# 5 Boolean Decision Trees (February 11)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected by a edge. How hard is it to decide whether G is coected? Specifically, how may etries i the adjacecy matrix do we have to examie? s usual, we wat the worst-case ruig time of the best possible algorithm, as a fuctio of, the umber of vertices: D() = mi T (, G) G Here I ll use D() istead of T () to emphasize that we are lookig at determiistic algorithms. Clearly D() (, sice the adjacecy matrix is symmetric ad has zeros o the diagoal. Oe way to derive a lower boud for ay decisio problem is to cosider the size of the smallest proof or certificate that verifies the result. To prove that a graph is coected, it is clearly both ecessary ad sufficiet to reveal the edges i a arbitrary spaig tree of G. This tree costitutes a certificate that G is coected, or a 1-certificate for short. Coversely, if we wat to prove that a graph is discoected, we eed to demostrate a cut with o crossig edges, that is, a partitio of the vertices ito two disjoit subsets, such that o edge has oe edpoit i each subset. Such a cut is called a 0-certificate. Clearly, ay algorithm that tests coectedess must check all the edges i some 1-certificate before returig True ad all the edges i a 0-certificate before returig False. Let C 0 () ad C 1 () respectively deote the imum size of a 0- or 1-certificate i a -vertex graph, ad let C() = {C 0 (), C 1 ()}. We immediately have the followig geeral result. Theorem 1. D() C(). I the case of graph coectivity, we have C 0 () = / / = ( ( mod )/4 ad C 1 () = 1, so D() C() = ( ( mod )/4 = Ω( ). I other words, the trivial algorithm check every edge is optimal up to a small costat factor. Surprisigly, this algorithm is actually exactly optimal! Theorem. D() = ( ) Proof: I ll describe a adversary strategy that requires ay algorithm to examie every edge. The adversary maitais two graphs, Y ad M, each with vertices; iitially, Y is empty ad M is a clique. Y ( yes ) cotais the edges that the algorithm has examied ad foud to be preset i the fictioal iput graph. M ( maybe ) cotais ay edge that might be i the fictioal iput graph; i other words, a edge (i, j) is abset from M if the algorithm kows that a ij = 0. Note that Y is a subgraph of M. The adversary uses the followig simple strategy whe the algorithm examies a potetial edge: retur False uless that aswer would force the fictioal iput graph to be discoected. 1

2 Examie(i, j): if (i, j) Y derisively retur True else if (i, j) M mockigly retur False else if M \ (i, j) is discoected add (i, j) to Y grudgigly retur True else remove (i, j) from M sigh ad retur False We easily observe that with this strategy M is always coected ad Y is always acyclic. Moreover, wheever the adversary adds a edge betwee two compoets of Y, every other edge joiig those two compoets of Y has already bee queried ad removed from M. It follows that Y becomes coected oly after ( queries; at that momet, both Y ad M cosist of the same spaig tree, ad the algorithm ca safely retur True. Before the ( th query, M is coected ad Y is discoected. Sice both graphs are cosistet with the adversary s aswers, either could serve as the fictioal iput graph, which meas the algorithm caot possibly determie the correct output. graph property like coectivity that requires lookig at every possible edge to detect is called evasive. We will retur to evasive graph properties i a future lecture. 5. Strig Properties (Boolea fuctios, laguages, whatever... ) Let s look at these ideas i a little more geerality. strig property 1 is ay fuctio of the form F : {0, 1} {0, 1}. Let T (, s) deote the umber of bits i a -bit iput strig s that a algorithm examies before correctly returig F (s). The determiistic decisio tree complexity of a strig property F is, as usual, the worst-case ruig time of ay algorithm to compute it, as a fuctio of the iput size : D() = mi T (, s) s = The model of computatio is the same boolea decisio tree that we saw i the very first lecture. For each iput size, we ca model ay algorithm by a rooted biary tree, where each iteral ode stores the idex of the ext bit to examie, ad each leaf stores a output value. I this model, T (, s) is the depth of the path traversed by the iput strig s i tree, ad the determiistic complexity of ay strig property is the miimum depth of ay tree that correctly computes it. strig property is evasive if D() =. We ca defie the certificate complexity of a strig property F as follows. Ituitively, a 1- certificate is a subset of the bits i the iput s that forces F (s) = 1, ad a 0-certificate is a subset of bits that forces F (s) = 0. The certificate complexity C(s) of a strig s is the size of the smallest certificate cosistet with s. Fially, the certificate complexity C() of F is the imum certificate complexity of ay -bit iput strig. Equivaletly, we have C() = mi T (, s) s = 1 dmittedly, this is a rather bizarre ame, but it is aalogous to graph properties such as coectedess (which we just saw), acyclicity, plaarity, ad the like. strig property is just a boolea fuctio with argumets, or equivaletly, a set of -bit strigs, or equivaletly, a laguage.

