# 2-3 The Remainder and Factor Theorems

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x 60 = (x + )(x 5)(x + ) x + x 1x + 18; x So, x + x 1x + 18 = (x )(x + 5x 6) Factorig the quadratic expressio yields x + x 1x + 18 = (x )(x + 6)(x 1) x + x 18x 0; x So, x + x 18x 0 = (x )(x + 7x + 10) Factorig the quadratic expressio yields x + x 18x 0 = (x )(x + )(x + 5) esolutios Maual - Powered by Cogero x + 0x 8x 96; x + Page 1

2 - So, x + x 1x + 18 = (x )(x + 5x 6) The Remaider ad Factor Theorems Factorig the quadratic expressio yields x + x 1x + 18 = (x )(x + 6)(x 1) x + x 18x 0; x So, x + x 18x 0 = (x )(x + 7x + 10) Factorig the quadratic expressio yields x + x 18x 0 = (x )(x + )(x + 5) x + 0x 8x 96; x + So, x + 0x 8x 96 = (x + )(x + 8x ) Factorig the quadratic expressio yields x + 0x 8x 96 = (x + )(x + )(x ) 5 x + 15x + 108x 50; x 6 So, x + 15x + 108x 50 = (x 6)( x x + 90) Factorig the quadratic expressio yields x + 15x + 108x 50 = (x 6)(x + 6)(x 5) 6 6x 7x 9x 1; x + esolutios Maual - Powered by Cogero Page

3 So, x + 15x + 108x 50 = (x 6)( x x + 90) - The Remaider ad Factor Theorems Factorig the quadratic expressio yields x + 15x + 108x 50 = (x 6)(x + 6)(x 5) 6 6x 7x 9x 1; x + So, 6x 7x 9x 1 = (x + )(x 5x ) Factorig the quadratic expressio yields 6x 7x 9x 1 = (x + )(x + 1)(x ) 7 x + 1x + 8x + 1x 6; x + 6x + 9 So, x + 1x + 8x + 1x 6 = (x + 6x + 9)(x + 6x 7) Factorig both quadratic expressios yield x + 1x + 8x + 1x 6 = (x + ) (x + 7)(x 1) 8 x x 6x + 68x + 0; x x 1 So, x x 6x + 68x + 0 = (x x 1)(x + x 0) Factorig both quadratic expressios yield x + 1x + 8x + 1x 6 = (x 6)(x + )(x + 5)(x ) Divide usig log divisio esolutiosmaual- Powered by Cogero 9 (5x x + 6x x + 1) (x ) Page

4 - So, x x 6x + 68x + 0 = (x x 1)(x + x 0) The Remaider ad Factor Theorems Factorig both quadratic expressios yield x + 1x + 8x + 1x 6 = (x 6)(x + )(x + 5)(x ) Divide usig log divisio 9 (5x x + 6x x + 1) (x ) So, = 5x + 17x + 7x (x6 x5 + x x + x x + ) (x + ) So, 5 = x x + 9x 19x + 1x (x 8x + 1x 6x + 1) (x + ) esolutios Maual - Powered by Cogero Page

5 5 - So, The Remaider ad Factor = x Theorems x + 9x 19x + 1x (x 8x + 1x 6x + 1) (x + ) The remaider ca be writte as So, = x 8x + x (x 7x 8x + 10x + 60) (x ) So, = x x 1x 0 1 (6x6 x5 + 6x 15x + x + 10x 6) (x 1) esolutios Maual - Powered by Cogero Page 5

6 - So, The Remaider ad Factor = x Theorems x 1x 0 1 (6x6 x5 + 6x 15x + x + 10x 6) (x 1) = So, 1 (108x5 6x + 75x + 6x + ) (x + ) So, = 6x 6x + x + 9x (x + x + 6x + 18x 16) (x x + 18x 5) esolutios Maual - Powered by Cogero Page 6

7 - So, The Remaider ad Factor = 6x Theorems 6x + x + 9x (x + x + 6x + 18x 16) (x x + 18x 5) So, = x + 16 (x 1x 1x + 110x 8) (x + x 1) So, = x 8x So, = x x esolutios Maual - Powered by Cogero Page 7

8 - So, The Remaider ad Factor Theorems = x x ca be writte as The remaider So, = Divide usig sythetic divisio 19 (x x + x 6x 6) (x ) Because x, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The quotiet is x + x + 5x (x + x x + 8x ) (x + ) Because x +, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The quotiet is x x + x + 1 (x 9x x 8) (x ) Because x, c = Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i the divided The follow the sythetic divisio procedure esolutios Maual - Powered by Cogero The quotiet is x + x + 1x + + Page 8

