*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

Size: px
Start display at page:

Download "*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature."

Transcription

1 Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated. They ca be itegrated to share the iformatio developed i the same system Usig separate iformatio system developed by differet fuctios withi the same productio system is oe of the mai reaso for iefficiecies such as excess ivetory, shortage of a few critical compoets whe they are eeded, cash flow problems. A properly desiged itegrated system will ot oly prevet most of the above problems, but also have capabilities of lookig ahead to aswer various what if questios for the productio system. Questios such as what happes if the order for a give product is cacelled? or what will happe if a certai supplier fails to supply the material eeded o time? Two of these systems which are directly related to productio schedulig ad ivetory cotrol are: Material Requiremets Plaig (MRP) ad Maufacturig Resources Plaig (MRP II). *The demad was assumed to be dictated by the eviromet that maagemet had to cope with. This assumptio, however, is ot true i a maufacturig eviromet where the demad for elemets used i the fial product depeds o the demad forecasted for the product. *MRP is ofte cosidered to be a subset of ivetory cotrol while it is a effective tool for miimizig uecessary ivetory ivestmet, MRP is also useful i productio schedulig ad purchasig of materials. Time phasig *The most importat feature of MRP as compared with ordiary ivetory cotrol aalysis is its time phasig feature. *I classical ivetory aalysis it is usually determied how much to order to repleish ivetory which has bee used up (EOQ). *I MRP the timig of each ivetory actio is determied, ad the status of the system is calculated, for every period. Example: Week Demad

2 Classical ivetory:total demad 1900 O-had 800 Amout due by third week 500 Net requiremet = 600 MRP: approaches the problem by specifyig what happes to the system period by period. Week Requiremet Due to be Received O Had Net Requiremet Objective of MRP: 1. Improve customer service 2. Reduce ivetory ivestmets 3. Improve plat operatig efficiecy Basic cocepts of MRP: 1. Idepedet vs. depedet demad *Idepedet demad meas that demad for a product is urelated to demad for other items (e.g. ed products ad spare parts, etc.) these should forecasted. *Depedet demad meas that demad for the item is related directly to the demad for some other product (e.g. raw materials, subassemblies) these should ot be forecasted ad is determied by MRP techiques. 2. Lead time *The lead time for a job is the time that must be allowed to complete the job from start to fiish. -Orderig Lead Time: is the time required form iitiatio of purchase requisitio to receipt of the item from the veder.

3 -Mfg. Lead Time: is the time eeded to process the part through the sequece of machies specified o the route sheet. 3. Commo use items *A raw material may be used to produce more tha oe compoet type. *A give compoet may be used o more tha oe fial produce, etc. Iput to MRP: 1. Master Product Schedule: is a list of *What ed products are to be produced. *How may of each product is to be produced. *Whe the products are to be ready for shipmet. 2. Bill of Material (BOM) File *I material Requiremets Plaig the demad for compoet items is calculated rather tha forecast. These calculatios are made by multiplyig the values forecast for the ed product by the list of compoets used to produce oe uit of the ed product *BOM is a listig of compoet parts ad subassembly that make up each product. Subassemblies Sub-subassemblies Product Structure for Product P Modified Form of Product Structure for Product P

4 3. Ivetory Record File *A Computerized ivetory system is used to maitai items of master files icludig raw materials, compoets assemblies, BOM, etc. Structure of MRP System How MRP Works?

5 *A program is writte that computes how may of each compoet ad raw material are eeded by "explodig" the ed product requiremet ito successively lower levels i the product structure. Factors that must be cosidered i the MRP parts ad materials explosio: 1. Quatities that are i ivetory or scheduled for delivery i the ear future must be subtracted from gross requiremets to determie et requiremets for meetig the master. 2. Time to start assemblig the subassemblies ad compoets must be offset by their respective maufacturig lead-time. Raw material must be offset by orderig lead time. 3. Commo use items must be collected ad combied ito a sigle et requiremet for each item. Priciples of Material Requiremets Plaig 1. Time Buckets - The time uits, for which the material Requiremets Plaig is performed. The duratio of each time bucket depeds o the ature of the product a productio schedule. *Smaller time buckets provide greater accuracy but cost more i term of the volume of data to be processed. *Larger time buckets may create plaig problems. *Plaig horizo - a legth of time for which the plaig is performed. 2. Gross Requiremet - these are the requiremets that must be o had at specified times.

