Chapter 5: Inner Product Spaces

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 5: Inner Product Spaces"

Transcription

1 Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples of ier product spaces prove properties of ier product spaces defie the orm of a vector prove properties of orms I Chapter we itroduced the idea of ier products for a Euclidea space. I this chapter we exted the cocept of ier product to geeral vector spaces. his sectio is more difficult tha the equivalet sectio (B) i chapter because we caot visualise the vectors. A Defiitio of Ier Product How did we defie the ier product i Chapter? It was defied as follows: u v u Let u ad v v be vectors i the the ier product of u ad v u v deoted by u v is (.9) u v uv + uv + uv + + uv Remember the aswer was a scalar ot a vector. he ier product was amed the dot product (also called the scalar product) i. his is the usual (or stadard) ier product i but there are may other ier products i. For the geeral vector space the ier product u v is deoted by u, v rather tha u v. For the geeral vector space the defiitio of ier product is based o Propositio (.) of Chapter ad is give by: Defiitio (5.). A ier product o a real vector space V is a operatio which assigs to each pair of vectors, u ad v, a uique real umber u, v which satisfies the followig axioms for all vectors u, v ad w i V ad all scalars k. (i) u, v v, u [Commutative Law] (ii) u+ v, w u, w + v, w [Distributive Law] (iii) kuv, k u, v (iv) u, u ad we have u, u if ad oly if u O A real vector space which satisfies these axioms is called a real ier product space. Note that evaluatig, gives a real umber (scalar) ot a vector. Next we give some examples of ier product spaces.

2 Chapter 5: Ier Product Spaces A Examples of Ier Product Example Show that the Euclidea space,, with the dot product as defied i (.9) above is ideed a ier product space. Solutio See Propositio (.) of Chapter. Example Let V be the Euclidea space,, ad A. 5 Show that u, w u Aw is a ier product for. Solutio. What are u ad v equal to? hey are vectors i which meas they ca be writte as u w u ad w u w What is u equal to? u u is the vector u trasposed, that is u ( u u). How do we show u u, w u Aw is a ier product? By checkig all 4 axioms of Defiitio (5.) give above. Check (i): w u, w u Aw ( u u) 5 w w+ w u u Matrix Multiplicatio w+ 5w u( w+ w) + u( w+ 5w) uw + uw + uw + 5uw [ Expadig] Goig the other way we have u w, u w Au ( w w) 5 u u+ u ( w w) [ Matrix Multiplicatio] u+ 5u w( u+ u) + w( u+ 5u) uw + uw + wu + 5wu [ Expadig] Comparig these two, u, w u Aw uw + uw + uw + 5 uw ad w, u w Au uw + uw + wu + 5 wu, we have [ ]

3 Chapter 5: Ier Product Spaces u, w w, u Hece part (i) of defiitio (5.) is satisfied. Check (ii): v Let v the we have v u+ v, w u+ v Aw u+ v w u + v 5 w w ( u+ v u + v) 5 w w+ w ( u+ v u + v) w+ 5w ( u+ v)( w+ w) + ( u + v)( w+ 5w) uw + uw + vw + vw + uw + 5uw + vw + 5vw Similarly by usig the results of part (i) above we have u, w + v, w uw + uw + uw + 5uw + vw + vw + vw + 5vw u, w v, w [ ] u+ v, w By Above Part (ii) of defiitio (5.) is satisfied. Check (iii): Need to check that ku, w k u, w ku, w ku Aw k u Aw Because k is a scalar therefore k k kuaw k u, w We are give u Aw u, w Hece part (iii) is satisfied. Check (iv): Need to show u, u ad we have u, u if ad oly if u O: u u, u u Au ( u u) 5 u u+ u ( u u) u+ 5u u u + u + u u + 5u We ca rewrite the last lie as ( ) ( ) ( u) uu uu 5( u) ( u ) 4uu 5( u )

4 Chapter 5: Ier Product Spaces 4 Also ( u ) uu ( u ) u, u ( u u ) + u + uu + u + u ( u u ) ( u ) [ Because we have square umbers] + + u, u u + u + u u u his meas that u O. Hece part (iv) is fulfilled therefore all 4 axioms are satisfied, so we coclude that u, w u Aw is a ier product for. Example Let be the quadratic polyomials. Let P be polyomials i P p c + c x+ c x ad q d + d x+ d x. Show that p, q cd + cd + cd defies a ier product o P. [For example if p + x + 5 x ad q 4 x+ 7x the p, q ] Solutio. How do we show p, q cd + cd + cd is a ier product o P? Checkig all 4 axioms of Defiitio (5.). (i) Need to check p, q q, p is true for p, q cd + cd + cd : p, q cd + cd + cd dc dc dc Remember order of multiplicatio does ot matter + + q, p (ii) Need to check p+ q, r p, r + q, r : Let r e + e x+ e x We have ad ( c d ) ( c d ) x ( c d ) x p+ q p+ q, r c + d + c + d x+ c + d x, e + e x+ e x c + d e + c + d e + c + d e ce + de + ce + de + ce + de Evaluatig the other ier product p, r + q, r ce + ce + ce + de + de + de p, r q, r ce + de + ce + de + ce + de p+ q, r F Hece part (ii) is satisfied. [ Rearragig] [ rom Above]

5 Chapter 5: Ier Product Spaces 5 (iii) Need to check kp, q k p, q : kp, q k c + c x+ c x, d + d x+ d x, [ Opeig Brackets] [ Usig the Defiitio of I.P. ] [ Factorizig] kc + kc x+ kc x d + d x+ d x kc d + kc d + kc d k c d + cd + c d k p, q Hece part (iii) is satisfied. (iv) Need to show p, p ad we have p, p if ad oly if p O: p, p c + cx+ c x, c + cx+ cx cc + cc + cc c + c + c Also p, p ( c) + ( c) + ( c) c c c If c c c the p O. All 4 axioms are satisfied, therefore p, q cd + cd + cd is a ier product o P. I the above example if w e defie p, q ( c + d ) + ( c+ d) + ( c + d) the p, q is ot a ier product. Why ot? Because axiom (iv) of Defiitio (5.) fails, tha t is p, p is false. For example if p x x the p, p x x, x x + + < Hece p, p [Not greater tha or equal to zero]. Next we state a ier product o the vector space of matrices, M. A example of a ier product o the vector space of matrices is the followig: he trace of a matrix is the sum of its leadig diagoal elemets, that is a b trace a d c d + Let M be the vector space of by matrices ad ier product o M be defied by A, B tr B A where tr is the trace. his is a ier product o M. here is a questio o this ier product i Exercise 5a. If we defie A, B AB o M the this is ot a ier product. Why ot? Because we do ot have the commutative law, that is A, B AB BA B, A [Not Equal]

6 Chapter 5: Ier Product Spaces 6 here are may other examples of ier product spaces which you eed to show i Exercise 5a. Next we move oto properties of ier products. A Properties of Ier Products Propositio (5.). Let u, v ad w be vectors i a real ier product space V ad k be ay scalar. We have the followig: (i) u, O O, v (ii) u, kv k u, v (iii) u, v+ w u, v + u, w Proof of (i). We ca write the zero vector as O because O. Usig the axioms of defiitio (5.) we have u O u O,, ( O) O, u By Part (i) of (5.) which is u, v v, u O, u By Part (iii) of (5.) which is ku, v k u, v Similarly O, v. Proof of (ii). Sice ier product is commutative, u, v v, u, by axiom (i) of defiitio (5.) therefore proof of part (ii) is straightforward. u, kv kv, u By Part (i) of ( 5.) which is u, v v, u k v, u By Part (iii) of (5.) which is ku, v k u, v k u, v By Part (i) of (5.) which is u, v v, u Proof of (iii). We have u, v+ w v+ w, u By Part (i) of (5.) which is u, v v, u By Part (ii) of (5.) which is v, u + w, u v+ w, u v, u + w, u u, v + u, w By Part (i) of (5.) which is u, v v, u A4 Norm or Legth of a Vector Do you remember how the Euclidea orm was defied? he orm of a vector u i was defied by uu. he orm is defied i a similar maer for the geeral vector space V. Let u be a vector i V the the orm deoted by u is defied as (5.) u u, u [Positive Root] Note that for the geeral vector space we caot use the dot product because that is

7 Chapter 5: Ier Product Spaces 7 oly defied for Euclidea space,, ad i this chapter we are examiig ier products o geeral vector spaces. he orm of a vector u is a real umber which gives the size of the vector u. Geerally to fid the orm u it is easier to determie u u, u ad the take the square root of your result. As before a vector with orm is called a uit vector. I the example below we apply the orm of a vector to vector spaces of cotiuous fuctios. Example,,. Let C [ ] be the vector space of cotiuous fuctios o the closed iterval [ ] Let f ( x ) x ad g( x) x be fuctios i C [, ]. Let the ier product o C [, ] be give by f, g f x g x dx Determie (i) f, g (ii) f (iii) g (iv) f g Solutio. (i) Usig f, g f ( x) g( x) dx with f ( x) x g( x) x (ii) f, g f x g x dx ad we have x( x ) dx f ( x) x g( x) x 4 Substitutig ad x x ( x x) dx As stated above to fid f it is easier to determie the sq uare root of your result: f f, f What is f equal to? f x f x dx f f, f ad the take xxdx Substitutig f x x x dx Because xx x x

8 Chapter 5: Ier Product Spaces 8 Square root of f which is (iii) Similarly we have g g, g f. x x dx g x x 4 ( x x ) dx Expadig ( x )( x ) g x g x dx Substitutig + 5 x x + x [ Itegratig] What is g equal to? We eed to take the square root of 8 5 to fid g. Hece 8 g. 5 (iv) Similarly to fid f g we first determie f g ad the take the square root of our aswer: f g f g, f g Hece 7 f g. f x g x f x g x dx [ ] x x x x dx Substitutig ( x x x x 4 x x x x ) dx [ Expadig] 4 ( x x x x ) dx [ Simplifyig] x x 5 4 x x x x + + x Itegratig x x + x he distace betwee two vectors u ad v is deoted as d ( u, ) (5.4) d ( u, v) u v [ ] v ad is defied as I Example 4 above the distace betwee f ad g was give by f g 7.

9 Chapter 5: Ier Product Spaces 9 Note that this does ot mea there is a distace of 7 betwee the two graphs of f ad g. It is the result of applyig the defiitio of a ier product give above. Example 5 Determie orm p of the vector i Solutio. P where the ier product is give by p, q cd + cd + cd By defiitio (5.) above we have p p, p but first we fid the take the square root: p, p cc + cc+ cc c + c + c herefore p p, p ( c ) + ( c ) + ( c ). p p, p ad Some orms are ot defied i terms of the ier product as the followig example shows: x Cosider the Euclidea space ad let x be a vector i the the x followig are importat orms i this space: x x + x + x + + x [his is called the oe orm] x x + x + x + + x [his is called the two orm] ( x j ) Note that ( x j ) x max where j,,, [his is called the ifiity orm] x max where j,,, meas we select the maximum absolute value out of x, x, x, ad x. 4 For example if we have the vector 4 x i the 9 7 x max (, 4, 9, 7 ) max (, 4, 9, 7) 9 x dp x A5 Properties of the Norm of a Vector Next we state certai properties of the orm of a vector. Propositio (5.5). Let V be a ier product space ad u ad v be vectors i V. If k is ay scalar the we have followig properties: (i) u [ No-egative] (ii) u u O (iii) ku k u

10 Chapter 5: Ier Product Spaces [Note that for a scalar k we have Proof of part (i). k k where k is the modulus of k]. By the above defiitio (5.) we have u u, u where the square root is the positive root, that is u u, u Proof of part (ii). Agai from defiitio (5.) we have ad Proof of part (iii). Applyig the defiitio (5.) we first fid u u, u uo u O u O, O ku ku, ku k u, ku ku ad the we take the square root: kk u, u k u, u akig the square root gives ku k u, u k u, u k u his is our required result. SUMMARY (5.). A ier product is a fuctio o a vector space which satisfies the followig: (i) u, v v, u [Commutative Law] (ii) u+ v, w u, w + v, w [Distributive Law] (iii) kuv, k u, v (iv) u, u ad we have u, u if ad oly if u O (5.)he ier product has the followig properties: (i) u, O O, v (ii) u, kv k u, v (iii) u, v+ w u, v + u, w he orm of a vector deoted u ad is defied as (5.) u u, u Propositio (5.5). Let V be a ier product space the we have the followig: (i) u [ No-egative] (ii) u u O (iii) ku k u

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

x(x 1)(x 2)... (x k + 1) = [x] k n+m 1 1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then

4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or p-series (the Compariso Test), but of

More information

8.3 POLAR FORM AND DEMOIVRE S THEOREM

8.3 POLAR FORM AND DEMOIVRE S THEOREM SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

The Field of Complex Numbers

The Field of Complex Numbers The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that

More information

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

The Field Q of Rational Numbers

The Field Q of Rational Numbers Chapter 3 The Field Q of Ratioal Numbers I this chapter we are goig to costruct the ratioal umber from the itegers. Historically, the positive ratioal umbers came first: the Babyloias, Egyptias ad Grees

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Measurable Functions

Measurable Functions Measurable Fuctios Dug Le 1 1 Defiitio It is ecessary to determie the class of fuctios that will be cosidered for the Lebesgue itegratio. We wat to guaratee that the sets which arise whe workig with these

More information

The Euler Totient, the Möbius and the Divisor Functions

The Euler Totient, the Möbius and the Divisor Functions The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

More information

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant

Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is

More information

8.5 Alternating infinite series

8.5 Alternating infinite series 65 8.5 Alteratig ifiite series I the previous two sectios we cosidered oly series with positive terms. I this sectio we cosider series with both positive ad egative terms which alterate: positive, egative,

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Sequences II. Chapter 3. 3.1 Convergent Sequences

Sequences II. Chapter 3. 3.1 Convergent Sequences Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,

More information

Module 4: Mathematical Induction

Module 4: Mathematical Induction Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

More information

2.7 Sequences, Sequences of Sets

2.7 Sequences, Sequences of Sets 2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

1 The Binomial Theorem: Another Approach

1 The Binomial Theorem: Another Approach The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

ORDERS OF GROWTH KEITH CONRAD

ORDERS OF GROWTH KEITH CONRAD ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

MA2108S Tutorial 5 Solution

MA2108S Tutorial 5 Solution MA08S Tutorial 5 Solutio Prepared by: LuJigyi LuoYusheg March 0 Sectio 3. Questio 7. Let x := / l( + ) for N. (a). Use the difiitio of limit to show that lim(x ) = 0. Proof. Give ay ɛ > 0, sice ɛ > 0,

More information

The second difference is the sequence of differences of the first difference sequence, 2

The second difference is the sequence of differences of the first difference sequence, 2 Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

More information

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr.

Learning outcomes. Algorithms and Data Structures. Time Complexity Analysis. Time Complexity Analysis How fast is the algorithm? Prof. Dr. Algorithms ad Data Structures Algorithm efficiecy Learig outcomes Able to carry out simple asymptotic aalysisof algorithms Prof. Dr. Qi Xi 2 Time Complexity Aalysis How fast is the algorithm? Code the

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Distributions of Order Statistics

Distributions of Order Statistics Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Lecture 7: Borel Sets and Lebesgue Measure

Lecture 7: Borel Sets and Lebesgue Measure EE50: Probability Foudatios for Electrical Egieers July-November 205 Lecture 7: Borel Sets ad Lebesgue Measure Lecturer: Dr. Krisha Jagaatha Scribes: Ravi Kolla, Aseem Sharma, Vishakh Hegde I this lecture,

More information

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers . Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

More information

MATH 361 Homework 9. Royden Royden Royden

MATH 361 Homework 9. Royden Royden Royden MATH 61 Homework 9 Royde..9 First, we show that for ay subset E of the real umbers, E c + y = E + y) c traslatig the complemet is equivalet to the complemet of the traslated set). Without loss of geerality,

More information

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S,

if A S, then X \ A S, and if (A n ) n is a sequence of sets in S, then n A n S, Lecture 5: Borel Sets Topologically, the Borel sets i a topological space are the σ-algebra geerated by the ope sets. Oe ca build up the Borel sets from the ope sets by iteratig the operatios of complemetatio

More information

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n =

1. a n = 2. a n = 3. a n = 4. a n = 5. a n = 6. a n = Versio PREVIEW Homework Berg (5860 This prit-out should have 9 questios. Multiple-choice questios may cotiue o the ext colum or page fid all choices before aswerig. CalCb0b 00 0.0 poits Rewrite the fiite

More information

Sum and Product Rules. Combinatorics. Some Subtler Examples

Sum and Product Rules. Combinatorics. Some Subtler Examples Combiatorics Sum ad Product Rules Problem: How to cout without coutig. How do you figure out how may thigs there are with a certai property without actually eumeratig all of them. Sometimes this requires

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 ) Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

More information

Section 9.2 Series and Convergence

Section 9.2 Series and Convergence Sectio 9. Series ad Covergece Goals of Chapter 9 Approximate Pi Prove ifiite series are aother importat applicatio of limits, derivatives, approximatio, slope, ad cocavity of fuctios. Fid challegig atiderivatives

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015 CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

More information

Review for College Algebra Final Exam

Review for College Algebra Final Exam Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 1-4. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i

More information

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites

Gregory Carey, 1998 Linear Transformations & Composites - 1. Linear Transformations and Linear Composites Gregory Carey, 1998 Liear Trasformatios & Composites - 1 Liear Trasformatios ad Liear Composites I Liear Trasformatios of Variables Meas ad Stadard Deviatios of Liear Trasformatios A liear trasformatio

More information

Numerical Solution of Equations

Numerical Solution of Equations School of Mechaical Aerospace ad Civil Egieerig Numerical Solutio of Equatios T J Craft George Begg Buildig, C4 TPFE MSc CFD- Readig: J Ferziger, M Peric, Computatioal Methods for Fluid Dyamics HK Versteeg,