9 - The Thequotiet Remaider is x xad + xfactor + Theorems 1 (x 9x x 8) (x ) Because x, c = Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i the divided The follow the sythetic divisio procedure The quotiet is x + x + 1x + + (x5 x + 6x + 9x + 6) (x + ) Because x +, c = Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i the divided The follow the sythetic divisio procedure The quotiet is x x + x + x (1x5 + 10x 18x 1x 8) (x ) Rewrite the divisio expressio so that the divisor is of the form x c Because c = Set up the sythetic divisio as follows, usig a zero placeholder for the missig x-term i the divided The follow the sythetic divisio procedure The remaider ca be writte as So, the quotiet is 6x + 1x + 1x + 1x (6x 6x + 1x 0x 1) (x + 1) Rewrite the divisio expressio so that the divisor is of the form x c esolutios Maual - Powered by Cogero Page 9

10 ca be writte as The remaider So, the quotiet is 6x + 1x + 1x + 1x The Remaider ad Factor Theorems (6x 6x + 1x 0x 1) (x + 1) Rewrite the divisio expressio so that the divisor is of the form x c Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because The quotiet is 1x 6x + 6x 1 5 (5x5 + 6x + x + 8x + 1) (x ) Rewrite the divisio expressio so that the divisor is of the form x c Because c = Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i the divided The follow the sythetic divisio procedure The remaider ca be writte as So, the quotiet is 15x + 1x + 9x + 6x (8x5 + 8x + 68x + 11x + 6) (x + 1) Rewrite the divisio expressio so that the divisor is of the form x c esolutios Maual - Powered by Cogero Page 10

11 ca be writte as The remaider So, the quotiet is 15x + 1x + 9x + 6x + - The Remaider ad Factor Theorems + 6 (8x5 + 8x + 68x + 11x + 6) (x + 1) Rewrite the divisio expressio so that the divisor is of the form x c Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i Because the divided The follow the sythetic divisio procedure ca be writte as The remaider So, the quotiet is 1x + x + 16x x (60x6 + 78x5 + 9x 1x 5x 0) (5x + ) Rewrite the divisio expressio so that the divisor is of the form x c Set up the sythetic divisio as follows, usig a zero placeholder for the missig x -term i Because the divided The follow the sythetic divisio procedure 5 The quotiet is 1x + 6x x 5 8 esolutios Maual - Powered by Cogero Page 11

13 - The Remaider ad Factor Theorems The remaider is 50, so d(5) = 50 Therefore, 50 meters were traveled i 5 secods Fid each f (c) usig sythetic substitutio 1 f (x) = x5 x + x 6x + 8x 15; c = The remaider is 711 Therefore, f () = 711 f (x) = x6 x5 + x x + 8x ; c = The remaider is 11,165 Therefore, f () = 11,165 f (x) = x6 + 5x5 x + 6x 9x + x ; c = 5 The remaider is 5,56 Therefore, f (5) = 5,56 f (x) = x6 + 8x5 6x 5x + 6x ; c = 6 The remaider is 7,88 Therefore, f (6) = 7,88 5 f (x) = 10x5 + 6x 8x + 7x x + 8; c = 6 The remaider is 67,978 Therefore, f ( 6) = 67,978 6 f (x) = 6x7 + x5 8x + 1x 15x 9x + 6; c = esolutios Maual - Powered by Cogero The remaider is 686 Therefore, f () = f (x) = x8 + 6x5 x + 1x 6x + ; c = Page 1

14 - The Remaider ad Factor Theorems The remaider is 67,978 Therefore, f ( 6) = 67,978 6 f (x) = 6x7 + x5 8x + 1x 15x 9x + 6; c = The remaider is 686 Therefore, f () = f (x) = x8 + 6x5 x + 1x 6x + ; c = The remaider is 15,18 Therefore, f () = 15,18 Use the Factor Theorem to determie if the biomials give are factors of f (x) Use the biomials that are factors to write a factored form of f (x) 8 f (x) = x x 9x + x + 6; (x + ), (x 1) Use sythetic divisio to test each factor, (x + ) ad (x 1) Because the remaider whe f (x) is divided by (x + ) is 0, (x + ) is a factor Test the secod factor, (x 1), with the depressed polyomial x x x + Because the remaider whe the depressed polyomial is divided by (x 1) is 1, (x 1) is ot a factor of f (x) Because (x + ) is a factor of f (x), we ca use the quotiet of f (x) (x + ) to write a factored form of f (x) as f (x) = (x + )(x x x + ) 9 f (x) = x + x 5x + 8x + 1; (x 1), (x + ) Use sythetic divisio to test each factor, (x 1) ad (x + ) Because the remaider whe f (x) is divided by (x 1) is 18, (x 1) is ot a factor Because the remaider whe f (x) is divided by (x + ) is 0, (x + ) is ot a factor 0 f (x) = x x + x + 18x + 15; (x 5), (x + 5) esolutios Maual - Powered by Cogero Use sythetic divisio to test each factor, (x 5) ad (x + 5) Page 1

