Convexity, Inequalities, and Norms

Size: px
Start display at page:

Download "Convexity, Inequalities, and Norms"

Transcription

1 Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for all x R. We say that ϕ is cocave (or cocave dow) if ϕ (x) 0 for all x R. For example, a quadratic fuctio ϕ(x) = ax 2 + bx + c is covex if a 0, ad is cocave if a 0. Ufortuately, the defiitios above are ot sufficietly geeral, sice they require ϕ to be twice differetiable. Istead, we will use the followig defiitios: Defiitio: Covex ad Cocave Fuctios Let a < b, ad let ϕ: (a, b) R be a fuctio. 1. We say that ϕ is covex if for all x, y (a, b) ad λ [0, 1]. 2. We say that ϕ is cocave if for all x, y (a, b) ad λ [0, 1]. ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y) ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y)

2 Covexity, Iequalities, ad Norms 2 y φ x y, φ y x, φ x Figure 1: For a covex fuctio, every chord lies above the graph. Geometrically, the fuctio λ ( (1 λ)x + λy, (1 λ)ϕ(x) + λϕ(y) ), 0 λ 1 is a parametrizatio of a lie segmet i R 2. This lie segmet has edpoits ( x, ϕ(x) ) ad ( y, ϕ(y) ), ad is therefore a chord of the graph of ϕ (see figure 1). Thus our defiitios of cocave ad covex ca be iterpreted as follows: A fuctio ϕ is covex if every chord lies above the graph of ϕ. A fuctio ϕ is cocave if every chord lies below the graph of ϕ. Aother fudametal geometric property of covex fuctios is that each taget lie lies etirely below the graph of the fuctio. This statemet ca be made precise eve for fuctios that are ot differetiable: Theorem 1 Taget Lies for Covex Fuctios Let ϕ: (a, b) R be a covex fuctio. The for every poit c (a, b), there exists a lie L i R 2 with the followig properties: 1. L passes through the poit ( c, ϕ(c) ). 2. The graph of ϕ lies etirely above L. PROOF See exercise 1.

3 Covexity, Iequalities, ad Norms 3 Figure 2: A taget lie to y = x at the poit (0, 0). We will refer to ay lie satisfyig the coclusios of the above theorem as a taget lie for ϕ at c. If ϕ is ot differetiable, the the slope of a taget lie may ot be uiquely determied. For example, if ϕ(x) = x, the a taget lie for ϕ at 0 may have ay slope betwee 1 ad 1 (see figure 2). We shall use the existece of taget lies to provide a geometric proof of the cotiuity of covex fuctios: Theorem 2 Cotiuity of Covex Fuctios Every covex fuctio is cotiuous. PROOF Let ϕ: (a, b) R be a covex fuctio, ad let c (a, b). Let L be a liear fuctio whose graph is a taget lie for ϕ at c, ad let P be a piecewiseliear fuctio cosistig of two chords to the graph of ϕ meetig at c (see figure 3). The L ϕ P i a eighborhood of c, ad L(c) = ϕ(c) = P (c). Sice L ad P are cotiuous at c, it follows from the Squeeze Theorem that ϕ is also cotiuous at c. We ow come to oe of the most importat iequalities i aalysis:

4 Covexity, Iequalities, ad Norms 4 P x φ x L x c Figure 3: Usig the Squeeze Theorem to prove that ϕ(x) is cotiuous at c Theorem 3 Jese s Iequality (Fiite Versio) Let ϕ: (a, b) R be a covex fuctio, where a < b, ad let x 1,..., x (a, b). The ϕ(λ 1 x λ x ) λ 1 ϕ(x 1 ) + + λ ϕ(x ) for ay λ 1,..., λ [0, 1] satisfyig λ λ = 1. PROOF Let c = λ 1 x λ x, ad let L be a liear fuctio whose graph is a taget lie for ϕ at c. Sice λ λ = 1, we kow that L(λ 1 x λ x ) = λ 1 L(x 1 ) + + λ L(x ). Sice L ϕ ad L(c) = ϕ(c), we coclude that ϕ(c) = L(c) = L(λ 1 x λ x ) = λ 1 L(x 1 ) + + λ L(x ) λ 1 ϕ(x 1 ) + + λ ϕ(x ). This statemet ca be geeralized from fiite sums to itegrals. Specifically, we ca replace the poits x 1,..., x by a fuctio f : R, ad we ca replace the weights λ 1,..., λ by a measure µ o for which µ() = 1.

