Convexity, Inequalities, and Norms


 Howard Bradley
 1 years ago
 Views:
Transcription
1 Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for all x R. We say that ϕ is cocave (or cocave dow) if ϕ (x) 0 for all x R. For example, a quadratic fuctio ϕ(x) = ax 2 + bx + c is covex if a 0, ad is cocave if a 0. Ufortuately, the defiitios above are ot sufficietly geeral, sice they require ϕ to be twice differetiable. Istead, we will use the followig defiitios: Defiitio: Covex ad Cocave Fuctios Let a < b, ad let ϕ: (a, b) R be a fuctio. 1. We say that ϕ is covex if for all x, y (a, b) ad λ [0, 1]. 2. We say that ϕ is cocave if for all x, y (a, b) ad λ [0, 1]. ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y) ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y)
2 Covexity, Iequalities, ad Norms 2 y φ x y, φ y x, φ x Figure 1: For a covex fuctio, every chord lies above the graph. Geometrically, the fuctio λ ( (1 λ)x + λy, (1 λ)ϕ(x) + λϕ(y) ), 0 λ 1 is a parametrizatio of a lie segmet i R 2. This lie segmet has edpoits ( x, ϕ(x) ) ad ( y, ϕ(y) ), ad is therefore a chord of the graph of ϕ (see figure 1). Thus our defiitios of cocave ad covex ca be iterpreted as follows: A fuctio ϕ is covex if every chord lies above the graph of ϕ. A fuctio ϕ is cocave if every chord lies below the graph of ϕ. Aother fudametal geometric property of covex fuctios is that each taget lie lies etirely below the graph of the fuctio. This statemet ca be made precise eve for fuctios that are ot differetiable: Theorem 1 Taget Lies for Covex Fuctios Let ϕ: (a, b) R be a covex fuctio. The for every poit c (a, b), there exists a lie L i R 2 with the followig properties: 1. L passes through the poit ( c, ϕ(c) ). 2. The graph of ϕ lies etirely above L. PROOF See exercise 1.
3 Covexity, Iequalities, ad Norms 3 Figure 2: A taget lie to y = x at the poit (0, 0). We will refer to ay lie satisfyig the coclusios of the above theorem as a taget lie for ϕ at c. If ϕ is ot differetiable, the the slope of a taget lie may ot be uiquely determied. For example, if ϕ(x) = x, the a taget lie for ϕ at 0 may have ay slope betwee 1 ad 1 (see figure 2). We shall use the existece of taget lies to provide a geometric proof of the cotiuity of covex fuctios: Theorem 2 Cotiuity of Covex Fuctios Every covex fuctio is cotiuous. PROOF Let ϕ: (a, b) R be a covex fuctio, ad let c (a, b). Let L be a liear fuctio whose graph is a taget lie for ϕ at c, ad let P be a piecewiseliear fuctio cosistig of two chords to the graph of ϕ meetig at c (see figure 3). The L ϕ P i a eighborhood of c, ad L(c) = ϕ(c) = P (c). Sice L ad P are cotiuous at c, it follows from the Squeeze Theorem that ϕ is also cotiuous at c. We ow come to oe of the most importat iequalities i aalysis:
4 Covexity, Iequalities, ad Norms 4 P x φ x L x c Figure 3: Usig the Squeeze Theorem to prove that ϕ(x) is cotiuous at c Theorem 3 Jese s Iequality (Fiite Versio) Let ϕ: (a, b) R be a covex fuctio, where a < b, ad let x 1,..., x (a, b). The ϕ(λ 1 x λ x ) λ 1 ϕ(x 1 ) + + λ ϕ(x ) for ay λ 1,..., λ [0, 1] satisfyig λ λ = 1. PROOF Let c = λ 1 x λ x, ad let L be a liear fuctio whose graph is a taget lie for ϕ at c. Sice λ λ = 1, we kow that L(λ 1 x λ x ) = λ 1 L(x 1 ) + + λ L(x ). Sice L ϕ ad L(c) = ϕ(c), we coclude that ϕ(c) = L(c) = L(λ 1 x λ x ) = λ 1 L(x 1 ) + + λ L(x ) λ 1 ϕ(x 1 ) + + λ ϕ(x ). This statemet ca be geeralized from fiite sums to itegrals. Specifically, we ca replace the poits x 1,..., x by a fuctio f : R, ad we ca replace the weights λ 1,..., λ by a measure µ o for which µ() = 1.
