A Guide to the Pricing Conventions of SFE Interest Rate Products

Size: px
Start display at page:

Download "A Guide to the Pricing Conventions of SFE Interest Rate Products"

Transcription

1 A Guide to the Pricig Covetios of SFE Iterest Rate Products SFE 30 Day Iterbak Cash Rate Futures Physical 90 Day Bak Bills SFE 90 Day Bak Bill Futures SFE 90 Day Bak Bill Futures Tick Value Calculatios SFE 90 Day Bak Bill Optios Australia Commowealth Treasury Bods SFE 10 Year Treasury Bod Futures SFE 10 Year Treasury Bod Futures Tick Value Calculatios SFE 10 Year Treasury Bod Optios SFE 3 Year Treasury Bod Futures Tick Value Calculatios SFE 3 Year Bod Optios Iterest Rate Swap Futures 3 Year Iterest Rate Swap Futures 10 Year Iterest Rate Swap Futures This brochure provides market users ad back office system suppliers with a guide as to the pricig covetios of SFE iterest rate futures ad optios. The pricig covetios used for the majority of SFE's iterest rate products differ from that used i may offshore futures markets. Ulike i Europe ad the Uited States where iterest rate securities are traded i the cash market o the basis of their capital price, the covetio adopted i Australia is to price such istrumets o the basis of their yield to maturity. Due to this covetio, SFE's iterest rate cotracts are similarly traded o the basis of yield with the futures price quoted as 100 mius the yield to maturity expressed i per cet per aum. While the obvious advatage of pricig iterest rate cotracts i this fashio is that their yield is trasparet ad ca be easily compared to yields o cash market istrumets, a importat by-product is that the tick value o these products does ot remai costat but rather chages i accordace with movemets i the uderlyig iterest rate. This variatio is most proouced i the 10 Year Treasury Bod futures cotract ad is less substatial for the 3 Year Treasury Bod futures cotract ad 90 Day Bak Bill futures cotracts. For all these cotracts, the tick value decreases as iterest rates rise ad icreases as iterest rates fall. 30 Day Iterbak Cash Rate Futures Ulike SFE s 90 day Bak Bill Futures ad 3 ad 10 year Treasury Bod Futures, the 30 Day Cash Rate Futures cotract has a fixed tick. Uder a fixed tick regime, the variatio margis are calculated by multiplyig the umber of price movemets (i poits terms) by the fixed tick dollar value of AUD24.66 per 0.01% move by the umber of cotracts traded. For example: Trade Price = Number of Cotracts = 100 Ed of Day Settlemet Price = Variatio Margi o Positio = $3, (1.5pts x AUD24.66 x 100 cotracts) The cash rate futures cotract gives a exposure to AUD3,000,000 per cotract. Hece, the cotract value of a positio i the 30 Day Iterbak Cash Rate Futures is equivalet to the face value of the cotract multiplied by the umber of cotracts bought or sold. Physical 90 Day Bak Bills Ulike its best kow equivalet i the Uited States - the Eurodollar time deposit - the value of a physical 90 Day Bak Bill is calculated accordig to a yield to maturity formula that discouts the face value to establish the appropriate iterest cost over the 90 days.

2 The formula for the preset value (P) of a bak bill is: P = FaceValue 365 yield Days to Maturity 100 The face value represets the bill's future value, i.e. its value at the ed of its 90 day term. Please ote the Australia covetio is to use a 365 rather tha a 360 day year. I order to calculate the preset value (P) of a 90 Day Bak Bill which has a face value of $100,000 ad is tradig at a yield to maturity of 5.50%, the followig calculatios are performed: 100, P = = $98, This same formula ca be applied to value Bak Bills with varyig maturities (i.e. 30, 60, 90, 180 days) ad face values (i.e. $100,000, $500,000, $1,000,000). These values would simply be iserted ito the formula where appropriate. SFE 90 Day Bak Bills For SFE 90 Day Bak Bill Futures, where the cotract value is always $1,000,000, ad the term to maturity is exactly 90 days, the bak bill formula ca be rewritte as: P = 1,000, yield where the yield is the futures price deducted from 100. Therefore if a Bak Bill futures cotract was tradig at (ie. a yield of 5%) the value of the cotract would be: 1,000, P = = $987, SFE 90 Day Bak Bill Futures Tick Value Calculatios The dollar value of a 0.01% chage i yield does ot remai costat but rather varies i accordace with chages i the uderlyig iterest rate. Accordigly, to establish what the dollar value of a futures tick will be at a give price, the followig calculatios are made: 1. Use the cotract valuatio formula (as described above) to calculate the uderlyig value of the cotract at the omiated futures price. 2. Apply the same formula to that same futures price mius 0.01 (i.e., icrease the yield by 0.01%). 3. The differece betwee the two cotract values represets the dollar value of the tick at the omiated futures price. To determie the dollar value of a 0.01% chage i yield of a Bak Bill futures cotract which is tradig at a price of (ie. a yield of 5.00%) the followig calculatios are performed: 1. Futures cotract value at (5.00%)= $987, (rouded to two decimal places) 2. Futures cotract value at (5.01%)= $987, (rouded to two decimal places) 3. Differece (value of 0.01% of premium)= $24.06