3 where (as above) the mi is take over all algorithms that correctly compute F for all iputs. Origially, certificate complexity was kow as o-determiistic decisio tree complexity, sice it correspods to a odetermiistic variat of the boolea decisio tree model. The best way to thik of a odetermiistic decisio tree is as a family of determiistic decisio trees, where for each iput, we use the best decisio tree i the set for that iput. We ve see oe example of these defiitios already. For the fuctio F : {0, 1} ( {0, 1} that idicates the coectivity of a -vertex graph, we have D( ( ( ) = ( ad C( ) ) = mod. s aother example, let F : {0, 1} {0, 1} deote the exactly half fuctio: F (s) = 1 if ad oly if s cotais exactly 1s ad exactly 0s. For this fuctio, we easily observe that D() = C() =. 5.3 Blum s Theorem Oe of the most geeral results about decisio tree complexity was proved by Mauel Blum. Theorem 3 (Blum). For ay strig property, C() D() C(). Proof: The first iequality C() D() is almost trivial, sice ay algorithm must examie all the bits i a certificate before returig its output. lterately, the iequality x mi y f(x, y) mi y x f(x, y) is easy to prove for ay fuctio f(x, y). To prove the other iequality, we describe a algorithm that examies C() bits. Let π s deote the smallest certificate for ay iput strig s. Let S 0 = {π s F (s) = 0} ad S 1 = {π s F (s) = 1} be the sets of all miimal 0- ad 1-certificates, respectively. To simplify otatio, let f = C(). Our algorithm works i k phases, examiig at most k bits i each phase. t each phase, we keep oly the certificates that are cosistet with the bits we ve examied so far. Let S0 i deote the subset of S 0 cosistet with the bits see i the first i phases, ad defie S1 i similarly. I particular, we have S0 0 = S 0 ad S1 0 = S 1. However, sice it is poitless to carry aroud ay bit whose value we already kow, the algorithm oly maitais the bits i each certificate that have ot yet bee queried. Thus, after each iput bit x j is queried, ay certificate π that is defied i that bit positio is either removed (if π j x j ) or its legth is decreased by oe (if π j = x j ). I the ith phase, the algorithm simply chooses a arbitrary 0-certificate π S i 1 0 ad queries all its (previously uqueried) bits. If all the queries agree with π, the algorithm correctly returs False; otherwise, it cotiues with the ext phase. Now I claim that each phase reduces the legth of every survivig 1-certificate by at least 1. Let σ be a arbitrary 1-certificate i S i 1 1. Sice every iput strig cotais either a 0-certificate or a 1-certificate, but ot both, there must be at least oe bit positio that appears i both σ ad the chose 0-certificate π. Moreover, this bit positio was ot queried i ay earlier phase, because otherwise, at most oe of them would have survived. If the iput strig agrees with π at that commo bit positio, σ is discarded; otherwise, the legth of σ decreases, as claimed. It follows that after at most k phases, we are left with either o 1-certificates, i which case the output must be False, or a sigle empty 1-certificate (i.e., a 1-certificate that matches the iput i every bit positio), i which case the output must be True. Sice each phase examies at most k bits, the algorithm examies at most k bits altogether. Nodetermiism meas ever havig to admit you re wrog. 3

