Elementary Theory of Russian Roulette


 Karin Dawson
 3 years ago
 Views:
Transcription
1 Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some people may feel bad about the Russia roulette game, we wat to say sorry for them, but as a mathematical theory Russia roulette has a very iterestig structure. We are sure that may of the reader ca appreciate it. High school studets made this theory with a little help by their teacher, so this article shows a woderful possibility of a research by high school studets. I a Russia roulette game persos play the game. They take turs ad take up a gu ad pull a trigger to themselves. The game eds whe oe of the players gets killed. Note that i this versio of the game, oe does ot rotate the cylider before he pulls the trigger. I this article we ofte state the mathematica fact without proofs. Proofs are give at the appedix. Problem. Suppose that we use a revolver with chambers ad bullet. Calculate the probability of death of the first ma mathematically.
2 Elemetary Russia Roulette.b Aswer. Suppose that players A ad B play the game, ad A is the first player. I the first roud A takes up the gu ad pulls the trigger to himself. This time the probability of his death is. If A survives, the i the secod roud B takes up the gu ad does the same ad if B survives, the i the third roud A takes up the gu ad does the same thig. Let s calculate the probability of A's death of third roud. If A is to die i the third roud, A has to survive the first roud. The probability of survival for A i the first roud is, ad after that B has to survive i the secod roud. Sice there are oly chambers ad bullet, so the probability of survival is. The there are chambers ad bullet, ad resultig probabily of death is. Therefore the probability of death of A i the third roud is ä ä. As to the probability of A's death i the fifth roud we ca do the almost the same calculatio ad we get ä ä ä ä. Fially the probability of death of the first player A is + ä ä + ä ä ä ä = =. Problem. Suppose that we use a revolver with chambers ad bullets. Calculate the probability of death of the first ma mathematically. Aswer. Sice there are bullets, the probability of his death i the first roud is, ad probability of his survival is. We ca use almost the same method we used i problem i the rest of the solutio, ad the aswer is ÅÅ + ä ä + ä ä ä ä = 9 =. So far we studied the case of chambers, but i mathematics we ca thik of a gu with ay umber of chambers ad bullets. For example we ca study a gu with chambers ad bullets. This is ot a absurd idea eve i a real life, because this may be a machie gu. We deote by F[,m] the probability of the first ma's death whe we use a revolver with chambers ad mbullets. For example by Problem we have F[,] =, ad by Problem F[,] =. Similarly we have F[,m] = m + Å m ä ÅÅ m  ä Å  m + Å m ä ÅÅ m  ä ÅÅ m  ä ÅÅ m  ä Å  m + By this formula you ca calculate F[,m] for ay atural umbers ad m. If you fid this formula too difficult to uderstad, do ot worry about it. If you ca uderstad Problem ad, you ca
3 Elemetary Russia Roulette.b Similarly we have F[,m] = m + Å m ä ÅÅ m  ä Å  m + Å m ä ÅÅ m  ä ÅÅ m  ä ÅÅ m  ä Å  m + By this formula you ca calculate F[,m] for ay atural umbers ad m. If you fid this formula too difficult to uderstad, do ot worry about it. If you ca uderstad Problem ad, you ca uderstad the rest of our article. You just have to uderstad that there is a way to calculate F[,m] for ay ad m. Next is the best part of our article! With F[,m] for may ad m we make a triagle. {F[,]} Figure() {F[,],F[,]} {F[,],F[,],F[,]} {F[,],F[,],F[,],F[,]} {F[,],F[,],F[,],F[,],F[,]} {F[,],F[,],F[,],F[,],F[,],F[,]} {F[7,],F[7,],F[7,],F[7,],F[7,],F[7,],F[7,7]} By calculatig F[,m] we get the followig triagle from the above triagle. Let's compare these triagles. F[,] is the third i the th row of the above triagle. I the same positio of the triagle below we have ÅÅ. Therefore F[,]= ÅÅ. 8< Figure HL 9 Å, Å = 9 Å, Å, Å = 9 Å, Å, Å, Å = 9 Å, Å, Å 7, Å, Å = 9 Å, Å, Å, Å, Å, Å = 9 Å 7, Å 7, Å, Å, Å, Å 7, = Problem. Ca you fid ay patter i figure ()? Aswer. Let's compare Figure () to the followig Figure (). If you reduce the fractios i Figure (), the fractios geerated will form Figure (). The patter is quite obvious i Figure (). For example look at th row. F[,] = 9 ad F[,] = ÅÅ are the secod ad third oes i the row. F[7,] = ÅÅ Å, which is the third = + 9+