3 SFE 90 Day Bak Bill Optios Premiums for optios o 90 Day Bak Bill futures are quoted i terms of aual percetage yield (e.g. 0.60% pa or 1.05% pa) with the value of a sigle poit of premium (ie. 0.01% pa) calculated by comparig its cotract value at the exercise price (expressed as 100 mius aual yield) ad its value at that same exercise price less oe poit (0.01%). For example, a 90 Day Bak Bill optio with a exercise price of ad a premium of 0.065% pa would be valued as follows: 1. Futures cotract value at (5.00%)= $987, (rouded to two decimal places) 2. Futures cotract value at (5.01%)= $987, (rouded to two decimal places) 3. Differece (value of 0.01% of premium)= $24.06 Sice we have 6.5 poits of premium, the fial premium i dollars is $ To exactly match the premium i dollars as calculated by SFE Clearig the premium should be calculated i the followig maer: $24.06 x = (rouded to four decimal places) x 100 = $ A fial importat poit to ote is that, for a optio with a particular exercise price, the value of 0.01% of premium is costat, while the tick value of the uderlyig futures cotract is variable with the level of iterest rates. To put it aother way, the value of a move of a certai size i the futures market will ot equate exactly i dollar terms with a move of the same size i the optio premium. Ivestors should also be cautious about implemetig coversio strategies owig to the differeces i tick sizes betwee a optio strike price ad the prevailig futures price. For example, it ca happe that a optio appears to be priced slightly below its itrisic value i terms of the yield whe i fact, i dollar terms, the pricig is correct. Australia Commowealth Treasury Bods The formula for calculatig the price per A$100 of a Australia Commowealth Treasury Bod as supplied by the Reserve Bak of Australia is: where v = 1/(1+i) where i is the aual percetage yield divided by 200. f = the umber of days from the date of settlemet to the ext iterest paymet date d = the umber of days i the half year edig o the ext iterest paymet date c = the amout of iterest paymet (if ay) per $100 face value at the ext iterest paymet date g = the fixed half-yearly iterest rate payable (equal to the aual fixed rate divided by 2). = the umber of full half-years betwee the ext iterest paymet date ad the date of maturity (equal to 2 times the umber of years util maturity) a = v + v +.+ v = (1 v )/i The covetio adopted with Commowealth Treasury Bods is that iterest is paid o the fifteeth day of the appropriate moth with the last iterest paymet made at maturity. Usig the Reserve Bak pricig formula, the calculatios which would be performed to value a Commowealth Treasury Bod with a maturity of 15 October 2007, a coupo rate of 10.00%, a market yield of 5.70% ad a settlemet day of 7 April 1998 would be: i = v = f = (2/4/98 + T3 busiess (7/04/98) to 15/4/98) = 8 d = 182 g = 5

4 = 20 f/d = c = 5 Usig the above iputs, the bod would have a value of A$ per $100 face value (iclusive of accrued iterest). SFE 10 Year Treasury Bod Futures For SFE Treasury Bod futures, the pricig formula ca be simplified because there is always a exact umber of half years to maturity ad hece there is o requiremet to calculate accrued iterest. The formula for the value (P) of a 10 Year Bod futures cotract o SFE is writte as: 20 ( 1 v ) c P = v i 20 where: i = yield % pa divided by 200 v = 1/(1+i) = 20 c = coupo rate/2 Thus to value a 6% coupo 10 Year Treasury Bod cotract which is tradig at a price of (i.e. A yield of 4.50% pa.), the iputs would be: i = v = = 20 c = 3 Whe these iputs are icluded i the formula, the cotract value for the above cotract will be A$111, Note that the mathematical covetio is that multiplicatio ad divisio take precedece over, additio ad subtractio. I the futures formula, this meas that the divisio by i is performed before the additio of 100v 20. To exactly match the cotract value as calculated by SFE Clearig, steps C, D ad G must be rouded to exactly eight decimal places, with 0.5 beig rouded up. No other steps are rouded except K, which is rouded to two decimal places. SFE Clearig makes the calculatio i the followig maer: Futures Price A price B I = A/ C v = 1/(1 + B) D v E 1 - v 20 = 1 - D F 3(1 - v 20 ) = 3 x E G 3(1 - v 20 )/i = F/B H 100v 20 = 100 x D I G + H J I x 1,000 $111, K Rouded $111, SFE 10 Year Treasury Bod Futures Tick Value Calculatios The methodology used to calculate tick values for the 10 Year Treasury Bod Futures is idetical to that outlied i the previous example for 90 Day Bak Bill Futures.

