Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.


 Gerald Nash
 2 years ago
 Views:
Transcription
1 Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio). A cofidece iterval has three elemets. First there is the iterval itself, somethig like (123, 456). Secod is the cofidece level, somethig like 95%. Third there is the parameter beig estimated, somethig like the populatio mea, µ or the populatio proportio, p. I order to have a meaigful statemet, you eed all three elemets: (123, 456) is a 95% cofidece iterval for µ. Formulas: Geeral formula for cofidece itervals: estimate ± margi of error is for 90% cofidece, 1.96 for 95% cofidece, ad for 99% cofidece CI for a populatio mea (σ is kow ad > 30 or the variable is ormally distributed i the σ populatio) x ± (TI83: STAT TESTS 7:ZIterval) CI for a populatio mea (σ is ukow ad > 30 or the variable is ormally distributed i the populatio) s x ± t (TI83: STAT TESTS 8:TIterval) CI for a Populatio proportio (whe p$ 10 ad ( 1 p$) 10) $p x = p$ ± (TI83: STAT TESTS A:1PropZIterval) If you do t kow $p, use $p = 1 2 (coservative approach). Miimum required sample sie for a desired margi of error ad cofidece level: Whe it is a mea problem: = m σ 2 Whe it is a proportio problem: = p $( 1 p $) 2 1
2 Examples: 1. You wish to estimate, with 95% cofidece, the proportio of computers that eed repairs or have problems by the time the product is three years old. Your estimate must be accurate withi 3% of the true proportio. a. If o prelimiary estimate is available, fid the miimum sample sie required. If o prelimiary estimate is available, use the coservative choice: p $ = 05. m = 3% = = p p = 2 $( 1 $) 05. ( ) = Thus we eed at least 1112 computers to sample. (Remember: ALWAYS roud up!) b. Now suppose a prior study ivolvig less tha 100 computers foud that 19% of these computers eeded repairs or had problems by the time the product was three years old. Fid the miimum sample sie eeded. Now p $ = = p p = 2 $( 1 $) 019. ( ) = This is a whole umber, thus the miimum sample sie we eed is A college admiistrator would like to determie how much time studets sped o homework assigmets durig a typical week. A questioaire is set to a sample of = 100 studets ad their respose idicates a mea of 7.4 hours per week ad stadard deviatio of 3hours. (a) What is the poit estimate of the mea amout of homework for the etire studet populatio (i.e., what is the poit estimate for µ, the ukow populatio mea)? The poit estimate for the populatio mea is the sample mea. I this case it s 7.4 hours. (b) Now make a iterval estimate of the populatio mea so that you are 95% cofidet that the true mea is i your iterval (i.e., compute the 95% cofidece iterval). Coditios: radom sample? We do t really kow. > 30, so we ca assume by the CLT that the shape of the samplig distributio of the sample meas is approximately ormal. x = 7.4 hours, ad s = 3 hours. The populatio s.d. is ukow, we oly kow the sample s.d., so we eed to use the titerval. 2
3 s Usig x ± t ( t = 1.987) or the calculator: 8: TIterval The 95% cofidece iterval is (6.8, 8.0). That meas, we are 95% cofidet that the mea time ALL studets sped o homework assigmets durig a typical week is betwee 6.8 hours ad 8.0 hours. (c) Now compute the 99% cofidece iterval. Repeatig part b with t = 2.632, we get (6.6, 8.2). That meas, we are 99% cofidet that the mea time ALL studets sped o homework assigmets durig a typical week is betwee 6.6 hours ad 8.2 hours. (d) Compare your aswer to b ad c. Which cofidece iterval is wider, ad why? How is the width of the cofidece iterval related to the percetage/degree of cofidece? The 99% cofidece iterval is wider. If you wide the cofidece iterval of plausible values, you're more sure that the real parameter is i there somewhere. (e) Now compute the 95% cofidece iterval agai, but assume that = 50. Sice is still larger tha 30, we ca use the titerval agai. (t = 2.014) The 95% cofidece iterval with = 50 is (6.5, 8.3). (f) Compare your aswer to b ad e. Which cofidece iterval is wider, ad why? How is the width of the cofidece iterval related to the sie of the sample? The sample sie of 100 gives a smaller cofidece iterval tha the sample of sie 50. The larger your sample sie, the more sure you ca be that their aswers truly reflect the populatio. This idicates that for a give cofidece level, the larger your sample sie, the smaller your cofidece iterval. However, the relatioship is ot liear (i.e., doublig the sample sie does ot halve the cofidece iterval. Actually if we make the sample sie quadrupled (times 4), that would halve the cofidece iterval). 