15 - Because the remaider whe f (x) Because the remaider whe f (x) is is divided by (x 1) isad 18, (xfactor 1) divided by (x + ) is 0, (x + ) is The Remaider Theorems is ot a factor ot a factor 0 f (x) = x x + x + 18x + 15; (x 5), (x + 5) Use sythetic divisio to test each factor, (x 5) ad (x + 5) Because the remaider whe f (x) is divided by (x 5) is 100, (x 5) is ot a factor Because the remaider whe f (x) is divided by (x + 5) is 150, (x + 5) is ot a factor 1 f (x) = x x + 1x + 118x 0; (x 1), (x 5) Use sythetic divisio to test each factor, (x 1) ad (x 5) For (x 1), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because the remaider whe f (x) is divided by (x 1) is 0, (x 1) is a factor Test the secod factor, (x 5), with the depressed polyomial x 7x + x + 0 Because the remaider whe the depressed polyomial is divided by (x 5) is 0, (x 5) is a factor of f (x) Because (x 1) ad (x 5) are factors of f (x), we ca use the fial quotiet to write a factored form of f (x) as f (x) = (x 1)(x 5)(x x 8) Factorig the quadratic expressio yields f (x) = (x 1)(x 5)(x )(x + ) f (x) = x x 6x 111x + 0; (x 1), (x 6) Use sythetic divisio to test each factor, (x 1) ad (x 6) For (x 1), rewrite the divisio expressio so that the divisor is of the form x c esolutios Maual - Powered by Cogero Page 15

16 Because the remaider whe the depressed polyomial is divided by (x 5) is 0, (x 5) is a factor of f (x) Because (x 1) ad (x 5) are factors of f (x), we ca use the fial quotiet to write a factored form of f (x) as f - The Remaider ad Factor Theorems (x) = (x 1)(x 5)(x x 8) Factorig the quadratic expressio yields f (x) = (x 1)(x 5)(x )(x + ) f (x) = x x 6x 111x + 0; (x 1), (x 6) Use sythetic divisio to test each factor, (x 1) ad (x 6) For (x 1), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because the remaider whe f (x) is divided by (x 1) is 0, (x 1) is a factor Test the secod factor, (x 6), with the depressed polyomial x 9x 0 Because the remaider whe the depressed polyomial is divided by (x 6) is 1, (x 6) is ot a factor of f (x) Because (x 1) is a factor of f (x), we ca use the quotiet of f (x) (x 1) to write a factored form of f (x) as f (x) = (x 1)(x 9x 0) f (x) = x 5x + 8x + 56x + 6; (x ), (x + ) Use sythetic divisio to test each factor, (x ) ad (x + ) For (x ), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure esolutios Maual - Powered by Cogero Because the remaider whe f (x) is divided by (x ) is Page 16, (x ) is ot a factor

17 - Because the remaider whe the depressed polyomial is divided by (x 6) is 1, (x 6) is ot a factor of f (x) Because (x 1) is a factor of f (x), we ca use the quotiet of f (x) (x 1) to write a factored form of f (x) as f The Remaider ad Factor Theorems (x) = (x 1)(x 9x 0) f (x) = x 5x + 8x + 56x + 6; (x ), (x + ) Use sythetic divisio to test each factor, (x ) ad (x + ) For (x ), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because the remaider whe f (x) is divided by (x ) is, (x ) is ot a factor Test (x + ) Because the remaider whe f (x) is divided by (x + ) is, (x + ) is ot a factor f (x) = 5x5 + 8x 68x + 59x + 0; (5x ), (x + 8) Use sythetic divisio to test each factor, (5x ) ad (x + 8) For (5x ), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure esolutios Maual - Powered by Cogero Because the remaider whe f (x) is divided by (5x ) is Page 17, (5x ) is ot a factor

18 - The Remaider ad Factor Theorems Because the remaider whe f (x) is divided by (x + ) is, (x + ) is ot a factor f (x) = 5x5 + 8x 68x + 59x + 0; (5x ), (x + 8) Use sythetic divisio to test each factor, (5x ) ad (x + 8) For (5x ), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because the remaider whe f (x) is divided by (5x ) is, (5x ) is ot a factor Test (x + 8) Because the remaider whe f (x) is divided by (x + 8) is 1986, (x + 8) is ot a factor 5 f (x) = x5 9x + 9x + x + 75x + 6; (x + ), (x 1) Use sythetic divisio to test each factor, (x + ) ad (x 1) For (x + ), rewrite the divisio expressio so that the divisor is of the form x c Because Set up the sythetic divisio as follows The follow the sythetic divisio procedure + ) is 0, (x + ) is a factor Test the secod factor, (x 1),Page 18 with the depressed polyomial x x + 1x x + 1 esolutios Maualthe - Powered by Cogero Because remaider whe f (x) is divided by (x

19 - The Remaider ad Factor Theorems Because the remaider whe f (x) is divided by (x + 8) is 1986, (x + 8) is ot a factor 5 f (x) = x5 9x + 9x + x + 75x + 6; (x + ), (x 1) Use sythetic divisio to test each factor, (x + ) ad (x 1) For (x + ), rewrite the divisio expressio so that the divisor is of the form x c Set up the sythetic divisio as follows The follow the sythetic divisio procedure Because Because the remaider whe f (x) is divided by (x + ) is 0, (x + ) is a factor Test the secod factor, (x 1), with the depressed polyomial x x + 1x x + 1 Because the remaider whe the depressed polyomial is divided by (x 1) is 8, (x 1) is ot a factor of f (x) Because (x + ) is a factor of f (x), we ca use the quotiet of f (x) (x + ) to write a factored form of f (x) as f (x) = (x + ) (x x + 1x x + 1) 6 TREES The height of a tree i feet at various ages i years is give i the table a Use a graphig calculator to write a quadratic equatio to model the growth of the tree b Use sythetic divisio to evaluate the height of the tree at 15 years a Use the quadratic regressio fuctio o the graphig calculator f(x) = 0001x + x 69 esolutios Maual Powered by of Cogero b To fid -the height the tree at 15 years, use sythetic substitutio to evaluate f (x) for x = 15 Page 19

20 Because the remaider whe the depressed polyomial is divided by (x 1) is 8, (x 1) is ot a factor of f (x) Because (x + ) is a factor of f (x), we ca use the quotiet of f (x) (x + ) to write a factored form of f (x) as f - The Remaider Theorems ad Factor (x) = (x + ) (x x + 1x x + 1) 6 TREES The height of a tree i feet at various ages i years is give i the table a Use a graphig calculator to write a quadratic equatio to model the growth of the tree b Use sythetic divisio to evaluate the height of the tree at 15 years a Use the quadratic regressio fuctio o the graphig calculator f(x) = 0001x + x 69 b To fid the height of the tree at 15 years, use sythetic substitutio to evaluate f (x) for x = 15 The remaider is 985, so f (15) = 985 Therefore, the height of the tree at 15 years is about 985 feet 7 BICYCLING Patrick is cyclig at a iitial speed v0 of meters per secod Whe he rides dowhill, the bike accelerates at a rate a of 0 meter per secod squared The vertical distace from the top of the hill to the bottom of the hill is 5 meters Use d(t) = v0t + at to fid how log it will take Patrick to ride dow the hill, where d(t) is distace traveled ad t is give i secods Substitute v0 =, a = 0, ad d(t) = 5 ito d(t) = v0t + at Use the quadratic equatio to solve for t It will take Patrick 5 secods to travel the 5 meters esolutios Maual - Powered by Cogero Factor each polyomial usig the give factor ad log divisio Assume > 0 8 x + x 1x ; x + Page 0

21 - The Remaider ad Factor Theorems The remaider is 985, so f (15) = 985 Therefore, the height of the tree at 15 years is about 985 feet 7 BICYCLING Patrick is cyclig at a iitial speed v0 of meters per secod Whe he rides dowhill, the bike accelerates at a rate a of 0 meter per secod squared The vertical distace from the top of the hill to the bottom of the hill is 5 meters Use d(t) = v0t + at to fid how log it will take Patrick to ride dow the hill, where d(t) is distace traveled ad t is give i secods Substitute v0 =, a = 0, ad d(t) = 5 ito d(t) = v0t + at Use the quadratic equatio to solve for t It will take Patrick 5 secods to travel the 5 meters Factor each polyomial usig the give factor ad log divisio Assume > 0 8 x + x 1x ; x + So, x + x 1x = (x + )(x x 1) Factorig the quadratic expressio yields x + x 1x = (x + )(x )(x + ) 9 x + x 1x + 10; x 1 esolutios Maual - Powered by Cogero Page 1

22 - So, x + x 1x = (x + )(x x 1) The Remaider Factor Theorems Factorig the quadraticad expressio yields x + x 1x = (x + )(x )(x + ) 9 x + x 1x + 10; x 1 So, x +x 1x + 10 = (x 1)(x + x 10) 50 x + x 10x + ; x + So, x + x 10x + = (x + )(x Factorig the quadratic expressio yields x x + 1) + x 10x + = (x + )(x 1)(x 1) 51 9x + x 171x + 5; x 1 So, 9x + x 171x + 5 = (x 1)(x + 9x 5) Factorig the quadratic expressio yields 9x + x 171x + 5 = (x 1)(x + 6)(x ) 5 MANUFACTURING A 18-ich by 0-ich sheet of cardboard is cut ad folded ito a bakery box esolutios Maual - Powered by Cogero Page

23 - So, 9x + x 171x + 5 = (x 1)(x + 9x 5) Factorig the quadraticad expressio yields 9x + x 171x + 5 = (x 1)(x + 6)(x ) The Remaider Factor Theorems 5 MANUFACTURING A 18-ich by 0-ich sheet of cardboard is cut ad folded ito a bakery box a Write a polyomial fuctio to model the volume of the box b Graph the fuctio c The compay wats the box to have a volume of 196 cubic iches Write a equatio to model this situatio d Fid a positive iteger for x that satisfies the equatio foud i part c a The legth of the box is 18 x The height is x The width of the box is To fid the volume, calculate the product b Evaluate the fuctio for several x-values i its domai The height, width, ad legth of the box must all be positive values For the height, x > 0 For the legth, 18 x > 0 or x < 9 For the width, Thus, the domai of x is 0 < x < > 0 or x < x 0 1 v(x) Use these poits to costruct a graph c Substitute v(x) = 196 ito the origial equatio to arrive at 196 = x 7x +180x d Usig the trace fuctio o a graphig calculator, it appears that v(x) may be 196 i whe x = esolutios Maual - Powered by Cogero Page