5 For example, to determie the dollar value of a 0.01% chage i yield o a 10 Year Bod cotract tradig at a price of (ie. A yield of 5.64%), the followig calculatios are performed. 1. Futures cotract value at (5.64%) = $102, Futures cotract value at (5.65%) = $102, Differece (value of 0.01% of premium) = $ or $76.87 rouded to two decimal places. SFE 10 Year Treasury Bod Optios Like Bak Bill optios, 10 Year bod optios are quoted i terms of aual percetage yield (e.g % or 0.525%), with the value of a sigle poit of premium (ie. 0.01%) calculated as the differece betwee the cotract value at the exercise price (expressed as 100 mius the aual yield) ad its value at that exercise price less oe poit (0.01%). Please ote that whe makig these calculatios, cotract values are ot rouded to the earest cet before calculatig this differece. Accordigly, the dollar value of a optio o a 10 Year Treasury bod optio with a exercise price of ad a premium of 0.140% would be calculated as follows: 1. Futures cotract value at = $100, Futures cotract value at = $99, Differece (value 0.01% of premium) = $ Sice there is 14 poits of premium, the fial premium i dollars is calculated as: $ x 14 = $1, which whe rouded to the earest cet gives $ SFE 3 Year Treasury Bod Futures Tick Value Calculatios For SFE Treasury Bod futures, the Reserve Bak of Australia govermet bod pricig formula ca be simplified because there is always a exact umber of half years to maturity ad hece there is o requiremet to calculate accrued iterest. The formula for the value (P) of a 3 Year Bod Futures cotract o SFE is writte as: 6 ( 1 v ) c P = v i 6 where: i = yield % pa divided by 200 v = 1/(1+i) = umber of coupo paymets. For the 3 Year cotract this is 6. c = coupo rate/2 Thus to value a 6% coupo 3 Year Treasury Bod cotract which is tradig at a price of (i.e. a yield of 4.495% pa.), the iputs would be: i = v = = 6 c = 3 Whe these iputs are icluded i the formula, the cotract value for the above cotract will be A$104, Note that the mathematical covetio is that multiplicatio ad divisio take precedece over, additio ad subtractio. I the futures formula, this meas that the divisio by i is performed before the additio of 100v 6. To exactly match the cotract value as calculated by SFE Clearig, steps C, D ad G must be rouded to exactly eight decimal places, with 0.5 beig rouded up. No other steps are rouded except K, which is rouded to two decimal places. SFE Clearig makes the calculatio i the followig maer:

6 Futures Price A price B I = A/ C v = 1/(1 + B) D V E 1 v 6 = 1 - D F 3(1 v 6 ) = 3 x E G 3(1 v 6 )/i = F/B H 100v 6 = 100 x D I G + H J I x 1,000 $104, K Rouded $104, Determiig Variatio Margis for 3 Year Treasury Bod Futures SFE Clearig determies the variatio or marked to market margi for variable tick cotracts i the followig by comparig the cotract value for the previous ed of day price (or the trade price if the cotract was bought or sold that day) ad that day's ed of day settlemet price or exit price. For example: 1. Bought 10 3 Year Treasury Bod Futures at price of (yield = 4.495%). The cotract value determied usig the bod formula is $104, per cotract. The cotract value for 10 cotracts is $1,041, Ed of day settlemet price for 3 Year Treasury Bod Futures is (yield = 5.510%). The cotract value is $101, x 10 cotracts = $1,013, Variatio Margi, determied by calculatig the differece betwee the two cotract values, that is, $1,041, $1,013, = $28, The margi paymet made o the 10 lot positio is $28, Calculatig the Tick Value for SFE 3 Year Treasury Bod Futures The dollar value of a 0.010% chage i yield does ot remai costat but rather varies i accordace with chages i the uderlyig iterest rate. Accordigly, to establish what the dollar value of a futures tick will be at a give price, the followig calculatios are made: 4. Use the cotract valuatio formula (as described above) to calculate the uderlyig value of the cotract at the omiated futures price. 5. Apply the same formula to that same futures price mius (i.e., icrease the yield by 0.010%). 6. The differece betwee the two cotract values represets the dollar value of the tick at the omiated futures price. For example, to calculate the dollar value of a 0.010% chage i yield whe the 6% coupo 3 Year cotract is tradig at a price of (i.e. a yield of 5.240%), the followig calculatios are performed. 1. Futures cotract value at (5.240%) = $102, Futures cotract value at (5.250%) = $102, Differece (value 0.01% of premium) = $ Which whe rouded to the earest cet gives $27.77 SFE 3 Year Bod Optios Premiums for the 3 Year Bod optios are calculated i exactly the same way as for 10 Year Bod optios, by referece to the value of a oe-poit move i the uderlyig futures cotract from the exercise price to the exercise price less oe poit.