3. I Roosevelt Natioal Forest, the ragers took radom samples of live aspe trees ad measured the base circumferece of each tree. Assume that the circumfereces of the trees are ormally distributed. a. The first sample had 30 trees with a mea circumferece of iches, ad stadard deviatio of 4.63 iches. Fid a 95% cofidece iterval for the mea circumferece of aspe trees from this data. Coditios: radom sample checked, σ is ukow, ad =30 ad the circumfereces are ormally distributed, so we ca use the titerval. x = s = 4.63 = 30 3
4 s Usig x ± t (t = 2.045) or the calculator: 8: TIterval The 95% titerval is (13.98, 17.44). This meas, that we are 95% cofidet that the mea circumferece of ALL live aspe trees i Roosevelt Natioal Forest is betwee iches ad iches. That is, based o this sample. If we could measure the circumferece of ALL of the live aspe trees there, the we are 95% cofidet that the mea of all the measuremets would be betwee iches ad iches. Also, it meas that if we would take may, may samples of sie 30 of live aspe trees ad calculate a 95% cofidece iterval for each sample, about 95% of them would cotai the real, actual mea circumferece ad about 5% would miss it. But, of course, we do t kow which 5% would miss it. The ext sample had 100 trees with a mea of iches. Agai fid a 95% cofidece iterval for the mea circumferece of aspe trees from these data. Coditios: σ is ukow, ad > 30 ad the circumfereces are ormally distributed, so we ca use the titerval. x = s = 4.63 = 100 s Usig x ± t (t = 1.984) or the calculator: 8: TIterval The 95% titerval is (14.79, 16.63). This meas, that we are 95% cofidet that the mea circumferece of ALL live aspe trees i Roosevelt Natioal Forest is betwee iches ad iches. That is, based o this sample, if we could measure the circumferece of ALL the live aspe trees there, the we are 95% cofidet that the mea of all the measuremets would be betwee iches ad iches. The last sample had 300 trees with a mea of iches. Fid a 95% cofidece iterval from these data. Coditios: σ is ukow, ad > 30 ad the circumfereces are ormally distributed, so we ca use the titerval. x = s = 4.63 = 300 s Usig x ± t (t = 1.96) or the calculator: 8: TIterval The 95% titerval is (15.18, 16.24). 4
5 This meas, that we are 95% cofidet that the mea circumferece of ALL live aspe trees i Roosevelt Natioal Forest is betwee iches ad iches. That is, based o this sample, if we could measure the circumferece of ALL the live aspe trees there, the we are 95% cofidet that the mea of all the measuremets would be betwee iches ad iches. Fid the legth of each iterval of parts (a), (b) ad (c). Commet o how these legths chage as the sample sie icreases. The legth of the CI with = 30 is = 3.46 The legth of the CI with = 100 is = 1.84 The legth of the CI with = 300 is = The legth of the iterval gets smaller as the sample sie icreases. 4. I a article explorig blood serum levels of vitamis ad lug cacer risks (The New Eglad Joural of Medicie), the mea serum level of vitami E i the cotrol group was 11.9 mg/liter. There were 196 patiets i the cotrol group. (These patiets were free of all cacer, except possible ski cacer, i the subsequet 8 years). Assume that the stadard deviatio σ = 4.30 mg/liter. a. Fid a 95% cofidece iterval for the mea serum level of vitami E i all persos similar to the cotrol group. Coditios: Radom sample? We do t really kow, but let s assume they picked the subjects radomly. σ is kow, so we ca use the iterval. x = 11.9 σ = 4.30 = 196 σ Usig either x ± ( = 1.96) or the calculator: 7: ZIterval The 95% titerval is (11.3, 12.5). This meas, that we are 95% cofidet that the mea serum level of vitami E i the ALL cacer free patiets is betwee 11.3 mg/liter ad 12.5 mg/liter. That is, based o this sample, if we could measure the mea serum level of vitami E i ALL cacer free patiets (except possible ski cacer i the subsequet 8 years), the we are 95% cofidet that the mea of all the measuremets would be betwee 11.3 mg/liter ad 12.5 mg/liter. b. If you wated to estimate the mea serum level of vitami E, with 90% cofidece, ad a margi of error of o more tha 0.25 mg/liter, how large a sample would you eed? For the miimum sample sie we eed we ca use the formula: = m σ 2 5