5 Covexity, Iequalities, ad Norms 5 Theorem 4 Jese s Iequality (Itegral Versio) Let (, µ) be a measure space with µ() = 1. Let ϕ: (a, b) R be a covex fuctio, where a < b, ad let f : (a, b) be a L 1 fuctio. The ( ) ϕ f dµ (ϕ f) dµ PROOF Let c = f dµ, ad let L be a liear fuctio whose graph is a taget lie for ϕ at c. Sice µ() = 1, we kow that L( f dµ) = (L f) dµ. Sice L(c) = ϕ(c) ad L ϕ, this gives ( ) ϕ(c) = L(c) = L f dµ = (L f) dµ (ϕ f) dµ. Meas You are probably aware of the arithmetic mea ad geometric mea of positive umbers: x x ad x 1 x. More geerally, we ca defie weighted versios of these meas. Give positive weights λ 1,..., λ satisfyig λ λ = 1, the correspodig weighted arithmetic ad geometric meas are λ 1 x λ x ad x λ 1 1 x λ. These reduce to the uweighted meas i the case where λ 1 = = λ = 1/. Arithmetic ad geometric meas satisfy a famous iequality, amely that the geometric mea is always less tha or equal to the arithmetic mea. This turs out to be a simple applicatio of Jese s iequality: Theorem 5 AM GM Iequality Let x 1,..., x > 0, ad let λ 1,..., λ [0, 1] so that λ λ = 1. The x λ 1 1 x λ λ 1 x λ x.

6 Covexity, Iequalities, ad Norms 6 b a b 2 y e x ab a log a 1 log a log b log b 2 Figure 4: A visual proof that ab < (a + b)/2. PROOF This theorem is equivalet to the covexity of the expoetial fuctio (see figure 4). Specifically, we kow that e λ 1t 1 + λ t λ 1 e t 1 + λ e t for all t 1,..., t R. Substitutig x i = e t i gives the desired result. The followig theorem geeralizes this iequality to arbitrary measure spaces. The proof is essetially the same as the proof of the previous theorem. Theorem 6 Itegral AM GM Iequality Let (, µ) be a measure space with µ() = 1, ad let f : (0, ) be a measurable fuctio. The ( ) exp log f dµ f dµ PROOF Sice the expoetial fuctio is covex, Jese s iequality gives ( ) exp log f dµ exp(log f) dµ = f dµ. By the way, we ca rescale to get a versio of this iequality that applies wheever

7 Covexity, Iequalities, ad Norms 7 µ() is fiite ad ozero: ( 1 exp µ() ) log f dµ 1 f dµ. µ() Note that the quatity o the right is simply the average value of f o. The quatity o the left ca be thought of as the (cotiuous) geometric mea of f. p-meas There are may importat meas i mathematics ad sciece, beyod just the arithmetic ad geometric meas. For example, the harmoic mea of positive umbers x 1,..., x is 1/x /x. This mea is used, for example, i calculatig the average resistace of resistors i parallel. For aother example, the Euclidea mea of x 1,..., x is x x 2. This mea is used to average measuremets take for the stadard deviatio of a radom variable. The AM GM iequality ca be exteded to cover both of these meas. I particular, the iequality 1/x /x x 1 x x x holds for all x 1,..., x (0, ). Both of these meas are examples of p-meas: x x 2. Defiitio: p-meas Let x 1,..., x > 0. If p R {0}, the p-mea of x 1,..., x is ( x p ) x p 1/p. For example: The 2-mea is the same as the Euclidea mea. The 1-mea is the same as the arithmetic mea.