6 3. Scheduled Receipt - a part of the gross requiremet is met by scheduled receipts. These are parts for which orders have already bee released, ad they are due to arrive at a kow time. 4. Ivetory O Had - The amout of ivetory o had at the begiig of each period ca be calculated by the followig relatio, I I GR where I = ivetory o had at the begiig of period I-1 = ivetory o had at the begiig of period -1 SR-1 = scheduled receipt at period -1 GR-1 = gross requiremet at period -1 if I if I 1 1 GR GR Net Requiremet - is the amout required to meet that portio of the gross demad which is ot covered by the scheduled receipts ad ivetory o had.

7 NR GR GR I 0 if if GR I otherwise 0 I 0 wherenr = Net Requiremet for period 6. Plaed Order Release - The et requiremets row idicates the amout ad timig of the et requiremets. The order to iitiate the supply of these parts either by productio or purchase must be issued i advace to make sure they will be available whe eeded. *We adopt the covetio of assumig that the et requiremet is eeded at the middle of time periods. 7. Ecoomic Order Quatity - Sometimes releasig orders for quatities less tha some specified amout is ot feasible ecoomically or for other possible reasos.

8 MRP Tableau with Ecoomic Order Quatity 8. Safety Stock - is usually icluded whe there is ucertaity associated with the demad patter. Sometimes variatios of supply lies or productio systems may require safety stock at the compoet part level. I these situatios the safety stock ca be subtracted from the o-had ivetory.

9 Sources of Gross Requiremets *Master Schedule - shows the gross requiremets for the fial product for each time period. A Sample Master Schedule *With the help of the product structure diagram (BOM) the traslate the gross requiremets for the product to gross requiremets for the compoet parts

10 The Product Structure The relatio betwee the parts i two cosecutive levels of the product structure is ofte referred to as the paret-compoet relatioship. The gross requiremet for the compoet part is calculated from the et requiremets of the paret part. I these calculatios the et requiremet at each level becomes the gross requiremet for the items i the ext level. For compoet items which appear several times i the product structure, the gross requiremet is obtaied by addig up ball gross requiremets Determiatio of Gross Requiremets for Compoet Parts from the Fial Product

11 Closed Look MRP Plaig horizo spa: the legth of plaig horizo is very importat i desigig MRP system. Thus the plaig horizo must be log eough to allow eough time for plaig. O the other had, too log a plaig horizo ecessitates larger amouts of data processig. Further more, the loger the plaig horizo, the less reliable becomes the data about demad forecastig. Updatig the system: MRP systems are dyamic systems. Output of MRP systems: detailed ad time phased iformatio about the compoet items. Use of computers i MRP:MRP is primarily a iformatio ad a data processig system. Accommodatio of Chages Productio plas are subject to frequet chages both from exteral supply or demad requiremets ad from iteral factors that cotribute to or detract from maufacturig capabilities. A MRP system accommodates these chages through oe of the followig methods: Schedule regeeratio: Material requiremets are updated by literally throwig away the previous pla ad periodically re-explodig all ed-item requiremets, usually each week. I doig so, every bill of material must be retrieved, ad the ivetory status of every item must be recomputed. Net chage: Re-plaig cotiuously takes place i a et chage system. Oly affected parts of the master schedule must be exploded. Maufacturig Resources Plaig MRP II MRP II adds two importat features to closed loop MRP. 1. The first feature is to itegrate the fiacial system of the compay with its operatig system. A closed loop MRP ca itegrate the iformatio system eeded for operatig a productio system. Itegratig the closed loop MRP with the iformatio eeded for fiacial systems such as accoutig, marketig, ad purchasig will result i a more efficiet system. Most of the figures that are used by fiacial ad accoutig persoel are the same as those used by productio plaig ad schedulig people. The oly differece is that accoutig persoel put dollar values o uits. 2. The secod feature added to MRP by MRP II is a simulatio capability to evaluate the etire busiess ad productio system to aswer various what if questio. Software for MRP systems There have bee a cosiderable umber of commercially available software developed for MRP ad closed loop MRP. Software packages for MRP II are ot umerous but the umber is growig. Maufacturig software systems (Vermot) provides a report o computer software for MRP ad MRP II.

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Supply Chain Management

Supply Chain Management Supply Chai Maagemet LOA Uiversity October 9, 205 Distributio D Distributio Authorized to Departmet of Defese ad U.S. DoD Cotractors Oly Aim High Fly - Fight - Wi Who am I? Dr. William A Cuigham PhD Ecoomics

More information

Engineering Data Management

Engineering Data Management BaaERP 5.0c Maufacturig Egieerig Data Maagemet Module Procedure UP128A US Documetiformatio Documet Documet code : UP128A US Documet group : User Documetatio Documet title : Egieerig Data Maagemet Applicatio/Package

More information

Introduction to Demand Planning & Forecasting

Introduction to Demand Planning & Forecasting CTL.SC1x -Supply Chai & Logistics Fudametals Itroductio to Demad Plaig & Forecastig MIT Ceter for Trasportatio & Logistics Demad Process Three Key Questios What should we do to shape ad create demad for

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7 Forecastig Chapter 7 Chapter 7 OVERVIEW Forecastig Applicatios Qualitative Aalysis Tred Aalysis ad Projectio Busiess Cycle Expoetial Smoothig Ecoometric Forecastig Judgig Forecast Reliability Choosig the

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

Pre-Suit Collection Strategies

Pre-Suit Collection Strategies Pre-Suit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process

More information

Page 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville

Page 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville Real Optios for Egieerig Systems J: Real Optios for Egieerig Systems By (MIT) Stefa Scholtes (CU) Course website: http://msl.mit.edu/cmi/ardet_2002 Stefa Scholtes Judge Istitute of Maagemet, CU Slide What

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

How to use what you OWN to reduce what you OWE

How to use what you OWN to reduce what you OWE How to use what you OWN to reduce what you OWE Maulife Oe A Overview Most Caadias maage their fiaces by doig two thigs: 1. Depositig their icome ad other short-term assets ito chequig ad savigs accouts.

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

The Big Picture: An Introduction to Data Warehousing

The Big Picture: An Introduction to Data Warehousing Chapter 1 The Big Picture: A Itroductio to Data Warehousig Itroductio I 1977, Jimmy Carter was Presidet of the Uited States, Star Wars hit the big scree, ad Apple Computer, Ic. itroduced the world to the

More information

Flood Emergency Response Plan

Flood Emergency Response Plan Flood Emergecy Respose Pla This reprit is made available for iformatioal purposes oly i support of the isurace relatioship betwee FM Global ad its cliets. This iformatio does ot chage or supplemet policy

More information

MTO-MTS Production Systems in Supply Chains

MTO-MTS Production Systems in Supply Chains NSF GRANT #0092854 NSF PROGRAM NAME: MES/OR MTO-MTS Productio Systems i Supply Chais Philip M. Kamisky Uiversity of Califoria, Berkeley Our Kaya Uiversity of Califoria, Berkeley Abstract: Icreasig cost

More information

Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1184-1190. Research Article

Journal of Chemical and Pharmaceutical Research, 2015, 7(3):1184-1190. Research Article Available olie www.ocpr.com Joural of Chemical ad Pharmaceutical Research, 15, 7(3):1184-119 Research Article ISSN : 975-7384 CODEN(USA) : JCPRC5 Iformatio systems' buildig of small ad medium eterprises

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Material Management and

Material Management and Cover Article Acquisitio of Property Through a Material Maagemet ad Accoutig System (MMAS) by Richard Culbertso, Three Rivers Chapter ad Waye Norma, CPPM, CF, Los Ageles Chapter Backgroud ad brief history

More information

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

InventoryControl. The Complete Inventory Tracking Solution for Small Businesses

InventoryControl. The Complete Inventory Tracking Solution for Small Businesses IvetoryCotrol The Complete Ivetory Trackig Solutio for Small Busiesses Regular Logo 4C Productivity Solutios for Small Busiesses Logo Outlie Get i cotrol of your ivetory with Wasp Ivetory Cotrol the complete

More information

AN INTELLIGENT MODEL FOR SALES AND INVENTORY MANAGEMENT

AN INTELLIGENT MODEL FOR SALES AND INVENTORY MANAGEMENT AN INTELLIGENT MODEL FOR SALES AND INVENTORY MANAGEMENT SYLVANUS O. ANIGBOGU, Ph.D. Associate Professor of Computer Sciece Departmet of Computer Sciece, Namdi Azikiwe Uiversity, Awka, Aambra State, 420001,

More information

Forecasting techniques

Forecasting techniques 2 Forecastig techiques this chapter covers... I this chapter we will examie some useful forecastig techiques that ca be applied whe budgetig. We start by lookig at the way that samplig ca be used to collect

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

Agency Relationship Optimizer

Agency Relationship Optimizer Decideware Developmet Agecy Relatioship Optimizer The Leadig Software Solutio for Cliet-Agecy Relatioship Maagemet supplier performace experts scorecards.deploymet.service decide ware Sa Fracisco Sydey

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

ODBC. Getting Started With Sage Timberline Office ODBC

ODBC. Getting Started With Sage Timberline Office ODBC ODBC Gettig Started With Sage Timberlie Office ODBC NOTICE This documet ad the Sage Timberlie Office software may be used oly i accordace with the accompayig Sage Timberlie Office Ed User Licese Agreemet.