6 = m = = σ 2 2 Thus, we would eed at least 801 cacer free patiets i our sample. 5. Suppose i a state with a large umber of voters that 56 out of 100 radomly surveyed voters favored Propositio 1. This is just a small sample of all the voters. Do you thik Propositio 1 passed? YES, but I am ot very sure, I would like more iformatio. a. Give a rage of plausible values for the proportio of all voters who favored Propositio 1. (That is, fid a 95% cofidece iterval) Our goal is to estimate the proportio of ALL voters who favored Propositio 1 (p). I our sample, 56 out of 100 favored the propositio, that is $p = 56/100 = 0.56 = 56%. x = 56 = 100 $p =0.56 Checkig coditios for CI: radom sample, p$ = 56 > 10 ad ( 1 p$) = 100( ) = 44 Coditios are satisfied. We use : p$ ± Thus, usig the formula above (with = 1.96), or usig the A:1PropZIt meu o the calculator, we get (0.462, 0.653). That is we are 95% cofidet that the proportio of ALL voters who favored Propostio 1 is betwee 46.2% ad 65.3%. Other samples of 100 voters would yield other 95% cofidece itervals. Most of these cofidece itervals (about 95% of them) would capture p, but a few of them (about 5%) would ot. b. The 95% cofidece iterval we just computed is rather wide ad does ot pipoit p to ay great extet. (I fact, we caot eve tell whether a majority voted for Propositio 1 Our ext example shows that we ca obtai a arrower cofidece iterval by takig a larger sample. Suppose i a state with a large umber of voters that 560 out of 1000 radomly surveyed voters favored Propositio 1. Give a rage of plausible values for the proportio of all voters who favored Propositio 1. Our goal is to estimate the proportio of ALL voters who favored Propositio 1 (p). I our sample, 560 out of 1000 favored the propositio, that is $p = 560/1000 = 0.56 = 56%. x = 560 = 1000 $p =0.56 6
7 Checkig coditios for CI: radom sample, p$ = 560 > 10 ad ( 1 p$) = 1000( ) = 440 > 10 Coditios are satisfied. We use : p$ ± Thus, usig the formula above (with = 1.96), or usig the A:1PropZIt meu o the calculator, we get (0.529, 0.591). That is, based o the results from our sample of sie 1000, we are 95% cofidet that the proportio of ALL voters who favored Propostio 1 is betwee 52.9% ad 59.1%. Notice that the sample sie of 1000 gives a much arrower cofidece iterval tha the sample sie of 100. I fact, with the larger sample, we ca be quite cofidet (about 95% of the time ayway), that a majority of the voters favored Propositio 1, sice the smaller edpoit of the samples 95% cofidece iterval, is greater tha oehalf. Bear i mid, however, that the larger sample may be more costly ad time cosumig tha the smaller oe. Now, how cofidet are you that Propositio 1 passed or failed? I d bet a small amout of moey that I am right. c. Forget the previous parts ow. Assume that you did t take ay samples yet. What sample sie you eed to use if you wat the margi of error to be at most 3% with 95% cofidece but you have o estimate of p? Because you do t have a estimate of p, use $p = 0.5. We wat the margi of error to be at most 3%, that is m = = p p = 196. $( 1 $) 05. ( ) = Thus, to get a margi of error to be at most 3%, we eed at least 1068voters i our sample. d. Now let s assume you did a pilot sample, i which 56 out of 100 voters said they favor Propositio 1. What sample sie you eed to use if you wat the margi of error to be at most 3% with 95% cofidece ow? Now we have a estimate of p from the pilot study, so we use $p = We wat the margi of error to be at most 3%, that is m = = p p = 196. $( 1 $) 056. ( ) = Thus, to get a margi of error to be at most 3%, we eed at least 1052 voters i our sample. 6. Sometimes a 95% cofidece iterval is ot eough. For example, i testig ew medical drugs or procedures, a 99% cofidece iterval may be required before the ew drug or procedure is approved for geeral use. For example, a ew drug for migraies might iduce isomia (difficulty of fallig asleep) i some patiets. If this side effect happes i too may patiets, the 7
8 drug might ot be approved. More precisely, if it could happe i more tha 5% of all the patiets, it wo t be approved. I a radom sample of 632 migraie patiets who took the ew pill, 19 of them experieced isomia. Based o this sample result, what would be your recommedatio, should the ew drug be approved or ot? We wat to estimate the proportio of ALL migraie patiets who would experiece isomia. The sample proportio, $p, is 19/632 = 0.03 = 3% We wat to calculate the 99% cofidece iterval based o this sample result. Let s check the coditios first: Radom sample, p$ = 19 > 10 ad ( 1 p$) = 613 > 10 Coditios are satisfied. We use : p$ ± Thus, usig the formula above (with = 2.575), or usig the A:1PropZIt meu o the calculator, we get (0.0126, ). Thus, based o this sample result, we are 99% cofidet that if we could test every migraie patiets who would take this pill, the proportio of them who would experiece isomia would be betwee about 1.26% ad 4.76%. Therefore, we ca recommed the approval of the ew drug. 7. The Gallup Poll survey orgaiatio coducted telephoe iterviews with a radomly selected atioal sample of 1,003 adults, 18 years ad older, o Mar. 35, I the survey they foud that 281 adults said that the atio s eergy situatio is very serious. Fid a 95 ad 99% cofidece iterval for the ukow proportio of Americas who felt that the atio s eergy situatio is very serious. x This is a proportio problem. $p = = Coditios: radom sample, checked, p$ = = 281 > 10, ( 1 p$) = 1003( 1 ) = 722 > % cofidece iterval: p$ ± ( = 1.96) Or usig the calculator: STAT TESTS A:1PropZIt, x = 213, = 1003, Clevel: 0.95 The 95% cofidece iterval is: (0.253, 0.308) We are 95% cofidet that the proportio of ALL adult i the U.S. who feel that the atio s eergy situatio is very serious is somewhere betwee 25.3% ad 30.8%. That is, if we could ask EVERY adult i the U.S. ad ask them what they thik about the atio s eergy situatio, we are 95% cofidet that 25.3%30.8% of them would thik that the eergy situatio is very serious. 8
9 99% cofidece iterval: p$ ± ( = 2.575) Or usig the calculator: STAT TESTS A:1PropZIt, x = 281, = 1003, Clevel: 0.99 The 95% cofidece iterval is: (0.244, 0.317) We are 99% cofidet that the proportio of ALL adult i the U.S. who feels that the atio s eergy situatio is very serious is somewhere betwee 24.4% ad 31.7%. That is, if we could ask EVERY adult i the U.S. ad ask them what they thik about the atio s eergy situatio, we are 95% cofidet that 24.4%31.7% of them would thik that the eergy situatio is very serious. Agai, as it should be, the 99% cofidece iterval is wider. 8. The dataset "Normal Body Temperature, Geder, ad Heart Rate" cotais 130 observatios of body temperature, alog with the geder of each idividual ad his or her heart rate. MINITAB provides the followig iformatio: Descriptive Statistics Variable N Mea Media Tr Mea StDev SE Mea TEMP Variable Mi Max Q1 Q3 TEMP Based o these results, costruct ad iterpret a 95% cofidece itervals for the mea body temperature. Accordig to these results, is the usual assumed ormal body temperature of 98.6 degrees Fahreheit withi the 95% cofidece iterval for the mea? This is a mea problem. Coditios: radom sample: we do t kow. No iformatio about that. > 30. Sice we do t kow sigma, the populatio s stadard deviatio, we eed to use the titerval. The sample mea is , ad the sample stadard deviatio is (both are provided above). Use t = s. The 95% cofidece iterval: x ± t = ± = ( , ) 130 Or usig the calculator: STAT TESTS 8: TIterval: highlight Stat, ad eter for the mea, for Sx, ad 130 for. We are 95% cofidet that the mea body temperature for ALL people is betwee ad degrees of Fahreheit. The usual assumed ormal body temperature of 98.6 degrees Fahreheit is ot withi the 95% cofidece iterval for the mea. 9
1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationReview for 1 sample CI Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review for 1 sample CI Name MULTIPLE CHOICE. Choose the oe alterative that best completes the statemet or aswers the questio. Fid the margi of error for the give cofidece iterval. 1) A survey foud that
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More informationReview for Test 3. b. Construct the 90% and 95% confidence intervals for the population mean. Interpret the CIs.
Review for Test 3 1 From a radom sample of 36 days i a recet year, the closig stock prices of Hasbro had a mea of $1931 From past studies we kow that the populatio stadard deviatio is $237 a Should you
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationSection 7.2 Confidence Interval for a Proportion
Sectio 7.2 Cofidece Iterval for a Proportio Before ay ifereces ca be made about a proportio, certai coditios must be satisfied: 1. The sample must be a SRS from the populatio of iterest. 2. The populatio
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationKey Ideas Section 81: Overview hypothesis testing Hypothesis Hypothesis Test Section 82: Basics of Hypothesis Testing Null Hypothesis
Chapter 8 Key Ideas Hypothesis (Null ad Alterative), Hypothesis Test, Test Statistic, Pvalue Type I Error, Type II Error, Sigificace Level, Power Sectio 81: Overview Cofidece Itervals (Chapter 7) are
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationConfidence Intervals for the Population Mean
Cofidece Itervals Math 283 Cofidece Itervals for the Populatio Mea Recall that from the empirical rule that the iterval of the mea plus/mius 2 times the stadard deviatio will cotai about 95% of the observatios.
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationHomework 7 Solutions Total Points
Homework 7 Solutios  165 Total Poits STAT 201502 Lecture 11, 12, & 13 Material 1. Studies that compare treatmets for chroic medical coditios such as headaches ca use the same subjects for each treatmet.
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationConfidence Intervals for the Mean of Nonnormal Data Class 23, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom
Cofidece Itervals for the Mea of Noormal Data Class 23, 8.05, Sprig 204 Jeremy Orloff ad Joatha Bloom Learig Goals. Be able to derive the formula for coservative ormal cofidece itervals for the proportio
More informationCHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Means and Proportions
CHAPTER 8: CONFIDENCE INTERVAL ESTIMATES for Meas ad Proportios Itroductio: We wat to kow the value of a parameter for a populatio. We do t kow the value of this parameter for the etire populatio because
More informationZTEST / ZSTATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown
ZTEST / ZSTATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large TTEST / TSTATISTIC: used to test hypotheses about
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More information5: Introduction to Estimation
5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample
More informationOnesample test of proportions
Oesample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:
More information7.1 Inference for a Population Proportion
7.1 Iferece for a Populatio Proportio Defiitio. The statistic that estimates the parameter p is the sample proportio cout of successes i the sample ˆp = cout of observatios i the sample. Assumptios for
More informationOverview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals
Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationChapter 7: Confidence Interval and Sample Size
Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum
More informationCh 7.1 pg. 364 #11, 13, 15, 17, 19, 21, 23, 25
Math 7 Elemetary Statistics: A Brief Versio, 5/e Bluma Ch 7.1 pg. 364 #11, 13, 15, 17, 19, 1, 3, 5 11. Readig Scores: A sample of the readig scores of 35 fifthgraders has a mea of 8. The stadard deviatio
More informationHypothesis testing. Null and alternative hypotheses
Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate
More informationCenter, Spread, and Shape in Inference: Claims, Caveats, and Insights
Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More informationSTA 2023 Practice Questions Exam 2 Chapter 7 sec 9.2. Case parameter estimator standard error Estimate of standard error
STA 2023 Practice Questios Exam 2 Chapter 7 sec 9.2 Formulas Give o the test: Case parameter estimator stadard error Estimate of stadard error Samplig Distributio oe mea x s t (1) oe p ( 1 p) CI: prop.