5 Covexity, Iequalities, ad Norms 5 Theorem 4 Jese s Iequality (Itegral Versio) Let (, µ) be a measure space with µ() = 1. Let ϕ: (a, b) R be a covex fuctio, where a < b, ad let f : (a, b) be a L 1 fuctio. The ( ) ϕ f dµ (ϕ f) dµ PROOF Let c = f dµ, ad let L be a liear fuctio whose graph is a taget lie for ϕ at c. Sice µ() = 1, we kow that L( f dµ) = (L f) dµ. Sice L(c) = ϕ(c) ad L ϕ, this gives ( ) ϕ(c) = L(c) = L f dµ = (L f) dµ (ϕ f) dµ. Meas You are probably aware of the arithmetic mea ad geometric mea of positive umbers: x x ad x 1 x. More geerally, we ca defie weighted versios of these meas. Give positive weights λ 1,..., λ satisfyig λ λ = 1, the correspodig weighted arithmetic ad geometric meas are λ 1 x λ x ad x λ 1 1 x λ. These reduce to the uweighted meas i the case where λ 1 = = λ = 1/. Arithmetic ad geometric meas satisfy a famous iequality, amely that the geometric mea is always less tha or equal to the arithmetic mea. This turs out to be a simple applicatio of Jese s iequality: Theorem 5 AM GM Iequality Let x 1,..., x > 0, ad let λ 1,..., λ [0, 1] so that λ λ = 1. The x λ 1 1 x λ λ 1 x λ x.
6 Covexity, Iequalities, ad Norms 6 b a b 2 y e x ab a log a 1 log a log b log b 2 Figure 4: A visual proof that ab < (a + b)/2. PROOF This theorem is equivalet to the covexity of the expoetial fuctio (see figure 4). Specifically, we kow that e λ 1t 1 + λ t λ 1 e t 1 + λ e t for all t 1,..., t R. Substitutig x i = e t i gives the desired result. The followig theorem geeralizes this iequality to arbitrary measure spaces. The proof is essetially the same as the proof of the previous theorem. Theorem 6 Itegral AM GM Iequality Let (, µ) be a measure space with µ() = 1, ad let f : (0, ) be a measurable fuctio. The ( ) exp log f dµ f dµ PROOF Sice the expoetial fuctio is covex, Jese s iequality gives ( ) exp log f dµ exp(log f) dµ = f dµ. By the way, we ca rescale to get a versio of this iequality that applies wheever
7 Covexity, Iequalities, ad Norms 7 µ() is fiite ad ozero: ( 1 exp µ() ) log f dµ 1 f dµ. µ() Note that the quatity o the right is simply the average value of f o. The quatity o the left ca be thought of as the (cotiuous) geometric mea of f. pmeas There are may importat meas i mathematics ad sciece, beyod just the arithmetic ad geometric meas. For example, the harmoic mea of positive umbers x 1,..., x is 1/x /x. This mea is used, for example, i calculatig the average resistace of resistors i parallel. For aother example, the Euclidea mea of x 1,..., x is x x 2. This mea is used to average measuremets take for the stadard deviatio of a radom variable. The AM GM iequality ca be exteded to cover both of these meas. I particular, the iequality 1/x /x x 1 x x x holds for all x 1,..., x (0, ). Both of these meas are examples of pmeas: x x 2. Defiitio: pmeas Let x 1,..., x > 0. If p R {0}, the pmea of x 1,..., x is ( x p ) x p 1/p. For example: The 2mea is the same as the Euclidea mea. The 1mea is the same as the arithmetic mea.