More information

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series

Automatic Tuning for FOREX Trading System Using Fuzzy Time Series utomatic Tuig for FOREX Tradig System Usig Fuzzy Time Series Kraimo Maeesilp ad Pitihate Soorasa bstract Efficiecy of the automatic currecy tradig system is time depedet due to usig fixed parameters which

More information

Enhancing Oracle Business Intelligence with cubus EV How users of Oracle BI on Essbase cubes can benefit from cubus outperform EV Analytics (cubus EV)

Enhancing Oracle Business Intelligence with cubus EV How users of Oracle BI on Essbase cubes can benefit from cubus outperform EV Analytics (cubus EV) Ehacig Oracle Busiess Itelligece with cubus EV How users of Oracle BI o Essbase cubes ca beefit from cubus outperform EV Aalytics (cubus EV) CONTENT 01 cubus EV as a ehacemet to Oracle BI o Essbase 02

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

INDEPENDENT BUSINESS PLAN EVENT 2016

INDEPENDENT BUSINESS PLAN EVENT 2016 INDEPENDENT BUSINESS PLAN EVENT 2016 The Idepedet Busiess Pla Evet ivolves the developmet of a comprehesive proposal to start a ew busiess. Ay type of busiess may be used. The Idepedet Busiess Pla Evet

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

(VCP-310) 1-800-418-6789

(VCP-310) 1-800-418-6789 Maual VMware Lesso 1: Uderstadig the VMware Product Lie I this lesso, you will first lear what virtualizatio is. Next, you ll explore the products offered by VMware that provide virtualizatio services.

More information

Recursion and Recurrences

Recursion and Recurrences Chapter 5 Recursio ad Recurreces 5.1 Growth Rates of Solutios to Recurreces Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer. Cosider, for example,

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Agenda. Outsourcing and Globalization in Software Development. Outsourcing. Outsourcing here to stay. Outsourcing Alternatives

Agenda. Outsourcing and Globalization in Software Development. Outsourcing. Outsourcing here to stay. Outsourcing Alternatives Outsourcig ad Globalizatio i Software Developmet Jacques Crocker UW CSE Alumi 2003 jc@cs.washigto.edu Ageda Itroductio The Outsourcig Pheomeo Leadig Offshore Projects Maagig Customers Offshore Developmet

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Working with numbers

Working with numbers 4 Workig with umbers this chapter covers... This chapter is a practical guide showig you how to carry out the types of basic calculatio that you are likely to ecouter whe workig i accoutig ad fiace. The

More information

Supply Chain Management

Supply Chain Management Supply Chai Maagemet Douglas M. Lambert, Ph.D. The Raymod E. Maso Chaired Professor ad Director, The Global Supply Chai Forum Supply Chai Maagemet is NOT a New Name for Logistics The Begiig of Wisdom Is

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

Research Method (I) --Knowledge on Sampling (Simple Random Sampling)

Research Method (I) --Knowledge on Sampling (Simple Random Sampling) Research Method (I) --Kowledge o Samplig (Simple Radom Samplig) 1. Itroductio to samplig 1.1 Defiitio of samplig Samplig ca be defied as selectig part of the elemets i a populatio. It results i the fact

More information

Business Rules-Driven SOA. A Framework for Multi-Tenant Cloud Computing

Business Rules-Driven SOA. A Framework for Multi-Tenant Cloud Computing Lect. Phd. Liviu Gabriel CRETU / SPRERS evet Traiig o software services, Timisoara, Romaia, 6-10 dec 2010 www.feaa.uaic.ro Busiess Rules-Drive SOA. A Framework for Multi-Teat Cloud Computig Lect. Ph.D.