5 It is ot hard to prove that D(M k ) = 3 k ad C(M k ) = k ; this is a good warm-up for the previous homework exercise. The radomized complexity fits betwee these two bouds. Cosider the followig radomized algorithm for computig M(x, y, z): Query two of x, y, z at radom. If they are equal, retur their commo value. Otherwise, query the remaiig variable ad retur its value. The probability of two variables that agree is at least 1/3, so the expected ruig time of this algorithm is at most 8/3. We ca use this idea recursively to evaluate M k quickly as well. Radomly choose two of the three istaces of M k 1 ad evaluate them recursively. If they retur the same value, we re doe; otherwise (with probability at most /3) we have to evaluate the third istace. We have the recurrece R(M k ) 8 3 R(M k 1), which has the obvious solutio R(M k ) (8/3) k. s it turs out, this algorithm is optimal so R(M k ) = (8/3) k but we do t have the tools to prove this yet. Soo. Promise. Notice that i this case, the radomized complexity falls strictly betwee the certificate complexity ad the determiistic complexity. This should ot be a surprise; eve radomized algorithms have to ru log eough to certify their aswers. I geeral, we have the followig trivial extesio of Blum s theorem for ay boolea fuctio. C() R() T () C() For the d-or tree fuctio F k, the radomized complexity is ( ) k k The upper boud follows from a careful radomized algorithm, which I will leave as the third part of the homework exercise. The matchig lower boud is due to Saks ad Widgerso 4. I fact, Saks ad Widgerso cojecture that this is a lower boud o the radomized complexity of ay evasive boolea fuctio. s far as I kow, this cojecture is still ope. 4 Proc. STOC

### Asymptotic Growth of Functions

CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

### Infinite Sequences and Series

CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

### In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

### Soving Recurrence Relations

Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

### Lecture 2: Karger s Min Cut Algorithm

priceto uiv. F 3 cos 5: Advaced Algorithm Desig Lecture : Karger s Mi Cut Algorithm Lecturer: Sajeev Arora Scribe:Sajeev Today s topic is simple but gorgeous: Karger s mi cut algorithm ad its extesio.

### Department of Computer Science, University of Otago

Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

### Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

### Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

### Incremental calculation of weighted mean and variance

Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

### Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

### Properties of MLE: consistency, asymptotic normality. Fisher information.

Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

### CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

### Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

### Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

### 1 Computing the Standard Deviation of Sample Means

Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

### Lesson 15 ANOVA (analysis of variance)

Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

### Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

### 1.3. VERTEX DEGREES & COUNTING

35 Chapter 1: Fudametal Cocepts Sectio 1.3: Vertex Degrees ad Coutig 36 its eighbor o P. Note that P has at least three vertices. If G x v is coected, let y = v. Otherwise, a compoet cut off from P x v

### 4. Trees. 4.1 Basics. Definition: A graph having no cycles is said to be acyclic. A forest is an acyclic graph.

4. Trees Oe of the importat classes of graphs is the trees. The importace of trees is evidet from their applicatios i various areas, especially theoretical computer sciece ad molecular evolutio. 4.1 Basics

### CS85: You Can t Do That (Lower Bounds in Computer Science) Lecture Notes, Spring 2008. Amit Chakrabarti Dartmouth College

CS85: You Ca t Do That () Lecture Notes, Sprig 2008 Amit Chakrabarti Dartmouth College Latest Update: May 9, 2008 Lecture 1 Compariso Trees: Sortig ad Selectio Scribe: William Che 1.1 Sortig Defiitio 1.1.1

### Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

### .04. This means \$1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

### SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

### Convexity, Inequalities, and Norms

Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

### Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

### Lecture 4: Cheeger s Inequality

Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

### CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

### The Power of Free Branching in a General Model of Backtracking and Dynamic Programming Algorithms

The Power of Free Brachig i a Geeral Model of Backtrackig ad Dyamic Programmig Algorithms SASHKA DAVIS IDA/Ceter for Computig Scieces Bowie, MD sashka.davis@gmail.com RUSSELL IMPAGLIAZZO Dept. of Computer

Chapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity

### Elementary Theory of Russian Roulette

Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

### Concept: Types of algorithms

Discrete Math for Bioiformatics WS 10/11:, by A. Bockmayr/K. Reiert, 18. Oktober 2010, 21:22 1001 Cocept: Types of algorithms The expositio is based o the followig sources, which are all required readig:

### CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

### 0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

### Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

### Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

### THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

### Output Analysis (2, Chapters 10 &11 Law)

B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

### CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

### Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

### CS100: Introduction to Computer Science

Review: History of Computers CS100: Itroductio to Computer Sciece Maiframes Miicomputers Lecture 2: Data Storage -- Bits, their storage ad mai memory Persoal Computers & Workstatios Review: The Role of