8 Covexity, Iequalities, ad Norms 8 The ( 1)mea is the same as the harmoic mea. Though it may ot be obvious, the geometric mea also fits ito the family of pmeas. I particular, it is possible to show that ( x p ) x p 1/p lim = p 0 x 1 x for ay x 1,..., x (0, ). Thus, we may thik of the geometric mea as the 0mea. It is also possible to use limits to defie meas for ad. It turs out the the mea of x 1,..., x is simply max(x 1,..., x ), while the ( )mea is mi(x 1,..., x ). As with the arithmetic ad geometric meas, we ca also defie weighted versios of pmeas. Give positive weights λ 1,..., λ satisfyig λ λ = 1, the correspodig weighted pmea is ( ) λ1 x p 1/p λ x p As you may have guessed, the pmeas satisfy a geeralizatio of the AMGM iequality: Theorem 7 Geeralized Mea Iequality Let x 1,..., x > 0, ad let λ 1,..., λ [0, 1] so that λ λ = 1. The p q ( ) λ1 x p λ x p 1/p ( λ1 x q λ x) q 1/q for all p, q R {0}. PROOF If p = 1 ad q > 1, this iequality takes the form ( λ1 x λ x ) q λ1 x q λ x q which follows immediately from the covexity of the fuctio ϕ(x) = x q. The case where 0 < p < q follows from this. Specifically, sice q/p > 1, we have ( λ1 (x p 1) + + λ (x p ) ) q/p λ1 (x p 1) q/p + + λ (x p ) q/p ad the desired iequality follows. Cases ivolvig egative values of p or q are left as a exercise to the reader.
9 Covexity, Iequalities, ad Norms 9 Applyig the same reasoig usig the itegral versio of Jese s iequality gives p q ( f p dµ) 1/p ( ) 1/q f q dµ for ay L 1 fuctio f : (0, ), where (, µ) is a measure space with a total measure of oe. Norms A orm is a fuctio that measures the legths of vectors i a vector space. The most familiar orm is the Euclidea orm o R, which is defied by the formula (x 1,..., x ) = x x 2. Defiitio: Norm o a Vector Space Let V be a vector space over R. A orm o V is a fuctio : V R, deoted v v, with the followig properties: 1. v 0 for all v V, ad v = 0 if ad oly if v = λv = λ v for all λ R ad v V. 3. v + w v + w for all v, w V. For those familiar with topology, ay orm o a vector space gives a metric d o the vector space defied by the formula d(v, w) = v w. Thus ay vector space with a orm ca be thought of as a topological space. The Euclidea orm o R ca be geeralized to the family of porms. ay p 1, the porm o R is defied by the formula For (x 1,..., x ) p = ( x 1 p + + x p ) 1/p The usual Euclidea orm correspods to the case where p = 2. It is easy to see that the defiitio of the porm satisfies axioms (1) ad (2) for a orm, but third axiom (which is kow as the triagle iequality) is far from clear. The followig theorem establishes the porm is i fact a orm.
10 Covexity, Iequalities, ad Norms 10 Theorem 8 Mikowski s Iequality If u, v R ad p [1, ), the u + v p u p + v p PROOF Sice p 1, the fuctio x x p is covex. It follows that (1 λ)u + λv p p = (1 λ)u i + λv i p i=1 (1 λ) u i p + λ v i p = (1 λ) u p p + λ v p p i=1 for all u ad v ad λ [0, 1]. I particular, this proves that (1 λ)u + λv p 1 wheever u p = v p = 1. From this Mikowski s iequality follows. I particular, we may assume that u ad v are ozero. The u/ u p ad v/ v p are uit vectors, so u + v p u p + v p = u p u p + v p u u p + v p u p + v p v v p 1. p If is a orm o a vector space V, the uit ball i V is the set B V (1) = { v V v 1 }. For example, the uit ball i R 2 with respect to the Euclidea orm is a roud disk of radius 2 cetered at the origi. Figure 5 shows the uit ball i R 2 with respect to various porms. Their shapes are all fairly similar, with the the uit ball beig a diagoal square whe p = 1, ad the uit ball approachig a horizotal square as p. All of these uit balls have a certai importat geometric property. Defiitio: Covex Set Let V is a vector space over R. If v ad w are poits i V, the lie segmet from v to w is the set L(v, w) = {λv + (1 λ)w 0 λ 1}. A subset S V is covex if L(v, w) S for all v, w S. The followig theorem gives a geometric iterpretatio of Mikowski s iequality.