8 Covexity, Iequalities, ad Norms 8 The ( 1)-mea is the same as the harmoic mea. Though it may ot be obvious, the geometric mea also fits ito the family of p-meas. I particular, it is possible to show that ( x p ) x p 1/p lim = p 0 x 1 x for ay x 1,..., x (0, ). Thus, we may thik of the geometric mea as the 0-mea. It is also possible to use limits to defie meas for ad. It turs out the the -mea of x 1,..., x is simply max(x 1,..., x ), while the ( )-mea is mi(x 1,..., x ). As with the arithmetic ad geometric meas, we ca also defie weighted versios of p-meas. Give positive weights λ 1,..., λ satisfyig λ λ = 1, the correspodig weighted p-mea is ( ) λ1 x p 1/p λ x p As you may have guessed, the p-meas satisfy a geeralizatio of the AM-GM iequality: Theorem 7 Geeralized Mea Iequality Let x 1,..., x > 0, ad let λ 1,..., λ [0, 1] so that λ λ = 1. The p q ( ) λ1 x p λ x p 1/p ( λ1 x q λ x) q 1/q for all p, q R {0}. PROOF If p = 1 ad q > 1, this iequality takes the form ( λ1 x λ x ) q λ1 x q λ x q which follows immediately from the covexity of the fuctio ϕ(x) = x q. The case where 0 < p < q follows from this. Specifically, sice q/p > 1, we have ( λ1 (x p 1) + + λ (x p ) ) q/p λ1 (x p 1) q/p + + λ (x p ) q/p ad the desired iequality follows. Cases ivolvig egative values of p or q are left as a exercise to the reader.

9 Covexity, Iequalities, ad Norms 9 Applyig the same reasoig usig the itegral versio of Jese s iequality gives p q ( f p dµ) 1/p ( ) 1/q f q dµ for ay L 1 fuctio f : (0, ), where (, µ) is a measure space with a total measure of oe. Norms A orm is a fuctio that measures the legths of vectors i a vector space. The most familiar orm is the Euclidea orm o R, which is defied by the formula (x 1,..., x ) = x x 2. Defiitio: Norm o a Vector Space Let V be a vector space over R. A orm o V is a fuctio : V R, deoted v v, with the followig properties: 1. v 0 for all v V, ad v = 0 if ad oly if v = λv = λ v for all λ R ad v V. 3. v + w v + w for all v, w V. For those familiar with topology, ay orm o a vector space gives a metric d o the vector space defied by the formula d(v, w) = v w. Thus ay vector space with a orm ca be thought of as a topological space. The Euclidea orm o R ca be geeralized to the family of p-orms. ay p 1, the p-orm o R is defied by the formula For (x 1,..., x ) p = ( x 1 p + + x p ) 1/p The usual Euclidea orm correspods to the case where p = 2. It is easy to see that the defiitio of the p-orm satisfies axioms (1) ad (2) for a orm, but third axiom (which is kow as the triagle iequality) is far from clear. The followig theorem establishes the p-orm is i fact a orm.

10 Covexity, Iequalities, ad Norms 10 Theorem 8 Mikowski s Iequality If u, v R ad p [1, ), the u + v p u p + v p PROOF Sice p 1, the fuctio x x p is covex. It follows that (1 λ)u + λv p p = (1 λ)u i + λv i p i=1 (1 λ) u i p + λ v i p = (1 λ) u p p + λ v p p i=1 for all u ad v ad λ [0, 1]. I particular, this proves that (1 λ)u + λv p 1 wheever u p = v p = 1. From this Mikowski s iequality follows. I particular, we may assume that u ad v are ozero. The u/ u p ad v/ v p are uit vectors, so u + v p u p + v p = u p u p + v p u u p + v p u p + v p v v p 1. p If is a orm o a vector space V, the uit ball i V is the set B V (1) = { v V v 1 }. For example, the uit ball i R 2 with respect to the Euclidea orm is a roud disk of radius 2 cetered at the origi. Figure 5 shows the uit ball i R 2 with respect to various p-orms. Their shapes are all fairly similar, with the the uit ball beig a diagoal square whe p = 1, ad the uit ball approachig a horizotal square as p. All of these uit balls have a certai importat geometric property. Defiitio: Covex Set Let V is a vector space over R. If v ad w are poits i V, the lie segmet from v to w is the set L(v, w) = {λv + (1 λ)w 0 λ 1}. A subset S V is covex if L(v, w) S for all v, w S. The followig theorem gives a geometric iterpretatio of Mikowski s iequality.

11 Covexity, Iequalities, ad Norms 11 p = 1 p = 1.5 p = 2 p = 3 p = 10 Figure 5: The shape of the uit ball i R 2 for various p-orms. Theorem 9 Shapes of Uit Balls Let V be a vector space over R, ad let : V R be a fuctio satisfyig coditios (1) ad (2) for a orm. The satisfies the triagle iequality if ad oly if the uit ball { v V v 1 } is covex. PROOF Suppose first that satisfies the triagle iequality. Let v ad w be poits i the uit ball, ad let p = λv + (1 λ)w be ay poit o the lie segmet from v to w. The p = λv + (1 λ)w λv + (1 λ)w = λ v + (1 λ) w λ(1) + (1 λ)(1) = 1 so p lies i the uit ball as well. For the coverse, suppose that the uit ball is covex, ad let v, w V. If v or w is 0, the clearly v + w v + w, so suppose they are both ozero. Let ˆv = v/ v ad ŵ = w/ w. The ˆv = 1 v v = 1 v v = 1 ad similarly ŵ = 1. Thus ˆv ad ŵ both lie i the uit ball. Sice the poit v v + w + w v + w = 1, v + w v + w = v v + w ˆv + w v + w ŵ must lie i the uit ball as well, ad it follows that v + w v + w.

12 Covexity, Iequalities, ad Norms 12 Fially, we should metio that there is a itegral versio of Mikowski s iequality. This ivolves the otio of a p-orm o a measure space. Defiitio: p-norm Let (, µ) be a measure space, let f be a measurable fuctio o, ad let p [1, ). The p-orm of f is the quatity f p = ( ) 1/p f p dµ Note that f p is always defied, sice it ivolves the itegral of a o-egative fuctio, but it may be ifiite. We ca ow state Mikowski s iequality for arbitrary measure spaces. Theorem 10 Mikowski s Iequality (Itegral Versio) Let (, µ) be a measure space, let f, g : R be measurable fuctios, ad let p [1, ). The f + g p f p + g p. PROOF Sice p 1, the fuctio x x p is covex. It follows that (1 λ)f + λg p p = (1 λ)f + λg p dµ ( (1 λ) f p + λ g p) dµ = (1 λ) f p p + λ g p p for ay measurable fuctios f ad g ad ay λ [0, 1]. I particular, this proves that (1 λ)f + λg p 1 wheever f p = g p = 1. From this Mikowski s iequality follows. First, observe that if f p = 0, the f = 0 almost everywhere, so Mikowski s iequality follows i this case. A similar argumet holds if g p = 0, so suppose that f p > 0 ad g p > 0. Let ˆf = f/ f p ad ĝ = g/ g p, ad ote that ˆf p = ĝ p = 1. The f + g p f p + g p = f p g p ˆf + ĝ f p + g p f p + g p 1. p

13 Covexity, Iequalities, ad Norms 13 Hölder s Iequality Recall that the Euclidea orm o R satisfies the Cauchy-Schwarz Iequality u v u 2 v 2 for all u, v R. Our ext task is to prove a geeralizatio of this kow as Hölder s iequality. Lemma 11 Youg s Iequality If x, y [0, ) ad p, q (1, ) so that 1/p + 1/q = 1, the xy xp p + yq q PROOF This ca be writte (x p ) 1/p (y q ) 1/q 1 p xp + 1 q yq which is a istace of the weighted AM GM iequality. Theorem 12 Hölder s Iequality Let u, v R, ad let p, q (1, ) so that 1/p + 1/q = 1. The u v u p v q. PROOF By Youg s iequality, u v u 1 v u v u 1 p + + u p p + v 1 q + + v q q u p p p + v q q q I particular, if u p = v q = 1, the u v 1/p + 1/q = 1, which proves Hölder s iequality i this case. For the geeral case, we may assume that u ad v are ozero. The u/ u p ad v/ v q are uit vectors for their respective orms, ad therefore u v u p v q 1.