4 Elemetary Russia Roulette.b Aswer. Let's compare Figure () to the followig Figure (). If you reduce the fractios i Figure (), the fractios geerated will form Figure (). The patter is quite obvious i Figure (). For example look at th row. F[,] = 9 ad F[,] = ÅÅ are the secod ad third oes i the row. F[7,] = ÅÅ = Å + 9+, which is the third oe i the 7th row. This remids us of Pascal's triagle. I geeral there exists the same kid of relatio amog F[,m],F[,m+], F[+,m+] for ay atural umber ad m with m. For proof of the relatio see Appedix. {} Figure(), <,, <,,, <, ÅÅ, ÅÅ 7,, <, ÅÅ 9, ÅÅ, ÅÅ,, < ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < 8 7, Problem. Ca you fid ay other patter i figure ()? Aswer. I fact there are several patters. Please look at + the followig Figure (). Å = H + ÅÅ L = ÅÅ 7 = D. +,D I geeral we ca prove that =F[+,]. As to the proof for this relatio wee Appedix. There are also other patters. Look at the Figure () ad (). Ca you fid ay patter i Figure () ad ()? {} Figure(), <,, <,,, <, ÅÅ, ÅÅ 7,, <, ÅÅ 9, ÅÅ, ÅÅ,, < ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < 8 7, {} Figure(), <,, <,,, <, ÅÅ, ÅÅ 7,, <, ÅÅ 9, ÅÅ, ÅÅ,, < ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < 8 7,
5 Elemetary Russia Roulette.b {} Figure(), <,, <,,, <, ÅÅ, ÅÅ 7,, <, ÅÅ 9, ÅÅ, ÅÅ,, < ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < 8 7, {} Figure(), <,, <,,, <, ÅÅ, ÅÅ 7,, <, ÅÅ 9, ÅÅ, ÅÅ,, < ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < 8 7, Remark. We ca also study the Russia Roulette game with more tha persos. For example if persos play the game, the the probability of death of the third player form the followig triagle. Ca you fid ay patter i this triagle? Perhaps you will fid this very similar to the Figure (). <, <,, <,,, <, ÅÅ, ÅÅ,, <, ÅÅ, ÅÅ, ÅÅ,, < 7, ÅÅ, ÅÅ, ÅÅ, ÅÅ, 7, < Figure(7) Appedix. If you kow combiatorics ad how to calculate C m, the you ca read the proofs of mathematical facts preseted i this article. A proof for the fact preseted at Problem. To prove the existece of the relatio of F[,m] we eed a differet way to calculate F[,m] from the way we used i Problem ad. Let me illustrate it by usig problem.
6 Elemetary Russia Roulette.b A proof for the fact preseted at Problem. To prove the existece of the relatio of F[,m] we eed a differet way to calculate F[,m] from the way we used i Problem ad. Let me illustrate it by usig problem. Sice we have chambers, the chambers ca be represeted as {,,,,,} where we put bullets, ad there are C ways to do that. The bullet which is i the chamber with a small umber comes out first. If oe bullet is i the chamber ad the other is i a chamber whose umber is bigger tha, the the first oe will die. We have C cases of this kid. If oe bullet is i the chamber ad the other is i a chamber whose umber is bigger tha, the the first ma will die. We have C cases of this kid. If oe bullet is i the chamber ad the other is i chamber, the the first ma will die. We have C case of this kid. Therefore F[,] = C + C + C. Similarly we ca prove that C F[,]= C + Å C ad F[7,] = C C + C + C. By the famous equatio 7 C p C q = p C q + p C q 7 C = C + C ad C + C + C =( C + C )+( C + C )+ C, where we used a trivial fact that C = C. Therefore this is the reaso of the existece of relatio amog F[,], F[,] ad F[7,]. Similarly we ca prove that F[,m]= C  m +  C m +  C m +, C m F[,m+]= C  m +  C m +  C m + ÅÅ ad F[+,m+]= C C m +  C m +  C m + ÅÅ Å. By m+ + C m+ the equatio p C q = p C q + p C q we have + C m+ = C m+ + C m ad C m +  C m +  C m + =(  C m +  C m )+(  C m +  C m )+(  C m +  C m )+. Appedix. If You kow how to calculate k= k ad k= the you ca prove the fact preseted at Problem, amely F[,]+ F[+,]=F[+,]. A proof of a formula F[,]+F[+,]=F[+,]. F[,] =  H  k+l H  kl H L H L )  C +  C +  C + =( ÅÅ C k= )/( Å =  k= ( (k)+k(k))/(h  L H  L) =  k= HH + L  H + L k + k L/(H  L H  L) = (H + L H  L  H + L µ Å HL HL H L + µ ÅÅ ) / ( H  L H  L) = Here if we put + ito, we have F[+,] = k,
7 Elemetary Russia Roulette.b 7 =  k= HH + L  H + L k + k L/(H  L H  L) = (H + L H  L  H + L µ Å HL HL H L + µ ÅÅ ) / ( H  L H  L) = Here if we put + ito, we have F[+,] = F[+,]= C +  C +  C + ÅÅ Å + C = k= H  k + L H  k + L ê H + L H  L = k= HH + + L  H8 + L k + k L ê HH + L H  L L = HH + + L  H8 + L µ Å H+L H+L H +L + µ ÅÅ L ê HH + L H  L L = Therefore we have F[,]+F[+,]= F[+,].