11 Covexity, Iequalities, ad Norms 11 p = 1 p = 1.5 p = 2 p = 3 p = 10 Figure 5: The shape of the uit ball i R 2 for various porms. Theorem 9 Shapes of Uit Balls Let V be a vector space over R, ad let : V R be a fuctio satisfyig coditios (1) ad (2) for a orm. The satisfies the triagle iequality if ad oly if the uit ball { v V v 1 } is covex. PROOF Suppose first that satisfies the triagle iequality. Let v ad w be poits i the uit ball, ad let p = λv + (1 λ)w be ay poit o the lie segmet from v to w. The p = λv + (1 λ)w λv + (1 λ)w = λ v + (1 λ) w λ(1) + (1 λ)(1) = 1 so p lies i the uit ball as well. For the coverse, suppose that the uit ball is covex, ad let v, w V. If v or w is 0, the clearly v + w v + w, so suppose they are both ozero. Let ˆv = v/ v ad ŵ = w/ w. The ˆv = 1 v v = 1 v v = 1 ad similarly ŵ = 1. Thus ˆv ad ŵ both lie i the uit ball. Sice the poit v v + w + w v + w = 1, v + w v + w = v v + w ˆv + w v + w ŵ must lie i the uit ball as well, ad it follows that v + w v + w.
12 Covexity, Iequalities, ad Norms 12 Fially, we should metio that there is a itegral versio of Mikowski s iequality. This ivolves the otio of a porm o a measure space. Defiitio: pnorm Let (, µ) be a measure space, let f be a measurable fuctio o, ad let p [1, ). The porm of f is the quatity f p = ( ) 1/p f p dµ Note that f p is always defied, sice it ivolves the itegral of a oegative fuctio, but it may be ifiite. We ca ow state Mikowski s iequality for arbitrary measure spaces. Theorem 10 Mikowski s Iequality (Itegral Versio) Let (, µ) be a measure space, let f, g : R be measurable fuctios, ad let p [1, ). The f + g p f p + g p. PROOF Sice p 1, the fuctio x x p is covex. It follows that (1 λ)f + λg p p = (1 λ)f + λg p dµ ( (1 λ) f p + λ g p) dµ = (1 λ) f p p + λ g p p for ay measurable fuctios f ad g ad ay λ [0, 1]. I particular, this proves that (1 λ)f + λg p 1 wheever f p = g p = 1. From this Mikowski s iequality follows. First, observe that if f p = 0, the f = 0 almost everywhere, so Mikowski s iequality follows i this case. A similar argumet holds if g p = 0, so suppose that f p > 0 ad g p > 0. Let ˆf = f/ f p ad ĝ = g/ g p, ad ote that ˆf p = ĝ p = 1. The f + g p f p + g p = f p g p ˆf + ĝ f p + g p f p + g p 1. p
13 Covexity, Iequalities, ad Norms 13 Hölder s Iequality Recall that the Euclidea orm o R satisfies the CauchySchwarz Iequality u v u 2 v 2 for all u, v R. Our ext task is to prove a geeralizatio of this kow as Hölder s iequality. Lemma 11 Youg s Iequality If x, y [0, ) ad p, q (1, ) so that 1/p + 1/q = 1, the xy xp p + yq q PROOF This ca be writte (x p ) 1/p (y q ) 1/q 1 p xp + 1 q yq which is a istace of the weighted AM GM iequality. Theorem 12 Hölder s Iequality Let u, v R, ad let p, q (1, ) so that 1/p + 1/q = 1. The u v u p v q. PROOF By Youg s iequality, u v u 1 v u v u 1 p + + u p p + v 1 q + + v q q u p p p + v q q q I particular, if u p = v q = 1, the u v 1/p + 1/q = 1, which proves Hölder s iequality i this case. For the geeral case, we may assume that u ad v are ozero. The u/ u p ad v/ v q are uit vectors for their respective orms, ad therefore u v u p v q 1.
14 Covexity, Iequalities, ad Norms 14 Multiplyig through by u p v q gives the desired result. This iequality is ot hard to geeralize to itegrals. We begi with the followig defiitio. Defiitio: Ier Product of Fuctios Let (, µ) be a measure space, ad let f ad g be measurable fuctios o. The L 2 ier product of f ad g is defied as follows: f, g = fg dµ. Note that f, g may be udefied if fg is ot Lebesgue itegrable o. Note also that f, g = fg 1 if f ad g are oegative, but that i geeral f, g fg 1. Theorem 13 Hölder s Iequality (Itegral Versio) Let (, µ) be a measure space, let f ad g be measurable fuctios o, ad let p, q (1, ) so that 1/p + 1/q = 1. If f p < ad g p <, the f, g is defied, ad f, g f p g q PROOF Suppose first that f p = g q = 1. By Youg s iequality, fg 1 = fg dµ ( f p p ) + g q dµ f p p + g q q q p q = 1. Sice fg is L 1, it follows that f, g is defied. The f, g fg 1 1, which proves Hölder s iequality i this case. For the geeral case, ote first that if either f p = 0 or g q = 0, the either f = 0 almost everywhere or g = 0 almost everywhere, so Hölder s iequality holds i that case. Otherwise, let ˆf = f/ f p ad ĝ = g/ g q. The ˆf p = ĝ q = 1, so f, g = f p g p ˆf, ĝ f p g q
15 Covexity, Iequalities, ad Norms 15 I the case where p = q = 2, this gives the followig. Corollary 14 CauchySchwarz Iequality (Itegral Versio) Let (, µ) be a measure space, ad let f ad g be measurable fuctios o. If f 2 < ad g 2 <, the f, g is defied, ad f, g f 2 g 2. Exercises 1. a) Prove that a fuctio ϕ: R R is covex if ad oly if ϕ(y) ϕ(x) y x for all x, y, z R with x < y < z. ϕ(z) ϕ(x) z x ϕ(z) ϕ(y) z y b) Use this characterizatio of covex fuctios to prove Theorem 1 o the existece of taget lies. 2. Let ϕ: (a, b) R be a differetiable fuctio. Prove that ϕ is covex if ad oly if ϕ is odecreasig. 3. Let ϕ: R R be a covex fuctio. Prove that ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y) for λ R [0, 1]. Use this to provide a alterative proof that ϕ is cotiuous. 4. If x, y 0, prove that ( x p + y p lim p 0 What is 2 lim p ) 1/p = xy ad lim p ( ) x p + y p 1/p? 2 ( ) x p + y p 1/p = max(x, y). 5. a) If x 1,..., x, y 1,..., y (0, ), prove that x1 y 1 + x y x1 + + x y1 + + y. That is, the arithmetic mea of geometric meas is less tha or equal to the correspodig geometric mea of arithmetic meas. 2
16 Covexity, Iequalities, ad Norms 16 b) If λ, µ [0, 1] ad λ + µ = 1, prove that x λ 1y µ 1 + x λ y µ ( ) λ ( ) µ x1 + + x y1 + + y. 6. Prove the Geeralized Mea Iequality (Theorem 6) i the case where p or q is egative. 7. Let f : [0, 1] R be a bouded measurable fuctio, ad defie ϕ: [1, ) R by ϕ(p) = f p dµ. Prove that log ϕ is covex o [1, ). [0,1] 8. Prove that ( 1 + x 2 y + x 4 y 2) 3 ( 1 + x 3 + x 6) 2( 1 + y 3 + y 6) for all x, y (0, ). 9. Let (, µ) be a measure space, let f, g : [0, ) be measurable fuctios, ad let p, q, r (1, ) so that 1/p + 1/q = 1/r. Prove that fg r f p g q.
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More informationSAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx
SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval
More informationLecture 5: Span, linear independence, bases, and dimension
Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More information4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then
SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or pseries (the Compariso Test), but of
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationSequences and Series
CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationAsymptotic Growth of Functions
CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationTheorems About Power Series
Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real oegative umber R, called the radius
More informationMetric, Normed, and Topological Spaces
Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolutevalue metric
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More information2.7 Sequences, Sequences of Sets
2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationGregory Carey, 1998 Linear Transformations & Composites  1. Linear Transformations and Linear Composites
Gregory Carey, 1998 Liear Trasformatios & Composites  1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More information4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
More informationNOTES ON INEQUALITIES FELIX LAZEBNIK
NOTES ON INEQUALITIES FELIX LAZEBNIK Order ad iequalities are fudametal otios of moder mathematics. Calculus ad Aalysis deped heavily o them, ad properties of iequalities provide the mai tool for developig
More informationClass Meeting # 16: The Fourier Transform on R n
MATH 18.152 COUSE NOTES  CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,
More informationUniversity of California, Los Angeles Department of Statistics. Distributions related to the normal distribution
Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chisquare (χ ) distributio.