14 Covexity, Iequalities, ad Norms 14 Multiplyig through by u p v q gives the desired result. This iequality is ot hard to geeralize to itegrals. We begi with the followig defiitio. Defiitio: Ier Product of Fuctios Let (, µ) be a measure space, ad let f ad g be measurable fuctios o. The L 2 ier product of f ad g is defied as follows: f, g = fg dµ. Note that f, g may be udefied if fg is ot Lebesgue itegrable o. Note also that f, g = fg 1 if f ad g are oegative, but that i geeral f, g fg 1. Theorem 13 Hölder s Iequality (Itegral Versio) Let (, µ) be a measure space, let f ad g be measurable fuctios o, ad let p, q (1, ) so that 1/p + 1/q = 1. If f p < ad g p <, the f, g is defied, ad f, g f p g q PROOF Suppose first that f p = g q = 1. By Youg s iequality, fg 1 = fg dµ ( f p p ) + g q dµ f p p + g q q q p q = 1. Sice fg is L 1, it follows that f, g is defied. The f, g fg 1 1, which proves Hölder s iequality i this case. For the geeral case, ote first that if either f p = 0 or g q = 0, the either f = 0 almost everywhere or g = 0 almost everywhere, so Hölder s iequality holds i that case. Otherwise, let ˆf = f/ f p ad ĝ = g/ g q. The ˆf p = ĝ q = 1, so f, g = f p g p ˆf, ĝ f p g q

15 Covexity, Iequalities, ad Norms 15 I the case where p = q = 2, this gives the followig. Corollary 14 Cauchy-Schwarz Iequality (Itegral Versio) Let (, µ) be a measure space, ad let f ad g be measurable fuctios o. If f 2 < ad g 2 <, the f, g is defied, ad f, g f 2 g 2. Exercises 1. a) Prove that a fuctio ϕ: R R is covex if ad oly if ϕ(y) ϕ(x) y x for all x, y, z R with x < y < z. ϕ(z) ϕ(x) z x ϕ(z) ϕ(y) z y b) Use this characterizatio of covex fuctios to prove Theorem 1 o the existece of taget lies. 2. Let ϕ: (a, b) R be a differetiable fuctio. Prove that ϕ is covex if ad oly if ϕ is o-decreasig. 3. Let ϕ: R R be a covex fuctio. Prove that ϕ ( (1 λ)x + λy ) (1 λ)ϕ(x) + λϕ(y) for λ R [0, 1]. Use this to provide a alterative proof that ϕ is cotiuous. 4. If x, y 0, prove that ( x p + y p lim p 0 What is 2 lim p ) 1/p = xy ad lim p ( ) x p + y p 1/p? 2 ( ) x p + y p 1/p = max(x, y). 5. a) If x 1,..., x, y 1,..., y (0, ), prove that x1 y 1 + x y x1 + + x y1 + + y. That is, the arithmetic mea of geometric meas is less tha or equal to the correspodig geometric mea of arithmetic meas. 2

16 Covexity, Iequalities, ad Norms 16 b) If λ, µ [0, 1] ad λ + µ = 1, prove that x λ 1y µ 1 + x λ y µ ( ) λ ( ) µ x1 + + x y1 + + y. 6. Prove the Geeralized Mea Iequality (Theorem 6) i the case where p or q is egative. 7. Let f : [0, 1] R be a bouded measurable fuctio, ad defie ϕ: [1, ) R by ϕ(p) = f p dµ. Prove that log ϕ is covex o [1, ). [0,1] 8. Prove that ( 1 + x 2 y + x 4 y 2) 3 ( 1 + x 3 + x 6) 2( 1 + y 3 + y 6) for all x, y (0, ). 9. Let (, µ) be a measure space, let f, g : [0, ) be measurable fuctios, ad let p, q, r (1, ) so that 1/p + 1/q = 1/r. Prove that fg r f p g q.