In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationBuilding Blocks Problem Related to Harmonic Series
TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More informationCS103X: Discrete Structures Homework 4 Solutions
CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible sixfigure salaries i whole dollar amouts are there that cotai at least
More informationLesson 12. Sequences and Series
Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or
More informationCS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations
CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad
More informationModule 4: Mathematical Induction
Module 4: Mathematical Iductio Theme 1: Priciple of Mathematical Iductio Mathematical iductio is used to prove statemets about atural umbers. As studets may remember, we ca write such a statemet as a predicate
More informationThe Euler Totient, the Möbius and the Divisor Functions
The Euler Totiet, the Möbius ad the Divisor Fuctios Rosica Dieva July 29, 2005 Mout Holyoke College South Hadley, MA 01075 1 Ackowledgemets This work was supported by the Mout Holyoke College fellowship
More informationMath Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:
Math 355  Discrete Math 4.14.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationSoving Recurrence Relations
Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationInfinite Sequences and Series
CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More information5.3. Generalized Permutations and Combinations
53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible
More informationARITHMETIC AND GEOMETRIC PROGRESSIONS
Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives
More informationChapter Gaussian Elimination
Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio
More informationFourier Series and the Wave Equation Part 2
Fourier Series ad the Wave Equatio Part There are two big ideas i our work this week. The first is the use of liearity to break complicated problems ito simple pieces. The secod is the use of the symmetries
More informationSolving Logarithms and Exponential Equations
Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:
More informationG r a d e. 5 M a t h e M a t i c s. Patterns and relations
G r a d e 5 M a t h e M a t i c s Patters ad relatios Grade 5: Patters ad Relatios (Patters) (5.PR.1) Edurig Uderstadigs: Number patters ad relatioships ca be represeted usig variables. Geeral Outcome:
More informationTHE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n
We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample
More informationPresent Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value
Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More informationMATH /2003. Assignment 4. Due January 8, 2003 Late penalty: 5% for each school day.
MATH 260 2002/2003 Assigmet 4 Due Jauary 8, 2003 Late pealty: 5% for each school day. 1. 4.6 #10. A croissat shop has plai croissats, cherry croissats, chocolate croissats, almod croissats, apple croissats
More informationMath C067 Sampling Distributions
Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters
More information1 Computing the Standard Deviation of Sample Means
Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationDefinition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean
1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationProperties of MLE: consistency, asymptotic normality. Fisher information.
Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout
More informationQuestion 2: How is a loan amortized?
Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued
More informationConcept #1. Goals for Presentation. I m going to be a mathematics teacher: Where did this stuff come from? Why didn t I know this before?
I m goig to be a mathematics teacher: Why did t I kow this before? Steve Williams Associate Professor of Mathematics/ Coordiator of Secodary Mathematics Educatio Lock Have Uiversity of PA swillia@lhup.edu
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationExample 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).
BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook  Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More informationDistributions of Order Statistics
Chapter 2 Distributios of Order Statistics We give some importat formulae for distributios of order statistics. For example, where F k: (x)=p{x k, x} = I F(x) (k, k + 1), I x (a,b)= 1 x t a 1 (1 t) b 1
More informationDetermining the sample size
Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors
More informationBond Pricing Theorems. Floyd Vest
Bod Pricig Theorems Floyd Vest The followig Bod Pricig Theorems develop mathematically such facts as, whe market iterest rates rise, the price of existig bods falls. If a perso wats to sell a bod i this
More informationSimple Annuities Present Value.
Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX9850GB PLUS to efficietly compute values associated with preset value auities.
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationSum and Product Rules. Combinatorics. Some Subtler Examples
Combiatorics Sum ad Product Rules Problem: How to cout without coutig. How do you figure out how may thigs there are with a certai property without actually eumeratig all of them. Sometimes this requires
More informationQuadratics  Revenue and Distance
9.10 Quadratics  Reveue ad Distace Objective: Solve reveue ad distace applicatios of quadratic equatios. A commo applicatio of quadratics comes from reveue ad distace problems. Both are set up almost
More informationChapter 6: Variance, the law of large numbers and the MonteCarlo method
Chapter 6: Variace, the law of large umbers ad the MoteCarlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value
More informationLearning objectives. Duc K. Nguyen  Corporate Finance 21/10/2014
1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the timevalue
More informationLiteral Equations and Formulas
. Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More informationDivide and Conquer, Solving Recurrences, Integer Multiplication Scribe: Juliana Cook (2015), V. Williams Date: April 6, 2016
CS 6, Lecture 3 Divide ad Coquer, Solvig Recurreces, Iteger Multiplicatio Scribe: Juliaa Cook (05, V Williams Date: April 6, 06 Itroductio Today we will cotiue to talk about divide ad coquer, ad go ito
More informationHypergeometric Distributions
7.4 Hypergeometric Distributios Whe choosig the startig lieup for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you
More information23 The Remainder and Factor Theorems
 The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More information5 Boolean Decision Trees (February 11)
5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected
More informationLesson 17 Pearson s Correlation Coefficient
Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) types of data scatter plots measure of directio measure of stregth Computatio covariatio of X ad Y uique variatio i X ad Y measurig
More informationDivide and Conquer. Maximum/minimum. Integer Multiplication. CS125 Lecture 4 Fall 2015
CS125 Lecture 4 Fall 2015 Divide ad Coquer We have see oe geeral paradigm for fidig algorithms: the greedy approach. We ow cosider aother geeral paradigm, kow as divide ad coquer. We have already see a
More informationORDERS OF GROWTH KEITH CONRAD
ORDERS OF GROWTH KEITH CONRAD Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really wat to uderstad their behavior It also helps you better grasp topics i calculus
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationEngineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51
Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log
More informationLinear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant
MTH6140 Liear Algebra II Notes 4 1st November 2010 4 Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is
More informationConfidence Intervals for One Mean
Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a
More information8.3 POLAR FORM AND DEMOIVRE S THEOREM
SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,
More informationAlgebra Work Sheets. Contents
The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More information1 Correlation and Regression Analysis
1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio
More informationSolving Inequalities
Solvig Iequalities Say Thaks to the Authors Click http://www.ck12.org/saythaks (No sig i required) To access a customizable versio of this book, as well as other iteractive cotet, visit www.ck12.org CK12
More informationhp calculators HP 12C Platinum Statistics  correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient
HP 1C Platium Statistics  correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics  correlatio coefficiet
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationListing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2
74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationChapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions
Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig
More informationSection 73 Estimating a Population. Requirements