24 - Remaider Factor cthe Substitute v(x) = 196ad ito the origialtheorems equatio to arrive at 196 = x 7x +180x d Usig the trace fuctio o a graphig calculator, it appears that v(x) may be 196 i whe x = If x = is a solutio for the equatio, it will also be a solutio to 0 = x 7x + 180x 196 Use sythetic substitutio to verify that x = is a solutio Because the remaider is 0, (x ) is a factor of x 7x + 180x 196 Thus, x = is a solutio to 196 = x 7x +180x Fid the value of k so that each remaider is zero 5 Because x, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is 8 k Solve 8 k = 0 for k Whe k =, will have a remaider of 0 5 Because x +, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is k + 68 Solve k + 68 = 0 for k Whe k =, esolutios Maual - Powered by Cogero 55 will have a remaider of 0 Page

25 k =, - Whe The Remaider ad will have a remaider of 0 Factor Theorems 5 Because x +, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is k + 68 Solve k + 68 = 0 for k Whe k =, will have a remaider of 0 55 Because x + 1, c = 1 Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is k + Solve k + = 0 for k Whe k =, will have a remaider of 0 56 Because x 1, c = 1 Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is k + Solve k + = 0 for k Whe k =, will have a remaider of 0 57 SCULPTING Esteba will use a block of clay that is feet by feet by 5 feet to make a sculpture He wats to reduce the volume of the clay by removig the same amout from the legth, the width, ad the height a Write esolutios Maual Powered by Cogero a -polyomial fuctio to model the situatio Page 5 b Graph the fuctio c He wats to reduce the volume of the clay to of the origial volume Write a equatio to model the situatio

30 - The Remaider ad Factor Theorems b Sample aswer: For x x 11x + 1, use sythetic divisio for c = 5, 7, ad 8 f(5) =, f (7) = 180, f (8) = 08 For x + 6x + x 10, use sythetic divisio for c =,, ad f() = 56, f () = 0, f () = 68 5 For x x x, use sythetic divisio for c =, 5, ad 7 f() = 108, f (5) = 50, f (7) = 1,70 c Sample aswer: All of the elemets i the last row of the sythetic divisio are positive d Sample aswer: For x x 11x + 1, use sythetic divisio for c = 5, 7, ad 8 esolutios Maual - Powered by Cogero f( ) = 0, f ( 5) = 108, f ( 6) = 10 Page 0

33 k = 9, will have a remaider of 0 - Whe The Remaider ad Factor Theorems 65 Because x 1, c = 1 Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is k + 0 Solve k + 0 = 0 for k Whe k = 0, will have a remaider of 0 66 Because x, c = Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is 8k 0 Solve 8k 0 = 0 for k will have a remaider of 0 Whe k = 5, 67 CHALLENGE If x dx + (1 d ) x + 5 has a factor x d, what is the value of d if d is a iteger? x dx + (1 d ) x + 5 ca be writte as x + ( d d + 1)x + 5 Because (x d) is a factor, c = d Set up the sythetic divisio as follows The follow the sythetic divisio procedure The remaider is d + d + 1d + 5 Let d + d + 1d + 5 = 0 ad solve for d Use a graphig calculator to graph y = d + d + 1d + 5 esolutios Maual - Powered by Cogero Page The graph suggests that possible values for d are 5, 0, ad 6 Use sythetic divisio to test each possible factor

36 71 - Sice The Remaider ad Factor Theorems is odd ad a is egative 7 SKYDIVING The approximate time t i secods that it takes a object to fall a distace of d feet is give by Suppose a skydiver falls 11 secods before the parachute opes How far does the skydiver fall durig this time period? Substitute t = 11 ito ad solve for d The skydiver falls 196 feet 7 FIRE FIGHTING The velocity v ad maximum height h of water beig pumped ito the air are related by v =, where g is the acceleratio due to gravity ( feet/secod ) a Determie a equatio that will give the maximum height of the water as a fuctio of its velocity b The Mayfield Fire Departmet must purchase a pump that is powerful eough to propel water 80 feet ito the air Will a pump that is advertised to project water with a velocity of 75 feet/secod meet the fire departmet s eeds? Explai a Substitute g = ito v = ad solve for h A equatio that will give the maximum height of the water as a fuctio of its velocity is h = b Substitute v = 75 ito the equatio foud i part a The pump ca propel water to a height of about 88 feet So, the pump will meet the fire departmet s eeds esolutios Maual - Powered by Cogero Solve each system of equatios algebraically 7 5x y = 16 x + y = Page 6