7 To value a 6% coupo 3 Year Treasury Bod optio which has a strike price of ad a premium of poits, the followig calculatios are made: 1. Futures cotract value at = $101, Futures cotract value at = $101, Differece (value 0.010% of premium) = $ Sice there is 24 poits of premium, the fial premium i dollars is calculated as: $ x 24 = $ which whe rouded to the earest cet gives $ A fial importat poit to ote is that, for a optio with a particular exercise price, the value of 0.010% of premium is costat, while the tick value of the uderlyig futures cotract is variable with the level of iterest rates. To put it aother way, the value of a move of a certai size i the futures market will ot equate exactly i dollar terms with a move of the same size i the optio premium. Ivestors should also be cautious about implemetig coversio strategies owig to the differeces i tick sizes betwee a optio strike price ad the prevailig futures price. For example, it ca happe that a optio appears to be priced slightly below its itrisic value i terms of the yield whe i fact, i dollar terms, the pricig is correct. 3 Year ad 10 Year Iterest Rate Swap Futures The cotract value formula for Iterest Rate Swap Futures is a modified versio of the Treasury Bod Futures pricig formula. The differece betwee the two formulas is the coupo rate. Iterest Rate Swap Futures have a coupo rate of 6.5% as opposed to the 6% used for Treasury Bod Futures. 3 Year Iterest Rate Swap Futures The formula for the value (P) of 3 Year Iterest Rate Swap Futures at SFE is writte as: ( 1 v ) c P = v i where: i = yield % pa divided by 200 v = 1/(1+i) = the umber of coupo paymets c = coupo rate/2 Thus to value a 6.5% coupo 3 Year Iterest Rate Swap Futures cotract which is tradig at a price of (ie. a yield of 5.70% pa.), the iputs would be: i = v = = 6 c = 3.25 Whe these iputs are icluded i the formula, the cotract value for the above cotract will be A$102, Note that the mathematical covetio is that multiplicatio ad divisio take precedece over, additio ad subtractio. I the futures formula, this meas that the divisio by i is performed before the additio of 100v 6. To exactly match the cotract value as calculated by SFE Clearig Corporatio (SFECC), steps C, D ad G must be rouded to exactly eight decimal places, with 0.5 beig rouded up. No other steps are rouded except K, which is rouded to 2 decimal places. The SFECC makes the calculatio i the followig maer: Futures Price A 100 price 5.70 B i = A/

8 C v = 1/(1 + B) D v E 1 v 6 = 1 - D F 3.25(1 v 6 ) = 3.25 x E G 3.25(1 v 6 )/i = F/B H 100v 6 = 100 x D I G + H J I x 1,000 $102, K Rouded $102, Year Iterest Rate Swap Futures The formula for the value (P) of 10 Year Iterest Rate Swap Futures at SFE is writte as: ( 1 v ) c P = v i where: i = yield % pa divided by 200 v = 1/(1+i) = the umber of coupo paymets c = coupo rate/2 Thus to value a 6.5% coupo 10 Year Iterest Rate Swap Futures cotract which is tradig at a price of (ie. a yield of 4.500% pa.), the iputs would be: i = v = = 20 c = 3.25 Whe these iputs are icluded i the formula, the cotract value for the above cotract will be A$115, Note that the mathematical covetio is that multiplicatio ad divisio take precedece over, additio ad subtractio. I the futures formula, this meas that the divisio by i is performed before the additio of 100v 20. To exactly match the cotract value as calculated by SFE Clearig Corporatio (SFECC), steps C, D ad G must be rouded to exactly eight decimal places, with 0.5 beig rouded up. No other steps are rouded except K, which is rouded to 2 decimal places. The SFECC makes the calculatio i the followig maer: Futures Price A 100 price B i = A/ C v = 1/(1 + B) D v E 1 - v 20 = 1 - D F 3.25(1 - v 20 ) = 3.25 x E G 3.25(1 - v 20 )/i = F/B H 100v 20 = 100 x D I G + H J I x 1,000 $115, K Rouded $115,963.71

9 This documet was prepared by the Busiess Developmet Group of the Sydey Futures Exchage. SFE takes o resposibility for errors or omissios or losses arisig from actios based o this iformatio. This documet does ot substitute for the SFE Busiess Rules ad i the case of icosistecy, the Busiess Rules prevail. For further iformatio o SFE, or its products, please cotact the Busiess Developmet Group. Copyright Sydey Futures Exchage Limited 1998 Last Updated December 2005

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Question 2: How is a loan amortized?

Question 2: How is a loan amortized? Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond

Bond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixed-icome security that typically pays periodic coupo paymets, ad a pricipal

More information

Introduction to Financial Derivatives

Introduction to Financial Derivatives 550.444 Itroductio to Fiacial Derivatives Iterest Rates Week of September 3, 013 Where we are Previously: Fudametals of Forward ad Futures Cotracts (Chapters -3, OFOD) This week: Itroductio to Iterest

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Terminology for Bonds and Loans

Terminology for Bonds and Loans ³ ² ± Termiology for Bods ad Loas Pricipal give to borrower whe loa is made Simple loa: pricipal plus iterest repaid at oe date Fixed-paymet loa: series of (ofte equal) repaymets Bod is issued at some

More information

FM4 CREDIT AND BORROWING

FM4 CREDIT AND BORROWING FM4 CREDIT AND BORROWING Whe you purchase big ticket items such as cars, boats, televisios ad the like, retailers ad fiacial istitutios have various terms ad coditios that are implemeted for the cosumer

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

A Resource for Free-standing Mathematics Qualifications Working with %

A Resource for Free-standing Mathematics Qualifications Working with % Ca you aswer these questios? A savigs accout gives % iterest per aum.. If 000 is ivested i this accout, how much will be i the accout at the ed of years? A ew car costs 16 000 ad its value falls by 1%

More information

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition

Definition. Definition. 7-2 Estimating a Population Proportion. Definition. Definition 7- stimatig a Populatio Proportio I this sectio we preset methods for usig a sample proportio to estimate the value of a populatio proportio. The sample proportio is the best poit estimate of the populatio

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest

CDs Bought at a Bank verses CD s Bought from a Brokerage. Floyd Vest CDs Bought at a Bak verses CD s Bought from a Brokerage Floyd Vest CDs bought at a bak. CD stads for Certificate of Deposit with the CD origiatig i a FDIC isured bak so that the CD is isured by the Uited

More information

Sole trader financial statements

Sole trader financial statements 3 Sole trader fiacial statemets this chapter covers... I this chapter we look at preparig the year ed fiacial statemets of sole traders (that is, oe perso ruig their ow busiess). We preset the fiacial

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

Section 7-3 Estimating a Population. Requirements

Section 7-3 Estimating a Population. Requirements Sectio 7-3 Estimatig a Populatio Mea: σ Kow Key Cocept This sectio presets methods for usig sample data to fid a poit estimate ad cofidece iterval estimate of a populatio mea. A key requiremet i this sectio

More information

Amendments to employer debt Regulations

Amendments to employer debt Regulations March 2008 Pesios Legal Alert Amedmets to employer debt Regulatios The Govermet has at last issued Regulatios which will amed the law as to employer debts uder s75 Pesios Act 1995. The amedig Regulatios

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Interest Rate Derivatives

Interest Rate Derivatives Interest Rate Derivatives Price and Valuation Guide The pricing conventions used for most ASX 24 interest rate futures products differ from that used in many offshore futures markets. Unlike in Europe

More information

I. Why is there a time value to money (TVM)?

I. Why is there a time value to money (TVM)? Itroductio to the Time Value of Moey Lecture Outlie I. Why is there the cocept of time value? II. Sigle cash flows over multiple periods III. Groups of cash flows IV. Warigs o doig time value calculatios

More information

Your grandmother and her financial counselor

Your grandmother and her financial counselor Sectio 10. Arithmetic Sequeces 963 Objectives Sectio 10. Fid the commo differece for a arithmetic sequece. Write s of a arithmetic sequece. Use the formula for the geeral of a arithmetic sequece. Use the

More information

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally

Rainbow options. A rainbow is an option on a basket that pays in its most common form, a nonequally Raibow optios INRODUCION A raibow is a optio o a basket that pays i its most commo form, a oequally weighted average of the assets of the basket accordig to their performace. he umber of assets is called

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Chapter Gaussian Elimination

Chapter Gaussian Elimination Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio

More information

Bond Mathematics & Valuation

Bond Mathematics & Valuation Bod Mathematics & Valuatio Below is some legalese o the use of this documet. If you d like to avoid a headache, it basically asks you to use some commo sese. We have put some effort ito this, ad we wat

More information

8.1 Arithmetic Sequences

8.1 Arithmetic Sequences MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first

More information

Confidence Intervals for One Mean with Tolerance Probability

Confidence Intervals for One Mean with Tolerance Probability Chapter 421 Cofidece Itervals for Oe Mea with Tolerace Probability Itroductio This procedure calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) with

More information

Bond Pricing Theorems. Floyd Vest

Bond Pricing Theorems. Floyd Vest Bod Pricig Theorems Floyd Vest The followig Bod Pricig Theorems develop mathematically such facts as, whe market iterest rates rise, the price of existig bods falls. If a perso wats to sell a bod i this

More information

Confidence Intervals and Sample Size

Confidence Intervals and Sample Size 8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGraw-Hill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 7-1 Cofidece Itervals for the

More information

Subject CT5 Contingencies Core Technical Syllabus

Subject CT5 Contingencies Core Technical Syllabus Subject CT5 Cotigecies Core Techical Syllabus for the 2015 exams 1 Jue 2014 Aim The aim of the Cotigecies subject is to provide a groudig i the mathematical techiques which ca be used to model ad value

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 009() MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad diagram sheet. Please tur over Mathematics/P DoE/November

More information

FI A CIAL MATHEMATICS

FI A CIAL MATHEMATICS CHAPTER 7 FI A CIAL MATHEMATICS Page Cotets 7.1 Compoud Value 117 7.2 Compoud Value of a Auity 118 7.3 Sikig Fuds 119 7.4 Preset Value 122 7.5 Preset Value of a Auity 122 7.6 Term Loas ad Amortizatio 123

More information

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology

INVESTMENT PERFORMANCE COUNCIL (IPC) Guidance Statement on Calculation Methodology Adoptio Date: 4 March 2004 Effective Date: 1 Jue 2004 Retroactive Applicatio: No Public Commet Period: Aug Nov 2002 INVESTMENT PERFORMANCE COUNCIL (IPC) Preface Guidace Statemet o Calculatio Methodology

More information

FLEXIBLE GUARANTEE BOND SERIES 2

FLEXIBLE GUARANTEE BOND SERIES 2 FLEXIBLE GUARANTEE BOND SERIES 2 Key features of the Flexible Guaratee Bod Series 2 The Fiacial Coduct Authority is a fiacial services regulator. It requires us, LV=, to give you this importat iformatio

More information

CHAPTER 4: NET PRESENT VALUE

CHAPTER 4: NET PRESENT VALUE EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

More information

Time Value of Money. First some technical stuff. HP10B II users

Time Value of Money. First some technical stuff. HP10B II users Time Value of Moey Basis for the course Power of compoud iterest $3,600 each year ito a 401(k) pla yields $2,390,000 i 40 years First some techical stuff You will use your fiacial calculator i every sigle

More information

Ground rules. Guide to Calculation Methods for the FTSE Fixed Income Indexes v1.3

Ground rules. Guide to Calculation Methods for the FTSE Fixed Income Indexes v1.3 Groud rules Guide to Calculatio Methods for the FTSE Fixed Icome Idexes v1.3 ftserussell.com October 2015 Cotets 1.0 Itroductio... 3 2.0 Idex level calculatios... 5 3.0 Bod level calculatios... 10 Appedix

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Checklist. Assignment

Checklist. Assignment Checklist Part I Fid the simple iterest o a pricipal. Fid a compouded iterest o a pricipal. Part II Use the compoud iterest formula. Compare iterest growth rates. Cotiuous compoudig. (Math 1030) M 1030

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Ground Rules. Guide to Calculation Methods for the Fixed Income Indexes v1.5

Ground Rules. Guide to Calculation Methods for the Fixed Income Indexes v1.5 Groud Rules Guide to Calculatio Methods for the Fixed Icome Idexes v1.5 ftserussell.com December 2015 Cotets 1.0 Itroductio... 3 2.0 Idex level calculatios... 5 3.0 Bod level calculatios... 11 Appedix

More information

Framingham State College Department of Economics and Business Managerial Finance Practice Final Exam Spring 2006

Framingham State College Department of Economics and Business Managerial Finance Practice Final Exam Spring 2006 Name Framigham State College Departmet of Ecoomics ad Busiess Maagerial Fiace Practice Fial Exam Sprig 2006 This exam provides questios that are represetative of those cotaied o your exam. This test should

More information

Pre-Suit Collection Strategies

Pre-Suit Collection Strategies Pre-Suit Collectio Strategies Writte by Charles PT Phoeix How to Decide Whether to Pursue Collectio Calculatig the Value of Collectio As with ay busiess litigatio, all factors associated with the process

More information

Example: Probability ($1 million in S&P 500 Index will decline by more than 20% within a

Example: Probability ($1 million in S&P 500 Index will decline by more than 20% within a Value at Risk For a give portfolio, Value-at-Risk (VAR) is defied as the umber VAR such that: Pr( Portfolio loses more tha VAR withi time period t)

More information

INTRODUCTION TO ENGINEERING ECONOMICS. Types of Interest

INTRODUCTION TO ENGINEERING ECONOMICS. Types of Interest INTRODUCTION TO ENGINEERING ECONOMICS A. J. Clark School of Egieerig Departmet of Civil ad Evirometal Egieerig by Dr. Ibrahim A. Assakkaf Sprig 2000 Departmet of Civil ad Evirometal Egieerig Uiversity

More information

5/gallon. Earn. Then save. Cash Management. Control. Must Apply by 6/30/16. Save 25 /gallon on fuel purchases for the first 2 billing periods * ; then

5/gallon. Earn. Then save. Cash Management. Control. Must Apply by 6/30/16. Save 25 /gallon on fuel purchases for the first 2 billing periods * ; then Ear The save 25/gallo for the first 2 billig periods o fuel purchases with the ExxoMobil Busiess Card. * No miimum purchase requiremets ad o maximum savigs cap. Limited-time offer. Must apply by 6/30/16.

More information

Unit 8 Rational Functions

Unit 8 Rational Functions Uit 8 Ratioal Fuctios Algebraic Fractios: Simplifyig Algebraic Fractios: To simplify a algebraic fractio meas to reduce it to lowest terms. This is doe by dividig out the commo factors i the umerator ad

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC.

This document contains a collection of formulas and constants useful for SPC chart construction. It assumes you are already familiar with SPC. SPC Formulas ad Tables 1 This documet cotais a collectio of formulas ad costats useful for SPC chart costructio. It assumes you are already familiar with SPC. Termiology Geerally, a bar draw over a symbol

More information

One-step equations. Vocabulary

One-step equations. Vocabulary Review solvig oe-step equatios with itegers, fractios, ad decimals. Oe-step equatios Vocabulary equatio solve solutio iverse operatio isolate the variable Additio Property of Equality Subtractio Property

More information

MMQ Problems Solutions with Calculators. Managerial Finance

MMQ Problems Solutions with Calculators. Managerial Finance MMQ Problems Solutios with Calculators Maagerial Fiace 2008 Adrew Hall. MMQ Solutios With Calculators. Page 1 MMQ 1: Suppose Newma s spi lads o the prize of $100 to be collected i exactly 2 years, but

More information

MainStay Funds IRA/SEP/Roth IRA Distribution Form

MainStay Funds IRA/SEP/Roth IRA Distribution Form MaiStay Fuds IRA/SEP/Roth IRA Distributio Form Do ot use for IRA Trasfers or SIMPLE IRA INSTRUCTIONS Before completig this form, please refer to the applicable Custodial Agreemet ad Disclosure Statemet

More information

Working with numbers

Working with numbers 4 Workig with umbers this chapter covers... This chapter is a practical guide showig you how to carry out the types of basic calculatio that you are likely to ecouter whe workig i accoutig ad fiace. The

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Hypothesis Tests Applied to Means

Hypothesis Tests Applied to Means The Samplig Distributio of the Mea Hypothesis Tests Applied to Meas Recall that the samplig distributio of the mea is the distributio of sample meas that would be obtaied from a particular populatio (with

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

For customers Key features of the Guaranteed Pension Annuity

For customers Key features of the Guaranteed Pension Annuity For customers Key features of the Guarateed Pesio Auity The Fiacial Coduct Authority is a fiacial services regulator. It requires us, Aego, to give you this importat iformatio to help you to decide whether

More information

France caters to innovative companies and offers the best research tax credit in Europe

France caters to innovative companies and offers the best research tax credit in Europe 1/5 The Frech Govermet has three objectives : > improve Frace s fiscal competitiveess > cosolidate R&D activities > make Frace a attractive coutry for iovatio Tax icetives have become a key elemet of public

More information

2 Time Value of Money

2 Time Value of Money 2 Time Value of Moey BASIC CONCEPTS AND FORMULAE 1. Time Value of Moey It meas moey has time value. A rupee today is more valuable tha a rupee a year hece. We use rate of iterest to express the time value

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Searching Algorithm Efficiencies

Searching Algorithm Efficiencies Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay

More information

ARITHMETIC AND GEOMETRIC PROGRESSIONS

ARITHMETIC AND GEOMETRIC PROGRESSIONS Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives

More information

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.

when n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on. Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have

More information

Dilution Example. Chapter 24 Warrants and Convertibles. Warrants. The Difference Between Warrants and Call Options. Warrants

Dilution Example. Chapter 24 Warrants and Convertibles. Warrants. The Difference Between Warrants and Call Options. Warrants Chapter 24 Warrats ad Covertibles Warrats The Differece betee Warrats ad Call Optios Warrat Pricig ad the Black-Scholes Model Covertible Bods The Value of Covertible Bods Reasos for Issuig Warrats ad Covertibles

More information

THE TIME VALUE OF MONEY

THE TIME VALUE OF MONEY QRMC04 9/17/01 4:43 PM Page 51 CHAPTER FOUR THE TIME VALUE OF MONEY 4.1 INTRODUCTION AND FUTURE VALUE The perspective ad the orgaizatio of this chapter differs from that of chapters 2 ad 3 i that topics

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

CHAPTER 3: FINANCIAL ANALYSIS WITH INFLATION

CHAPTER 3: FINANCIAL ANALYSIS WITH INFLATION Up to ow, we have mostly igored iflatio. However, iflatio ad iterest are closely related. It was oted i the last chapter that iterest rates should geerally cover more tha iflatio. I fact, the amout of

More information

1741 SWITZERLAND CAP WEIGHTED INDEX

1741 SWITZERLAND CAP WEIGHTED INDEX 1741 Switzerlad Idex Series 1741 SWITZERLAND CAP WEIGHTED INDEX Idex rules Status as of 1 July 2015 1741 Switzerlad Cap Weighted Idex 2 CONTENTS 1 Itroductio 3 2 Idex specificatios 4 3 Idex uiverse 5 4

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P NOVEMBER 0 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages, diagram sheet ad iformatio sheet. Please tur over Mathematics/P DBE/November 0

More information

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7

Forecasting. Forecasting Application. Practical Forecasting. Chapter 7 OVERVIEW KEY CONCEPTS. Chapter 7. Chapter 7 Forecastig Chapter 7 Chapter 7 OVERVIEW Forecastig Applicatios Qualitative Aalysis Tred Aalysis ad Projectio Busiess Cycle Expoetial Smoothig Ecoometric Forecastig Judgig Forecast Reliability Choosig the