Sectio 73 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio
More informationEquation of a line. Line in coordinate geometry. Slopeintercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Pointslope form ( 點 斜 式 )
Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before
More informationThe geometric series and the ratio test
The geometric series ad the ratio test Today we are goig to develop aother test for covergece based o the iterplay betwee the it compariso test we developed last time ad the geometric series. A ote about
More informationConfidence Intervals for One Mean with Tolerance Probability
Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with
More informationSnap. Jenine's formula. The SNAP probability is
Sap The game of SNAP is played with stadard decks of cards. The decks are shuffled ad cards are dealt simultaeously from the top of each deck. SNAP is called if the two dealt cards are idetical (value
More informationCHAPTER 11 Financial mathematics
CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula
More informationChapter 5 O A Cojecture Of Erdíos Proceedigs NCUR VIII è1994è, Vol II, pp 794í798 Jeærey F Gold Departmet of Mathematics, Departmet of Physics Uiversity of Utah Do H Tucker Departmet of Mathematics Uiversity
More information1.3 Binomial Coefficients
18 CHAPTER 1. COUNTING 1. Biomial Coefficiets I this sectio, we will explore various properties of biomial coefficiets. Pascal s Triagle Table 1 cotais the values of the biomial coefficiets ( ) for 0to
More informationTIEE Teaching Issues and Experiments in Ecology  Volume 1, January 2004
TIEE Teachig Issues ad Experimets i Ecology  Volume 1, Jauary 2004 EXPERIMENTS Evirometal Correlates of Leaf Stomata Desity Bruce W. Grat ad Itzick Vatick Biology, Wideer Uiversity, Chester PA, 19013
More informationSection 1.6: Proof by Mathematical Induction
Sectio.6 Proof by Iductio Sectio.6: Proof by Mathematical Iductio Purpose of Sectio: To itroduce the Priciple of Mathematical Iductio, both weak ad the strog versios, ad show how certai types of theorems
More informationAlternatives To Pearson s and Spearman s Correlation Coefficients
Alteratives To Pearso s ad Spearma s Correlatio Coefficiets Floreti Smaradache Chair of Math & Scieces Departmet Uiversity of New Mexico Gallup, NM 8730, USA Abstract. This article presets several alteratives
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationA probabilistic proof of a binomial identity
A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two
More informationTAYLOR SERIES, POWER SERIES
TAYLOR SERIES, POWER SERIES The followig represets a (icomplete) collectio of thigs that we covered o the subject of Taylor series ad power series. Warig. Be prepared to prove ay of these thigs durig the
More informationCHAPTER 3 DIGITAL CODING OF SIGNALS
CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity
More information7 b) 0. Guided Notes for lesson P.2 Properties of Exponents. If a, b, x, y and a, b, 0, and m, n Z then the following properties hold: 1 n b
Guided Notes for lesso P. Properties of Expoets If a, b, x, y ad a, b, 0, ad m, Z the the followig properties hold:. Negative Expoet Rule: b ad b b b Aswers must ever cotai egative expoets. Examples: 5
More informationFactoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>
(March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationWeek 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable
Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5
More informationMESSAGE TO TEACHERS: NOTE TO EDUCATORS:
MESSAGE TO TEACHERS: NOTE TO EDUCATORS: Attached herewith, please fid suggested lesso plas for term 1 of MATHEMATICS Grade 12. Please ote that these lesso plas are to be used oly as a guide ad teachers
More informationhp calculators HP 30S Base Conversions Numbers in Different Bases Practice Working with Numbers in Different Bases
Numbers i Differet Bases Practice Workig with Numbers i Differet Bases Numbers i differet bases Our umber system (called HiduArabic) is a decimal system (it s also sometimes referred to as deary system)
More informationCovariance and correlation
Covariace ad correlatio The mea ad sd help us summarize a buch of umbers which are measuremets of just oe thig. A fudametal ad totally differet questio is how oe thig relates to aother. Stat 0: Quatitative
More informationMMQ Problems Solutions with Calculators. Managerial Finance
MMQ Problems Solutios with Calculators Maagerial Fiace 2008 Adrew Hall. MMQ Solutios With Calculators. Page 1 MMQ 1: Suppose Newma s spi lads o the prize of $100 to be collected i exactly 2 years, but
More informationG r a d e. 2 M a t h e M a t i c s. statistics and Probability
G r a d e 2 M a t h e M a t i c s statistics ad Probability Grade 2: Statistics (Data Aalysis) (2.SP.1, 2.SP.2) edurig uderstadigs: data ca be collected ad orgaized i a variety of ways. data ca be used
More informationTime Value of Money. First some technical stuff. HP10B II users
Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle
More information