37 - The Remaider ad Factor Theorems The skydiver falls 196 feet 7 FIRE FIGHTING The velocity v ad maximum height h of water beig pumped ito the air are related by v =, where g is the acceleratio due to gravity ( feet/secod ) a Determie a equatio that will give the maximum height of the water as a fuctio of its velocity b The Mayfield Fire Departmet must purchase a pump that is powerful eough to propel water 80 feet ito the air Will a pump that is advertised to project water with a velocity of 75 feet/secod meet the fire departmet s eeds? Explai a Substitute g = ito v = ad solve for h A equatio that will give the maximum height of the water as a fuctio of its velocity is h = b Substitute v = 75 ito the equatio foud i part a The pump ca propel water to a height of about 88 feet So, the pump will meet the fire departmet s eeds Solve each system of equatios algebraically 7 5x y = 16 x + y = 5x y = 16 ca be writte as y = 5x 16 Substitute 5x 16 for y ito the secod equatio ad solve for x Substitute x = ito y = 5x 16 ad solve for y esolutios Maual - Powered by Cogero The solutio to the system of equatio is (, 1) Page 7

38 - The Remaider ad Factor Theorems The pump ca propel water to a height of about 88 feet So, the pump will meet the fire departmet s eeds Solve each system of equatios algebraically 7 5x y = 16 x + y = 5x y = 16 ca be writte as y = 5x 16 Substitute 5x 16 for y ito the secod equatio ad solve for x Substitute x = ito y = 5x 16 ad solve for y The solutio to the system of equatio is (, 1) 75 x 5y = 8 x + y = 1 x + y = 1 ca be writte as x = 1 y Substitute 1 y for x ito the first equatio ad solve for y Substitute y = 1 ito x = 1 y ad solve for x The solutio to the system of equatio is ( 1, 1) 76 y = 6 x x = 5 + y Substitute 6 x for y ito the secod equatio ad solve for x esolutios Maual - Powered by Cogero Page 8

39 - The Remaider ad Factor Theorems The solutio to the system of equatio is ( 1, 1) 76 y = 6 x x = 5 + y Substitute 6 x for y ito the secod equatio ad solve for x Substitute x= 55 ito y = 6 x ad solve for y The solutio to the system of equatio is (55, 075) 77 x + 5y = x + 6y = 5 Elimiate x Solve for y Substitute y = ito the secod equatio ad solve for x The solutio to the system of equatio is 78 7x + 1y = 16 5y x = 1 esolutios Maual - Powered by Cogero 5y x = 1 ca be writte as x + 5y = 1 Elimiate x Page 9

40 - The Thesolutio Remaider adoffactor to the system equatio istheorems 78 7x + 1y = 16 5y x = 1 5y x = 1 ca be writte as x + 5y = 1 Elimiate x Solve for y Substitute y = 1 ito the first equatio ad solve for x The solutio to the system of equatio is (, 1) 79 x + 5y = 8 x 7y = 10 Elimiate x Solve for y Substitute ito the first equatio ad solve for x esolutios Maual - Powered by Cogero The solutio to the system of equatio is Page 0

41 - The Remaider ad Factor Theorems The solutio to the system of equatio is (, 1) 79 x + 5y = 8 x 7y = 10 Elimiate x Solve for y Substitute ito the first equatio ad solve for x The solutio to the system of equatio is 80 SAT/ACT I the figure, a equilateral triagle is draw with a altitude that is also the diameter of the circle If the perimeter of the triagle is 6, what is the circumferece of the circle? A6 B6 C 1 D 1 E 6 If the perimeter of the equilateral triagle is 6, the each side of the triagle measures 1 Also, each agle measures 60 We ca aalyze half of the equilateral triagle, usig the diameter of the circle as oe of the legs esolutios Maual - Powered by Cogero Page 1

42 - The Thesolutio Remaider adoffactor to the system equatio istheorems 80 SAT/ACT I the figure, a equilateral triagle is draw with a altitude that is also the diameter of the circle If the perimeter of the triagle is 6, what is the circumferece of the circle? A6 B6 C 1 D 1 E 6 If the perimeter of the equilateral triagle is 6, the each side of the triagle measures 1 Also, each agle measures 60 We ca aalyze half of the equilateral triagle, usig the diameter of the circle as oe of the legs Sice, this triagle is a right triagle, x = 6 x is also the diameter of the circle The circumferece of a circle is C = d So, the circumferece of the circle is C = The correct aswer is B (6 ) or 6 81 REVIEW If (, 7) is the ceter of a circle ad (8, 5) is o the circle, what is the circumferece of the circle? F 1 G 15 H 18 J 5 K 6 The distace from the ceter of a circle to a poit o the circle is equal to the radius of the circle Use the distace formula ad the two poits to fid the radius of the circle The circumferece of a circle is C = The correct aswer is K d or πr So, the circumferece of the circle is C = (1) or 6 8 REVIEW The first term i a sequece is x Each subsequet term is three less tha twice the precedig term esolutios Maual - Powered by Cogero What is the 5th term i the sequece? A 8x 1 B 8x 15 Page