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Metric, Normed, and Topological Spaces

Metric, Normed, and Topological Spaces Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

2.7 Sequences, Sequences of Sets

2.7 Sequences, Sequences of Sets 2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

NOTES ON INEQUALITIES FELIX LAZEBNIK

NOTES ON INEQUALITIES FELIX LAZEBNIK NOTES ON INEQUALITIES FELIX LAZEBNIK Order ad iequalities are fudametal otios of moder mathematics. Calculus ad Aalysis deped heavily o them, ad properties of iequalities provide the mai tool for developig

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

The Field Q of Rational Numbers

The Field Q of Rational Numbers Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

More information

7. Sample Covariance and Correlation

7. Sample Covariance and Correlation 1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y

More information

Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

More information

Alternatives To Pearson s and Spearman s Correlation Coefficients

Alternatives To Pearson s and Spearman s Correlation Coefficients Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives

More information

Figure 40.1. Figure 40.2

Figure 40.1. Figure 40.2 40 Regular Polygos Covex ad Cocave Shapes A plae figure is said to be covex if every lie segmet draw betwee ay two poits iside the figure lies etirely iside the figure. A figure that is ot covex is called

More information

Approximating the Sum of a Convergent Series

Approximating the Sum of a Convergent Series Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Notes on Hypothesis Testing

Notes on Hypothesis Testing Probability & Statistics Grishpa Notes o Hypothesis Testig A radom sample X = X 1,..., X is observed, with joit pmf/pdf f θ x 1,..., x. The values x = x 1,..., x of X lie i some sample space X. The parameter

More information

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

NPTEL STRUCTURAL RELIABILITY

NPTEL STRUCTURAL RELIABILITY NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Limits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L

Limits, Continuity and derivatives (Stewart Ch. 2) say: the limit of f(x) equals L Limits, Cotiuity ad derivatives (Stewart Ch. 2) f(x) = L say: the it of f(x) equals L as x approaches a The values of f(x) ca be as close to L as we like by takig x sufficietly close to a, but x a. If

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Sampling Distribution And Central Limit Theorem

Sampling Distribution And Central Limit Theorem () Samplig Distributio & Cetral Limit Samplig Distributio Ad Cetral Limit Samplig distributio of the sample mea If we sample a umber of samples (say k samples where k is very large umber) each of size,

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Joint Probability Distributions and Random Samples

Joint Probability Distributions and Random Samples STAT5 Sprig 204 Lecture Notes Chapter 5 February, 204 Joit Probability Distributios ad Radom Samples 5. Joitly Distributed Radom Variables Chapter Overview Joitly distributed rv Joit mass fuctio, margial

More information

Using Excel to Construct Confidence Intervals

Using Excel to Construct Confidence Intervals OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio

More information

An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process

An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process A example of o-queched covergece i the coditioal cetral limit theorem for partial sums of a liear process Dalibor Volý ad Michael Woodroofe Abstract A causal liear processes X,X 0,X is costructed for which

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

More information

THE LEAST SQUARES REGRESSION LINE and R 2

THE LEAST SQUARES REGRESSION LINE and R 2 THE LEAST SQUARES REGRESSION LINE ad R M358K I. Recall from p. 36 that the least squares regressio lie of y o x is the lie that makes the sum of the squares of the vertical distaces of the data poits from

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Distributions of Order Statistics

Distributions of Order Statistics Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells

Convex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Rényi Divergence and L p -affine surface area for convex bodies

Rényi Divergence and L p -affine surface area for convex bodies Réyi Divergece ad L p -affie surface area for covex bodies Elisabeth M. Werer Abstract We show that the fudametal objects of the L p -Bru-Mikowski theory, amely the L p -affie surface areas for a covex

More information

Unit 20 Hypotheses Testing

Unit 20 Hypotheses Testing Uit 2 Hypotheses Testig Objectives: To uderstad how to formulate a ull hypothesis ad a alterative hypothesis about a populatio proportio, ad how to choose a sigificace level To uderstad how to collect

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

1.3 Binomial Coefficients

1.3 Binomial Coefficients 18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

1 The Gaussian channel

1 The Gaussian channel ECE 77 Lecture 0 The Gaussia chael Objective: I this lecture we will lear about commuicatio over a chael of practical iterest, i which the trasmitted sigal is subjected to additive white Gaussia oise.

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Definitions for Middle School Teachers) Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

More information

Tangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem

Tangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem 116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

More information

3. Continuous Random Variables

3. Continuous Random Variables Statistics ad probability: 3-1 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr. Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS

A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(1) (2005), #A27 A CHARACTERIZATION OF MINIMAL ZERO-SEQUENCES OF INDEX ONE IN FINITE CYCLIC GROUPS Scott T. Chapma 1 Triity Uiversity, Departmet

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information