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationChapter 7 Methods of Finding Estimators
Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of
More informationThe Field Q of Rational Numbers
Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationMath 475, Problem Set #6: Solutions
Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b oegative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationAlternatives To Pearson s and Spearman s Correlation Coefficients
Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives
More informationFigure 40.1. Figure 40.2
40 Regular Polygos Covex ad Cocave Shapes A plae figure is said to be covex if every lie segmet draw betwee ay two poits iside the figure lies etirely iside the figure. A figure that is ot covex is called
More informationApproximating the Sum of a Convergent Series
Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationNotes on Hypothesis Testing
Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter
More informationLinear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant
MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More informationOur aim is to show that under reasonable assumptions a given 2πperiodic function f can be represented as convergent series
8 Fourier Series Our aim is to show that uder reasoable assumptios a give periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationLecture 4: Cheeger s Inequality
Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a dregular
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationLimits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L
Limits, Cotiuity ad derivatives (Stewart Ch. 2) f(x) = L say: the it of f(x) equals L as x approaches a The values of f(x) ca be as close to L as we like by takig x sufficietly close to a, but x a. If
More informationOverview of some probability distributions.
Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationSampling Distribution And Central Limit Theorem
() Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationJoint Probability Distributions and Random Samples
STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More informationAn example of nonquenched convergence in the conditional central limit theorem for partial sums of a linear process
A example of oqueched covergece i the coditioal cetral limit theorem for partial sums of a liear process Dalibor Volý ad Michael Woodroofe Abstract A causal liear processes X,X 0,X is costructed for which
More informationCHAPTER 7: Central Limit Theorem: CLT for Averages (Means)
CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:
More informationINFINITE SERIES KEITH CONRAD
INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal
More informationTAYLOR SERIES, POWER SERIES
TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the
More informationTHE LEAST SQUARES REGRESSION LINE and R 2
THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from
More informationDepartment of Computer Science, University of Otago
Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS200609 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly
More informationDistributions of Order Statistics
Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationConvex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells
Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationRényi Divergence and L p affine surface area for convex bodies
Réyi Divergece ad L p affie surface area for covex bodies Elisabeth M. Werer Abstract We show that the fudametal objects of the L p BruMikowski theory, amely the L p affie surface areas for a covex
More informationUnit 20 Hypotheses Testing
Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect
More informationCME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8
CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More information1.3 Binomial Coefficients
18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationNormal Distribution.
Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued
More informationTHE ARITHMETIC OF INTEGERS.  multiplication, exponentiation, division, addition, and subtraction
THE ARITHMETIC OF INTEGERS  multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,
More informationEquation of a line. Line in coordinate geometry. Slopeintercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Pointslope form ( 點 斜 式 )
Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationMARTINGALES AND A BASIC APPLICATION
MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measuretheoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this
More informationAP Calculus BC 2003 Scoring Guidelines Form B
AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet
More informationMaximum Likelihood Estimators.
Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio
More information1 The Gaussian channel
ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationLecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.
18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: CouratFischer formula ad Rayleigh quotiets The
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More informationAlgebra Vocabulary List (Definitions for Middle School Teachers)
Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf
More informationTangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem
116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More information3 Basic Definitions of Probability Theory
3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio
More informationDefinition. Definition. 72 Estimating a Population Proportion. Definition. Definition
7 stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More information0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5
Sectio 13 KolmogorovSmirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.
More informationDiscrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13
EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may
More informationLearning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.
Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the
More informationA CHARACTERIZATION OF MINIMAL ZEROSEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(1) (2005), #A27 A CHARACTERIZATION OF MINIMAL ZEROSEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS Scott T. Chapma 1 Triity Uiversity, Departmet
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationAP Calculus AB 2006 Scoring Guidelines Form B
AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a otforprofit membership associatio whose missio is to coect studets to college success
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More information