43 of aad circlefactor is C = Theorems d or πr So, the circumferece of the circle is C = - The Thecircumferece Remaider (1) or 6 The correct aswer is K 8 REVIEW The first term i a sequece is x Each subsequet term is three less tha twice the precedig term What is the 5th term i the sequece? A 8x 1 B 8x 15 C 16x 9 D 16x 5 E x 9 The correct aswer is D 8 Use the graph of the polyomial fuctio Which is ot a factor of x5 + x x x x? F (x ) G (x + ) H (x 1) J (x + 1) The graph suggests that, 1, ad are zeros of the fuctio Thus, (x + ), (x + 1), ad (x ) are factors of f (x) The correct aswer is H esolutios Maual - Powered by Cogero Page

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### 7.1 Finding Rational Solutions of Polynomial Equations

4 Locker LESSON 7. Fidig Ratioal Solutios of Polyomial Equatios Name Class Date 7. Fidig Ratioal Solutios of Polyomial Equatios Essetial Questio: How do you fid the ratioal roots of a polyomial equatio?

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### 3. If x and y are real numbers, what is the simplified radical form

lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

### AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

### FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10

FOUNDATIONS OF MATHEMATICS AND PRE-CALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### Math 113 HW #11 Solutions

Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

### S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + \$ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

### Math 114- Intermediate Algebra Integral Exponents & Fractional Exponents (10 )

Math 4 Math 4- Itermediate Algebra Itegral Epoets & Fractioal Epoets (0 ) Epoetial Fuctios Epoetial Fuctios ad Graphs I. Epoetial Fuctios The fuctio f ( ) a, where is a real umber, a 0, ad a, is called

### 7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b

Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### 4.1 Sigma Notation and Riemann Sums

0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### Grade 7. Strand: Number Specific Learning Outcomes It is expected that students will:

Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### Equation of a line. Line in coordinate geometry. Slope-intercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Point-slope form ( 點 斜 式 )

Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before

### http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### The second difference is the sequence of differences of the first difference sequence, 2

Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for

### Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

### Arithmetic Sequences and Partial Sums. Arithmetic Sequences. Definition of Arithmetic Sequence. Example 1. 7, 11, 15, 19,..., 4n 3,...

3330_090.qxd 1/5/05 11:9 AM Page 653 Sectio 9. Arithmetic Sequeces ad Partial Sums 653 9. Arithmetic Sequeces ad Partial Sums What you should lear Recogize,write, ad fid the th terms of arithmetic sequeces.

### MATH 083 Final Exam Review

MATH 08 Fial Eam Review Completig the problems i this review will greatly prepare you for the fial eam Calculator use is ot required, but you are permitted to use a calculator durig the fial eam period

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

### 5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

### AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

### Module 4: Mathematical Induction

Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate

### Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

### Literal Equations and Formulas

. Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express

### NATIONAL SENIOR CERTIFICATE GRADE 11

NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 007 MARKS: 50 TIME: 3 hours This questio paper cosists of 9 pages, diagram sheet ad a -page formula sheet. Please tur over Mathematics/P DoE/November

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

### 5.3. Generalized Permutations and Combinations

53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

### SEQUENCES AND SERIES CHAPTER

CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for \$,200 o a istallmet pla, they agreed to pay \$00 each moth util the cost of the computer plus iterest had bee paid The iterest each

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

### 1.3 Binomial Coefficients

18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to

### Solving Divide-and-Conquer Recurrences

Solvig Divide-ad-Coquer Recurreces Victor Adamchik A divide-ad-coquer algorithm cosists of three steps: dividig a problem ito smaller subproblems solvig (recursively) each subproblem the combiig solutios

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### CHAPTER 11 Financial mathematics

CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

### {{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers

. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,

### Section 6.1 Radicals and Rational Exponents

Sectio 6.1 Radicals ad Ratioal Expoets Defiitio of Square Root The umber b is a square root of a if b The priciple square root of a positive umber is its positive square root ad we deote this root by usig

### WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

### Solving equations. Pre-test. Warm-up

Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

### The Euler Totient, the Möbius and the Divisor Functions

The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship

### 4.3. The Integral and Comparison Tests

4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

### x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

### ACCESS - MATH July 2003 Notes on Body Mass Index and actual national data

ACCESS - MATH July 2003 Notes o Body Mass Idex ad actual atioal data What is the Body Mass Idex? If you read ewspapers ad magazies it is likely that oce or twice a year you ru across a article about the

### TAYLOR SERIES, POWER SERIES

TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the

### COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming.

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE Richard A. Weida Lycomig College Williamsport, PA 17701 weida@lycomig.edu Abstract: Lycomig College is a small, private, liberal

### BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

### Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

### University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### 8.1 Arithmetic Sequences

MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

### SUMS OF n-th POWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION. N.A. Draim, Ventura, Calif., and Marjorie Bicknell Wilcox High School, Santa Clara, Calif.