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationChapter 10. Hypothesis Tests Regarding a Parameter. 10.1 The Language of Hypothesis Testing
Chapter 10 Hypothesis Tests Regardig a Parameter A secod type of statistical iferece is hypothesis testig. Here, rather tha use either a poit (or iterval) estimate from a simple radom sample to approximate
More informationHypothesis Tests Applied to Means
The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with
More informationAQA STATISTICS 1 REVISION NOTES
AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if
More informationStat 104 Lecture 16. Statistics 104 Lecture 16 (IPS 6.1) Confidence intervals  the general concept
Statistics 104 Lecture 16 (IPS 6.1) Outlie for today Cofidece itervals Cofidece itervals for a mea, µ (kow σ) Cofidece itervals for a proportio, p Margi of error ad sample size Review of mai topics for
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationx : X bar Mean (i.e. Average) of a sample
A quick referece for symbols ad formulas covered i COGS14: MEAN OF SAMPLE: x = x i x : X bar Mea (i.e. Average) of a sample x i : X sub i This stads for each idividual value you have i your sample. For
More informationInference on Proportion. Chapter 8 Tests of Statistical Hypotheses. Sampling Distribution of Sample Proportion. Confidence Interval
Chapter 8 Tests of Statistical Hypotheses 8. Tests about Proportios HT  Iferece o Proportio Parameter: Populatio Proportio p (or π) (Percetage of people has o health isurace) x Statistic: Sample Proportio
More informationResearch Method (I) Knowledge on Sampling (Simple Random Sampling)
Research Method (I) Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More informationInference for Proportions Inference for a Single Proportion
Iferece for Proportios Iferece for a Sigle Proportio IPS Chapter 8. 009 W.H. Freema ad Compay Objectives (IPS Chapter 8.) Iferece for a sigle proportio Largesample cofidece iterval for p Plus four cofidece
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More informationExplore Identifying Likely Population Proportions
COMMON CORE Locker LESSON Cofidece Itervals ad Margis of Error Commo Core Math Stadards The studet is expected to: COMMON CORE SIC.B.4 Use data from a sample survey to estimate a populatio mea or proportio;
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationStandard Errors and Confidence Intervals
Stadard Errors ad Cofidece Itervals Itroductio I the documet Data Descriptio, Populatios ad the Normal Distributio a sample had bee obtaied from the populatio of heights of 5yearold boys. If we assume
More informationQuadrat Sampling in Population Ecology
Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationOMG! Excessive Texting Tied to Risky Teen Behaviors
BUSIESS WEEK: EXECUTIVE EALT ovember 09, 2010 OMG! Excessive Textig Tied to Risky Tee Behaviors Kids who sed more tha 120 a day more likely to try drugs, alcohol ad sex, researchers fid TUESDAY, ov. 9
More informationText&Tests5. Project Maths SUPPLEMENT. Frances O Regan O. D. Morris. Leaving Certificate Higher Level Maths
Project Maths SUPPLEMENT Text&Tests5 Leavig Certificate Higher Level Maths Cotais all the Deferred Material ad Cetral Limit Theorem Fraces O Rega O. D. Morris O.D. Morris, Fraces O Rega, 2014 All rights
More informationNotes on Hypothesis Testing
Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More informationInstitute for the Advancement of University Learning & Department of Statistics
Istitute for the Advacemet of Uiversity Learig & Departmet of Statistics Descriptive Statistics for Research (Hilary Term, 00) Lecture 5: Cofidece Itervals (I.) Itroductio Cofidece itervals (or regios)
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More information1 Hypothesis testing for a single mean
BST 140.65 Hypothesis Testig Review otes 1 Hypothesis testig for a sigle mea 1. The ull, or status quo, hypothesis is labeled H 0, the alterative H a or H 1 or H.... A type I error occurs whe we falsely
More information9.8: THE POWER OF A TEST
9.8: The Power of a Test CD91 9.8: THE POWER OF A TEST I the iitial discussio of statistical hypothesis testig, the two types of risks that are take whe decisios are made about populatio parameters based
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationGCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.
GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea  add up all
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision  A measure of agreement between repeated measurements (repeatability).
INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie
More information15.075 Exam 3. Instructor: Cynthia Rudin TA: Dimitrios Bisias. November 22, 2011
15.075 Exam 3 Istructor: Cythia Rudi TA: Dimitrios Bisias November 22, 2011 Gradig is based o demostratio of coceptual uderstadig, so you eed to show all of your work. Problem 1 A compay makes highdefiitio
More informationEconomics 140A Confidence Intervals and Hypothesis Testing
Ecoomics 140A Cofidece Itervals ad Hypothesis Testig Obtaiig a estimate of a parameter is ot the al purpose of statistical iferece because it is highly ulikely that the populatio value of a parameter is
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationSimple Linear Regression
Simple Liear Regressio We have bee itroduced to the otio that a categorical variable could deped o differet levels of aother variable whe we discussed cotigecy tables. We ll exted this idea to the case
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More informationChapter 18 Sampling Distribution Models
302 Part V From the Data at Had to the World at Large Chapter 18 Samplig Distributio Models 1. Coi tosses. a) The histogram of these proportios is expected to be smmetric, but ot because of the Cetral
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationChapter 14 Nonparametric Statistics
Chapter 14 Noparametric Statistics A.K.A. distributiofree statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they
More informationMultiserver Optimal Bandwidth Monitoring for QoS based Multimedia Delivery Anup Basu, Irene Cheng and Yinzhe Yu
Multiserver Optimal Badwidth Moitorig for QoS based Multimedia Delivery Aup Basu, Iree Cheg ad Yizhe Yu Departmet of Computig Sciece U. of Alberta Architecture Applicatio Layer Request receptio coectio
More informationhp calculators HP 12C Platinum Statistics  correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient
HP 1C Platium Statistics  correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics  correlatio coefficiet
More informationEstimating the Mean and Variance of a Normal Distribution
Estimatig the Mea ad Variace of a Normal Distributio Learig Objectives After completig this module, the studet will be able to eplai the value of repeatig eperimets eplai the role of the law of large umbers
More informationMEI Structured Mathematics. Module Summary Sheets. Statistics 2 (Version B: reference to new book)
MEI Mathematics i Educatio ad Idustry MEI Structured Mathematics Module Summary Sheets Statistics (Versio B: referece to ew book) Topic : The Poisso Distributio Topic : The Normal Distributio Topic 3:
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationˆ p 2. ˆ p 1. ˆ p 3. p 4. ˆ p 8
Sectio 8 1C The Techiques of Hypothesis Testig A claim is made that 10% of the populatio is left haded. A alterate claim is made that less tha 10% of the populatio is left haded. We will use the techiques
More information0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%
Sectio 10 Aswer Key: 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1) A simple radom sample of New Yorkers fids that 87 are
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationThis is arithmetic average of the x values and is usually referred to simply as the mean.
prepared by Dr. Adre Lehre, Dept. of Geology, Humboldt State Uiversity http://www.humboldt.edu/~geodept/geology51/51_hadouts/statistical_aalysis.pdf STATISTICAL ANALYSIS OF HYDROLOGIC DATA This hadout
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationOutput Analysis (2, Chapters 10 &11 Law)
B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should
More informationPSYCHOLOGICAL STATISTICS
UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics
More informationhp calculators HP 12C Statistics  average and standard deviation Average and standard deviation concepts HP12C average and standard deviation
HP 1C Statistics  average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics
More informationNikolai Bogduk, Newcastle Bone and Joint Institute, University of Newcastle, Newcastle, NSW, Australia.
TRUTH IN MUSCULOSKELETAL MEDICINE. I: CONFIDENCE INTERVALS Nikolai Bogduk, Newcastle Boe ad Joit Istitute, Uiversity of Newcastle, Newcastle, NSW, Australia. Critical reasoig ad biostatistics is ot somethig
More informationCase Study. Contingency Tables. Graphing Tabled Counts. Stacked Bar Graph
Case Study Cotigecy Tables Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 4 6, 2011 Case Study Example 9.3 begiig o page 213 of the text describes a experimet i which
More informationCompare Multiple Response Variables
Compare Multiple Respose Variables STATGRAPHICS Mobile Rev. 4/7/006 This procedure compares the data cotaied i three or more Respose colums. It performs a oeway aalysis of variace to determie whether
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More information23.3 Sampling Distributions
COMMON CORE Locker LESSON Commo Core Math Stadards The studet is expected to: COMMON CORE SIC.B.4 Use data from a sample survey to estimate a populatio mea or proportio; develop a margi of error through
More informationsum of all values n x = the number of values = i=1 x = n n. When finding the mean of a frequency distribution the mean is given by
Statistics Module Revisio Sheet The S exam is hour 30 miutes log ad is i two sectios Sectio A 3 marks 5 questios worth o more tha 8 marks each Sectio B 3 marks questios worth about 8 marks each You are
More informationThis document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.
SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol
More informationChapter Gaussian Elimination
Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio
More information