### 1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

### Chair for Network Architectures and Services Institute of Informatics TU München Prof. Carle. Network Security. Chapter 2 Basics

Chair for Network Architectures ad Services Istitute of Iformatics TU Müche Prof. Carle Network Security Chapter 2 Basics 2.4 Radom Number Geeratio for Cryptographic Protocols Motivatio It is crucial to

### Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

### CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

### 2. Degree Sequences. 2.1 Degree Sequences

2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we

### THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

### Modified Line Search Method for Global Optimization

Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

### SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

### Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

### Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

### 3. Greatest Common Divisor - Least Common Multiple

3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

### Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

### 2-3 The Remainder and Factor Theorems

- The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

### Chapter 7 Methods of Finding Estimators

Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

### THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

### Solving Logarithms and Exponential Equations

Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

### A Combined Continuous/Binary Genetic Algorithm for Microstrip Antenna Design

A Combied Cotiuous/Biary Geetic Algorithm for Microstrip Atea Desig Rady L. Haupt The Pesylvaia State Uiversity Applied Research Laboratory P. O. Box 30 State College, PA 16804-0030 haupt@ieee.org Abstract:

### Vladimir N. Burkov, Dmitri A. Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT

Keywords: project maagemet, resource allocatio, etwork plaig Vladimir N Burkov, Dmitri A Novikov MODELS AND METHODS OF MULTIPROJECTS MANAGEMENT The paper deals with the problems of resource allocatio betwee

### Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

### 5: Introduction to Estimation

5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

### University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

### Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

### A Faster Clause-Shortening Algorithm for SAT with No Restriction on Clause Length

Joural o Satisfiability, Boolea Modelig ad Computatio 1 2005) 49-60 A Faster Clause-Shorteig Algorithm for SAT with No Restrictio o Clause Legth Evgey Datsi Alexader Wolpert Departmet of Computer Sciece

### 3 Basic Definitions of Probability Theory

3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

### Domain 1: Designing a SQL Server Instance and a Database Solution

Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

### FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

### Trading the randomness - Designing an optimal trading strategy under a drifted random walk price model

Tradig the radomess - Desigig a optimal tradig strategy uder a drifted radom walk price model Yuao Wu Math 20 Project Paper Professor Zachary Hamaker Abstract: I this paper the author iteds to explore

### Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

### where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

### I. Chi-squared Distributions

1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

### GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

### A probabilistic proof of a binomial identity

A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

### Sequences and Series

CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

### Confidence Intervals for One Mean

Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

### Section 11.3: The Integral Test

Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

### 1. C. The formula for the confidence interval for a population mean is: x t, which was

s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

### Maximum Likelihood Estimators.

Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

### Chapter 5: Inner Product Spaces

Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

### Overview of some probability distributions.

Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

### Basic Elements of Arithmetic Sequences and Series

MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

### CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

### Hypothesis testing. Null and alternative hypotheses

Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

### THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE

THE LEAST COMMON MULTIPLE OF A QUADRATIC SEQUENCE JAVIER CILLERUELO Abstract. We obtai, for ay irreducible quadratic olyomial f(x = ax 2 + bx + c, the asymtotic estimate log l.c.m. {f(1,..., f(} log. Whe

### 4.3. The Integral and Comparison Tests

4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

### Universal coding for classes of sources

Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

### SEQUENCES AND SERIES CHAPTER

CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for \$,200 o a istallmet pla, they agreed to pay \$00 each moth util the cost of the computer plus iterest had bee paid The iterest each

### Integer Factorization Algorithms

Iteger Factorizatio Algorithms Coelly Bares Departmet of Physics, Orego State Uiversity December 7, 004 This documet has bee placed i the public domai. Cotets I. Itroductio 3 1. Termiology 3. Fudametal

### Math 113 HW #11 Solutions

Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

### Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

### Chapter 14 Nonparametric Statistics

Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

### Betting on Football Pools

Bettig o Football Pools by Edward A. Beder I a pool, oe tries to guess the wiers i a set of games. For example, oe may have te matches this weeked ad oe bets o who the wiers will be. We ve put wiers i

### Hypergeometric Distributions

7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

### Determining the sample size

Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

### Math C067 Sampling Distributions

Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

### Normal Distribution.

Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

### 5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso