice here that a = 1 ad b =, so that the summatio factor should be chose as: s = 1 1! = 1! V 0 = 5 for sure, but the recurrece formula V = V 1 + 3! becomes 1! V = 1 ( 1)! V Let T = 1! V for the time beig, just so we ca solve a easier recurrece relatio. We tackle T = T 1 + 3, ad would't you kow it: T = 3 + T 0 = ! V 0 = T = 1! V. We eed V =!T, so therefore we have that V =! ( 3 + 5). Woo!
10 0 =0 Problem: Solve C = summatio factor. C k 0 k 1 by fidig the appropriate Let s write out the recurreces for C ad C 1 a little more explicitly. C = C k 0 k 1 C 1 = + 1 C k 0 k Subtractig the secod oe from the first oe is a good idea, but oly after the multiply through by a factor that ll make each of the summatios equal to each other: C = C k 0 k 1 1 C 1 = = 1 + C k 0 k C k 0 k Subtractig the secod oe from the first, we arrive at: C 1 C 1 = C k 1+ 0 k 1 = + C 1 C = + 1 C 1 + C = ( + 1)C 1 + C k 0 k If we choose a summatio factor of s = a 1 a a 3 Ka 1 = ( 1) ( ) ( 3)K1 = b b 1 b Kb ( + 1)( 1)K3 through, we arrive at: + 1 ( ) C = ( + 1) ( ) C = C 1 + ( )C ( ) C + 1 = C ( + 1) + 1 ( ) ad multiply
11 If we let ( + 1)D = C, the we fially arrive at a equatio that looks reasoable: D = D Repeated substitutio yields the followig: D = D = D = D = D M 1 = D 0 + k k ( ) = H +1 1 = H = H +1 Recall that C = ( + 1)D, so that C = + 1 ( ) H = ( +1)H
Soving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationS. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationFactoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationCHAPTER 3 THE TIME VALUE OF MONEY
CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationProject Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments
Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 612 pages of text (ca be loger with appedix) 612 figures (please
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationUC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006
Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam
More informationGCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4
GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook Alevel Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5
More informationSolutions to Exercises Chapter 4: Recurrence relations and generating functions
Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose
More informationSolving equations. Pretest. Warmup
Solvig equatios 8 Pretest Warmup We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationNotes on exponential generating functions and structures.
Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a elemet set, (2) to fid for each the
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationTHE ABRACADABRA PROBLEM
THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationVladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT
Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationSystems Design Project: Indoor Location of Wireless Devices
Systems Desig Project: Idoor Locatio of Wireless Devices Prepared By: Bria Murphy Seior Systems Sciece ad Egieerig Washigto Uiversity i St. Louis Phoe: (805) 6985295 Email: bcm1@cec.wustl.edu Supervised
More informationAnnuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.
Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio  Israel Istitute of Techology, 3000, Haifa, Israel I memory
More informationQuestion 2: How is a loan amortized?
Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationA Recursive Formula for Moments of a Binomial Distribution
A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,
More informationTime Value of Money, NPV and IRR equation solving with the TI86
Time Value of Moey NPV ad IRR Equatio Solvig with the TI86 (may work with TI85) (similar process works with TI83, TI83 Plus ad may work with TI82) Time Value of Moey, NPV ad IRR equatio solvig with
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationCURIOUS MATHEMATICS FOR FUN AND JOY
WHOPPING COOL MATH! CURIOUS MATHEMATICS FOR FUN AND JOY APRIL 1 PROMOTIONAL CORNER: Have you a evet, a workshop, a website, some materials you would like to share with the world? Let me kow! If the work
More informationMMQ Problems Solutions with Calculators. Managerial Finance
MMQ Problems Solutios with Calculators Maagerial Fiace 2008 Adrew Hall. MMQ Solutios With Calculators. Page 1 MMQ 1: Suppose Newma s spi lads o the prize of $100 to be collected i exactly 2 years, but
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationSolutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork
Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the
More informationINVESTMENT PERFORMANCE COUNCIL (IPC)
INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks
More informationModified Line Search Method for Global Optimization
Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o
More informationProfessional Networking
Professioal Networkig 1. Lear from people who ve bee where you are. Oe of your best resources for etworkig is alumi from your school. They ve take the classes you have take, they have bee o the job market
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationA Mathematical Perspective on Gambling
A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal
More informationI. Why is there a time value to money (TVM)?
Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios
More informationA Faster ClauseShortening Algorithm for SAT with No Restriction on Clause Length
Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 4960 A Faster ClauseShorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationA Note on Sums of Greatest (Least) Prime Factors
It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423432 HIKARI Ltd, www.mhikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos
More informationThe Stable Marriage Problem
The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationPartial Di erential Equations
Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationDomain 1: Designing a SQL Server Instance and a Database Solution
Maual SQL Server 2008 Desig, Optimize ad Maitai (70450) 18004186789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a
More informationRemarques sur un beau rapport entre les series des puissances tant directes que reciproques
Aug 006 Traslatio with otes of Euler s paper Remarques sur u beau rapport etre les series des puissaces tat directes que reciproques Origially published i Memoires de l'academie des scieces de Berli 7
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationNotes on Combinatorics. Peter J. Cameron
Notes o Combiatorics Peter J Camero ii Preface: What is Combiatorics? Combiatorics, the mathematics of patters,, helps us desig computer etwors, crac security codes, or solve sudous Ursula Marti, VicePricipal
More informationEstimating Probability Distributions by Observing Betting Practices
5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,
More informationTime Value of Money. First some technical stuff. HP10B II users
Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More informationLecture 7: Stationary Perturbation Theory
Lecture 7: Statioary Perturbatio Theory I most practical applicatios the time idepedet Schrödiger equatio Hψ = Eψ (1) caot be solved exactly ad oe has to resort to some scheme of fidig approximate solutios,
More information