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Section IV.5: Recurrence Relations from Algorithms

Section IV.5: Recurrence Relations from Algorithms Sectio IV.5: Recurrece Relatios from Algorithms Give a recursive algorithm with iput size, we wish to fid a Θ (best big O) estimate for its ru time T() either by obtaiig a explicit formula for T() or by

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

3. Continuous Random Variables

3. Continuous Random Variables Statistics ad probability: 3-1 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay

More information

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:

Math Discrete Math Combinatorics MULTIPLICATION PRINCIPLE: Math 355 - Discrete Math 4.1-4.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

B1. Fourier Analysis of Discrete Time Signals

B1. Fourier Analysis of Discrete Time Signals B. Fourier Aalysis of Discrete Time Sigals Objectives Itroduce discrete time periodic sigals Defie the Discrete Fourier Series (DFS) expasio of periodic sigals Defie the Discrete Fourier Trasform (DFT)

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

SUMS OF GENERALIZED HARMONIC SERIES. Michael E. Ho man Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland

SUMS OF GENERALIZED HARMONIC SERIES. Michael E. Ho man Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland #A46 INTEGERS 4 (204) SUMS OF GENERALIZED HARMONIC SERIES Michael E. Ho ma Departmet of Mathematics, U. S. Naval Academy, Aapolis, Marylad meh@usa.edu Courtey Moe Departmet of Mathematics, U. S. Naval

More information

Syllabus S.Y.B.Sc. (C.S.) Mathematics Paper II Linear Algebra

Syllabus S.Y.B.Sc. (C.S.) Mathematics Paper II Linear Algebra Syllabus S.Y.B.Sc. (C.S.) Mathematics Paper II Liear Algebra Uit : Systems of liear equatios ad matrices (a) Systems of homogeeous ad o-homogeeous liear equatios (i) The solutios of systems of m homogeeous

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

Section 1.6: Proof by Mathematical Induction

Section 1.6: Proof by Mathematical Induction Sectio.6 Proof by Iductio Sectio.6: Proof by Mathematical Iductio Purpose of Sectio: To itroduce the Priciple of Mathematical Iductio, both weak ad the strog versios, ad show how certai types of theorems

More information

13 Fast Fourier Transform (FFT)

13 Fast Fourier Transform (FFT) 13 Fast Fourier Trasform FFT) The fast Fourier trasform FFT) is a algorithm for the efficiet implemetatio of the discrete Fourier trasform. We begi our discussio oce more with the cotiuous Fourier trasform.

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

+ 1= x + 1. These 4 elements form a field.

+ 1= x + 1. These 4 elements form a field. Itroductio to fiite fields II Fiite field of p elemets F Because we are iterested i doig computer thigs it would be useful for us to costruct fields havig elemets. Let s costruct a field of elemets; we

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Math 475, Problem Set #6: Solutions

Math 475, Problem Set #6: Solutions Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b o-egative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),

More information

Handout: How to calculate time complexity? CSE 101 Winter 2014

Handout: How to calculate time complexity? CSE 101 Winter 2014 Hadout: How to calculate time complexity? CSE 101 Witer 014 Recipe (a) Kow algorithm If you are usig a modied versio of a kow algorithm, you ca piggyback your aalysis o the complexity of the origial algorithm

More information

THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS. Hee Chan Choi

THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS. Hee Chan Choi Kagweo-Kyugki Math. Jour. 4 (1996), No. 2, pp. 117 124 THE COMPLETENESS OF CONVERGENT SEQUENCES SPACE OF FUZZY NUMBERS Hee Cha Choi Abstract. I this paper we defie a ew fuzzy metric θ of fuzzy umber sequeces,

More information

3. Covariance and Correlation

3. Covariance and Correlation Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics

More information

3.2 Introduction to Infinite Series

3.2 Introduction to Infinite Series 3.2 Itroductio to Ifiite Series May of our ifiite sequeces, for the remaider of the course, will be defied by sums. For example, the sequece S m := 2. () is defied by a sum. Its terms (partial sums) are

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

COMP 251 Assignment 2 Solutions

COMP 251 Assignment 2 Solutions COMP 251 Assigmet 2 Solutios Questio 1 Exercise 8.3-4 Treat the umbers as 2-digit umbers i radix. Each digit rages from 0 to 1. Sort these 2-digit umbers ith the RADIX-SORT algorithm preseted i Sectio

More information

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016

Divide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016 CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Section 7-3 Estimating a Population. Requirements

Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information