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Problem Set 1 Oligopoly, market shares and concentration indexes

Problem Set 1 Oligopoly, market shares and concentration indexes Advaced Idustrial Ecoomics Sprig 2016 Joha Steek 29 April 2016 Problem Set 1 Oligopoly, market shares ad cocetratio idexes 1 1 Price Competitio... 3 1.1 Courot Oligopoly with Homogeous Goods ad Differet

More information

An Introduction to Logistics and the Supply Chain. An Introduction To Logistics And The Supply Chain

An Introduction to Logistics and the Supply Chain. An Introduction To Logistics And The Supply Chain Departmet of Global Busiess ad Trasportatio A Itroductio to Logistics ad the Supply Chai Itroductio Cosider bottled water. Abstract Oft times I have foud that studets come ito a course that assumes they

More information

TruStore: The storage. system that grows with you. Machine Tools / Power Tools Laser Technology / Electronics Medical Technology

TruStore: The storage. system that grows with you. Machine Tools / Power Tools Laser Technology / Electronics Medical Technology TruStore: The storage system that grows with you Machie Tools / Power Tools Laser Techology / Electroics Medical Techology Everythig from a sigle source. Cotets Everythig from a sigle source. 2 TruStore

More information

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,... 3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

LEASE-PURCHASE DECISION

LEASE-PURCHASE DECISION Public Procuremet Practice STANDARD The decisio to lease or purchase should be cosidered o a case-by case evaluatio of comparative costs ad other factors. 1 Procuremet should coduct a cost/ beefit aalysis

More information

A Guide to the Pricing Conventions of SFE Interest Rate Products

A Guide to the Pricing Conventions of SFE Interest Rate Products A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Key words: environmental costs; financial and environmental decisions; Activity-based costing (ABC); environmental management system (EMS).

Key words: environmental costs; financial and environmental decisions; Activity-based costing (ABC); environmental management system (EMS). Evirometal Maagemet Accoutig (EMA): Reflectio of Evirometal Factors i the Accoutig Processes through the Idetificatio of the Evirometal Costs Attached to Products, Processes ad Services Cleopatra ªedroiu

More information

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN

Analyzing Longitudinal Data from Complex Surveys Using SUDAAN Aalyzig Logitudial Data from Complex Surveys Usig SUDAAN Darryl Creel Statistics ad Epidemiology, RTI Iteratioal, 312 Trotter Farm Drive, Rockville, MD, 20850 Abstract SUDAAN: Software for the Statistical

More information

iprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor

iprox sensors iprox inductive sensors iprox programming tools ProxView programming software iprox the world s most versatile proximity sensor iprox sesors iprox iductive sesors iprox programmig tools ProxView programmig software iprox the world s most versatile proximity sesor The world s most versatile proximity sesor Eato s iproxe is syoymous

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

A GUIDE TO BUILDING SMART BUSINESS CREDIT

A GUIDE TO BUILDING SMART BUSINESS CREDIT A GUIDE TO BUILDING SMART BUSINESS CREDIT Establishig busiess credit ca be the key to growig your compay DID YOU KNOW? Busiess Credit ca help grow your busiess Soud paymet practices are key to a solid

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Demand Forecasting and the Determination of Employee Requirements in Nigerian Public Organisations

Demand Forecasting and the Determination of Employee Requirements in Nigerian Public Organisations Demad Forecastig ad the Determiatio of Employee Requiremets i Nigeria Public Orgaisatios Wurim, Be Pam Ph.D. (Assistat Chief Accoutat) Natioal Directorate of Employmet Plateau State, Nigeria. Abstract

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Full Lifecycle Project Cost Controls

Full Lifecycle Project Cost Controls Full Lifecycle Project Cost Cotrols EcoSys EPC is a ext geeratio plaig ad cost cotrols software solutio deliverig best practices for full lifecycle project cost maagemet i a itegrated, easy-to-use web

More information

Framingham State College Department of Economics and Business Managerial Finance Practice Final Exam Spring 2006

Framingham State College Department of Economics and Business Managerial Finance Practice Final Exam Spring 2006 Name Framigham State College Departmet of Ecoomics ad Busiess Maagerial Fiace Practice Fial Exam Sprig 2006 This exam provides questios that are represetative of those cotaied o your exam. This test should

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally Raibow optios INRODUCION A raibow is a optio o a basket that pays i its most commo form, a oequally weighted average of the assets of the basket accordig to their performace. he umber of assets is called

More information

For customers Key features of the Guaranteed Pension Annuity

For customers Key features of the Guaranteed Pension Annuity For customers Key features of the Guarateed Pesio Auity The Fiacial Coduct Authority is a fiacial services regulator. It requires us, Aego, to give you this importat iformatio to help you to decide whether

More information

Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS

Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 1 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 2 Chapter 1 INTRODUCTION TO MAINTENANCE AND REPLACEMENT MODELS 1.0 MAINTENANCE Maiteace is a routie ad recurrig activity of keepig a particular