More information

TILE PATTERNS & GRAPHING

TILE PATTERNS & GRAPHING TILE PATTERNS & GRAPHING LESSON 1 THE BIG IDEA Tile patters provide a meaigful cotext i which to geerate equivalet algebraic expressios ad develop uderstadig of the cocept of a variable. Such patters are

More information

Audit of Assumptions for the March 2001 Budget. REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Session 2000 2001: 7 March 2001

Audit of Assumptions for the March 2001 Budget. REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Session 2000 2001: 7 March 2001 Audit of Assumptios for the March 2001 Budget REPORT BY THE COMPTROLLER AND AUDITOR GENERAL HC 304 Sessio 2000 2001: 7 March 2001 Audit of Assumptios for the March 2001 Budget REPORT BY THE COMPTROLLER

More information

Sum of Exterior Angles of Polygons TEACHER NOTES

Sum of Exterior Angles of Polygons TEACHER NOTES Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).

More information

Information about Bankruptcy

Information about Bankruptcy Iformatio about Bakruptcy Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea Isolvecy Service of Irelad Seirbhís Dócmhaieachta a héirea What is the? The Isolvecy Service of Irelad () is a idepedet

More information

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability).

ME 101 Measurement Demonstration (MD 1) DEFINITIONS Precision - A measure of agreement between repeated measurements (repeatability). INTRODUCTION This laboratory ivestigatio ivolves makig both legth ad mass measuremets of a populatio, ad the assessig statistical parameters to describe that populatio. For example, oe may wat to determie

More information

Present Value Tax Expenditure Estimate of Tax Assistance for Retirement Saving

Present Value Tax Expenditure Estimate of Tax Assistance for Retirement Saving Preset Value Tax Expediture Estimate of Tax Assistace for Retiremet Savig Tax Policy Brach Departmet of Fiace Jue 30, 1998 2 Preset Value Tax Expediture Estimate of Tax Assistace for Retiremet Savig This

More information

Chapter One BASIC MATHEMATICAL TOOLS

Chapter One BASIC MATHEMATICAL TOOLS Chapter Oe BAIC MATHEMATICAL TOOL As the reader will see, the study of the time value of moey ivolves substatial use of variables ad umbers that are raised to a power. The power to which a variable is

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

Statement of cash flows

Statement of cash flows 6 Statemet of cash flows this chapter covers... I this chapter we study the statemet of cash flows, which liks profit from the statemet of profit or loss ad other comprehesive icome with chages i assets

More information

DWS Investment GmbH. DWS Aktien Strategie Deutschland Sales Prospectus including Terms of Contract

DWS Investment GmbH. DWS Aktien Strategie Deutschland Sales Prospectus including Terms of Contract DWS Ivestmet GmbH DWS Aktie Strategie Deutschlad Sales Prospectus icludig Terms of Cotract Jauary 1, 2012 Sales Prospectus ad Terms of Cotract Sales Prospectus Geeral sectio Geeral priciples 1 Maagemet

More information

Valuing Firms in Distress

Valuing Firms in Distress Valuig Firms i Distress Aswath Damodara http://www.damodara.com Aswath Damodara 1 The Goig Cocer Assumptio Traditioal valuatio techiques are built o the assumptio of a goig cocer, I.e., a firm that has

More information

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average

3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average 5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives

More information

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4

Geometric Sequences and Series. Geometric Sequences. Definition of Geometric Sequence. such that. a2 4 3330_0903qxd /5/05 :3 AM Page 663 Sectio 93 93 Geometric Sequeces ad Series 663 Geometric Sequeces ad Series What you should lear Recogize, write, ad fid the th terms of geometric sequeces Fid th partial

More information

CHAPTER 5: EQUITY MARKETS

CHAPTER 5: EQUITY MARKETS CHAPTER 5: EQUITY MARKETS Overview Whe we buy stock i a corporatio, we exchage cash for a share of hoped-for future profits of the compay. These profits ca come via capital appreciatio ad through receipt

More information

Algebra Work Sheets. Contents

Algebra Work Sheets. Contents The work sheets are grouped accordig to math skill. Each skill is the arraged i a sequece of work sheets that build from simple to complex. Choose the work sheets that best fit the studet s eed ad will

More information

BCP ABSOLUTE RETURN BOND 16

BCP ABSOLUTE RETURN BOND 16 AVAILABLE TO INVESTMENT PENSION ARF/AMRF INVESTORS BCP ABSOLUTE A CAPITAL SECURE, ACTIVELY MANAGED, ABSOLUTE RETURN BOND THAT AIMS TO ACHIEVE CONSISTENT, POSITIVE RETURNS Uderlyig Fud has a exceptioal

More information

Enhance Your Financial Legacy Variable Annuity Death Benefits from Pacific Life

Enhance Your Financial Legacy Variable Annuity Death Benefits from Pacific Life Ehace Your Fiacial Legacy Variable Auity Death Beefits from Pacific Life 7/15 20172-15B As You Pla for Retiremet, Protect Your Loved Oes A Pacific Life variable auity ca offer three death beefits that

More information