SUMS OF -th OWERS OF ROOTS OF A GIVEN QUADRATIC EQUATION N.A. Draim, Vetura, Calif., ad Marjorie Bickell Wilcox High School, Sata Clara, Calif. The quadratic equatio whose roots a r e the sum or differece

### Chapter 7: Confidence Interval and Sample Size

Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

### Measures of Central Tendency

Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the

### Elementary Theory of Russian Roulette

Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

### NOTES ON INEQUALITIES FELIX LAZEBNIK

NOTES ON INEQUALITIES FELIX LAZEBNIK Order ad iequalities are fudametal otios of moder mathematics. Calculus ad Aalysis deped heavily o them, ad properties of iequalities provide the mai tool for developig

### M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

### Review: Classification Outline

Data Miig CS 341, Sprig 2007 Decisio Trees Neural etworks Review: Lecture 6: Classificatio issues, regressio, bayesia classificatio Pretice Hall 2 Data Miig Core Techiques Classificatio Clusterig Associatio

### Hypergeometric Distributions

7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

Radicals ad Roots Radicals ad Fractioal Expoets I math, may problems will ivolve what is called the radical symbol, X is proouced the th root of X, where is or greater, ad X is a positive umber. What it

### Divide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015

CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a

### UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT 2 DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS.

Name: Group Members: UNIT 3 SUMMARY STATIONS THROUGHOUT THE NEXT DAYS, WE WILL BE SUMMARIZING THE CONCEPT OF EXPONENTIAL FUNCTIONS AND THEIR VARIOUS APPLICATIONS. EACH ACTIVITY HAS A COLOR THAT CORRESPONDS

### Approximating the Sum of a Convergent Series

Approximatig the Sum of a Coverget Series Larry Riddle Ages Scott College Decatur, GA 30030 lriddle@agesscott.edu The BC Calculus Course Descriptio metios how techology ca be used to explore covergece

### Sum of Exterior Angles of Polygons TEACHER NOTES

Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

### A probabilistic proof of a binomial identity

A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

### Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives

Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### AQA STATISTICS 1 REVISION NOTES

AQA STATISTICS 1 REVISION NOTES AVERAGES AND MEASURES OF SPREAD www.mathsbox.org.uk Mode : the most commo or most popular data value the oly average that ca be used for qualitative data ot suitable if

### FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

### Algebra Vocabulary List (Definitions for Middle School Teachers)

Algebra Vocabulary List (Defiitios for Middle School Teachers) A Absolute Value Fuctio The absolute value of a real umber x, x is xifx 0 x = xifx < 0 http://www.math.tamu.edu/~stecher/171/f02/absolutevaluefuctio.pdf

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### Sequences and Series Using the TI-89 Calculator

RIT Calculator Site Sequeces ad Series Usig the TI-89 Calculator Norecursively Defied Sequeces A orecursively defied sequece is oe i which the formula for the terms of the sequece is give explicitly. For

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

### NUMBERS COMMON TO TWO POLYGONAL SEQUENCES

NUMBERS COMMON TO TWO POLYGONAL SEQUENCES DIANNE SMITH LUCAS Chia Lake, Califoria a iteger, The polygoal sequece (or sequeces of polygoal umbers) of order r (where r is r > 3) may be defied recursively

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

### 1 Correlation and Regression Analysis

1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

### UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

### 1. C. The formula for the confidence interval for a population mean is: x t, which was

s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

### MATH /2003. Assignment 4. Due January 8, 2003 Late penalty: 5% for each school day.

MATH 260 2002/2003 Assigmet 4 Due Jauary 8, 2003 Late pealty: 5% for each school day. 1. 4.6 #10. A croissat shop has plai croissats, cherry croissats, chocolate croissats, almod croissats, apple croissats

### Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

### Question 2: How is a loan amortized?

Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

### Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

### SEQUENCES AND SERIES

Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

### Lesson 2.4: Angle Properties in Polygons, page 99

Lesso 2.4: Agle Properties i Polygos, page 99 1. a) S(12) = 180 (12 2) S(12) = 180 (10) S(12) = 1800 A dodecago has 12 sides, so is 12. The sum of the iterior agles i a regular dodecago is 1800. S(12)

### Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

### Overview on S-Box Design Principles

Overview o S-Box Desig Priciples Debdeep Mukhopadhyay Assistat Professor Departmet of Computer Sciece ad Egieerig Idia Istitute of Techology Kharagpur INDIA -721302 What is a S-Box? S-Boxes are Boolea

### DEFINITION OF INVERSE MATRIX

Lecture. Iverse matrix. To be read to the music of Back To You by Brya dams DEFINITION OF INVERSE TRIX Defiitio. Let is a square matrix. Some matrix B if it exists) is said to be iverse to if B B I where