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

1. Introduction. Scheduling Theory

1. Introduction. Scheduling Theory . Itroductio. Itroductio As a idepedet brach of Operatioal Research, Schedulig Theory appeared i the begiig of the 50s. I additio to computer systems ad maufacturig, schedulig theory ca be applied to may

More information

Decision Support System (DSS) for Capacity Planning: A Case Study

Decision Support System (DSS) for Capacity Planning: A Case Study ISSN: 2321-7782 (Olie) Volume 1, Issue 4, September 2013 Iteratioal Joural of Advace Research i Computer Sciece ad Maagemet Studies Research Paper Available olie at: www.ijarcsms.com Decisio Support System

More information

GROSS MARGIN MANAGEMENT FRAMEWORK FOR MERCHANDISING DECISIONS IN COMPANIES WITH LARGE ASSORTMENT OF PRODUCTS

GROSS MARGIN MANAGEMENT FRAMEWORK FOR MERCHANDISING DECISIONS IN COMPANIES WITH LARGE ASSORTMENT OF PRODUCTS ECONOMICS AND MANAGEMENT: 2013. 18 (1) ISSN 2029-9338 (ONLINE) FOR MERCHANDISING DECISIONS IN COMPANIES WITH LARGE ASSORTMENT OF PRODUCTS Gedimias Jagelavicius Kauas Uiversity of Techology, Lithuaia http://dx.doi.org/10.5755/j01.em.18.1.4116

More information

An antenna is a transducer of electrical and electromagnetic energy. electromagnetic. electrical

An antenna is a transducer of electrical and electromagnetic energy. electromagnetic. electrical Basic Atea Cocepts A atea is a trasducer of electrical ad electromagetic eergy electromagetic electrical electrical Whe We Desig A Atea, We Care About Operatig frequecy ad badwidth Sometimes frequecies

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will: Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median.

Stat 104 Lecture 2. Variables and their distributions. DJIA: monthly % change, 2000 to Finding the center of a distribution. Median. Stat 04 Lecture Statistics 04 Lecture (IPS. &.) Outlie for today Variables ad their distributios Fidig the ceter Measurig the spread Effects of a liear trasformatio Variables ad their distributios Variable:

More information

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC TO: Users of the ACTEX Review Semiar o DVD for SOA Eam MLC FROM: Richard L. (Dick) Lodo, FSA Dear Studets, Thak you for purchasig the DVD recordig of the ACTEX Review Semiar for SOA Eam M, Life Cotigecies

More information

Investing in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY?

Investing in Stocks WHAT ARE THE DIFFERENT CLASSIFICATIONS OF STOCKS? WHY INVEST IN STOCKS? CAN YOU LOSE MONEY? Ivestig i Stocks Ivestig i Stocks Busiesses sell shares of stock to ivestors as a way to raise moey to fiace expasio, pay off debt ad provide operatig capital. Ecoomic coditios: Employmet, iflatio, ivetory

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

A Balanced Scorecard

A Balanced Scorecard A Balaced Scorecard with VISION A Visio Iteratioal White Paper Visio Iteratioal A/S Aarhusgade 88, DK-2100 Copehage, Demark Phoe +45 35430086 Fax +45 35434646 www.balaced-scorecard.com 1 1. Itroductio

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC

ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC 8 th Iteratioal Coferece o DEVELOPMENT AND APPLICATION SYSTEMS S u c e a v a, R o m a i a, M a y 25 27, 2 6 ADAPTIVE NETWORKS SAFETY CONTROL ON FUZZY LOGIC Vadim MUKHIN 1, Elea PAVLENKO 2 Natioal Techical

More information

France caters to innovative companies and offers the best research tax credit in Europe

France caters to innovative companies and offers the best research tax credit in Europe 1/5 The Frech Govermet has three objectives : > improve Frace s fiscal competitiveess > cosolidate R&D activities > make Frace a attractive coutry for iovatio Tax icetives have become a key elemet of public

More information

New job at the Japanese company, would like to know about the health insurance. What's the process to apply for the insurance?

New job at the Japanese company, would like to know about the health insurance. What's the process to apply for the insurance? Cabiet ねん かせんぶ ねん しゅが かせんぶ じてん しゅうせい 8-4-2 (2008 年 下 線 部 &2009 年 朱 書 き 下 線 部 時 点 修 正 ) Level 3 Chapter Illess Sectio Public health isurace Cotets Health isurace 1 Possible questio ad backgroud. New job

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information