Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic
|
|
|
- Charleen Randall
- 10 years ago
- Views:
Transcription
1 Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: [email protected] How to go about designing complex, high speed digital systems (not just circuits)? How to use some of the modern CAD tools to help with the design? How to implement such designs using programmable logic (e.g. FPGAs)? How to read data sheets and make sense of them? How do digital building blocks (such as memory chips, processing elements, arithmetic circuits etc.) work? How to interface to processors and computers (from hardware point of view)? How to deal with testing of complex systems? Have fun! Topic 1 Slide 1 Topic 1 Slide 2 Course Syllabus Course Syllabus (1) Programmable Logic The course syllabus is divided into five main sections: Programmable Logic Arithmetic Circuits Data Encoding & communication Architectures Testing Technologies behind programmable logic Programmable Logic architectures in general Complex Programmable Logic Devices (CPLDs) Field Programmable Gate Arrays (FPGAs) Recent advances in FPGAs Designing with FPGAs Design Flow, Design Tools, Design Libraries Future of programmable logic Topic 1 Slide 3 Topic 1 Slide 4
2 Course Syllabus (2) Arithmetic Circuits Course Syllabus (3) Data Encoding & Communication Adders architectures Logic interface standards Multipliers circuits Clocking for high speed digital design Floating point arithmetic circuits Metastability issues Other computational building blocks Clock synchronisation Data encode and error correction On-chip and On-board communication Topic 1 Slide 5 Topic 1 Slide 6 Course Syllabus (4) Hardware Architectures Course Syllabus (5) Digital Test Parallel vs serial Modern packaging Systolic and other array architectures Board testing issues Distributed arithmetic JTAG Boundary Scan Cordic based architecture Topic 1 Slide 7 Topic 1 Slide 8
3 Recommended Books Coursework No perfect textbook for this course. Here are four reasonable possibilities: "Digital Design Principles and Practices", 4th Edition (Sept 2005), John F. Wakerly, Prentice Hall. This is a new edition of a well established textbook. It covers a significant portion of the materials taught on this course. At ~ 45, this a bargain. Recommended purchase if you have not already done so! Contemporary Logic Design, Gaetano Boriello, Randy H. Katz, August 2004, Prentice Hall. Good coverage on finite state machines and computer architectures. (~ 45) "High-Speed Digital Design - A handbook of black magic", Howard G. Johnson, Prentice Hall, 1993; ISBN ( 61). The best practical guide to designing and building very high speed digital circuits. Expensive reference for your company to buy (not you). FPGA-based System Design, Wayne Wolf, Prentice Hall, 2004, ISBN ( 75) Contemporary book based on FPGA; possibly too expensive for what it covers Best way to learn DSD is to do it! Unassessed coursework: 2 to 8 lab exercises using DE2 Board (from Altera) to learn the system Assessed coursework: Design of a cordic based processor to add ripple effect on an image Work in pairs one deliverable between the pair Deliverables: Working design and demonstrator Design document (effectively a no-nonsense report) Deadline: 1 st day of the Summer Term Quartus-II software has a web-edition that can be downloaded (free) from Altera website after you register Software also available on all Level 5 & Level 1 machines DE2 Boards available on Level 5 and Level 1 Labs Topic 1 Slide 9 Topic 1 Slide 10 Coursework DE2 Board Coursework Demo This shows an example of the ripple video effect which is the goal of this coursework Topic 1 Slide 11 Topic 1 Slide 12
4 Levels of Design Abstractions Topic 1 Design Levels Algorithmic Design Descriptions Specifications Primitive Components Functional blocks Theoretical Techniques Signal processing theory Design Methodologies & Implementation Technologies Functional High-level lang. Math. equations VHDL, Verilog 'black boxes' Registers Control theory Sorting algorithm Automata theory FSM language Counters Timing analysis Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Logic C/Pascal Boolean equations ALU Logic gates Boolean algebra Truth tables Flip-flops K-map Timing diagrams Boolean minimization URL: [email protected] Circuit Circuit equations Transistor netlist Transistors Passive comp. Linear/non-linear eq. Fourier analysis Topic 1 Slide 13 Topic 1 Slide 14 The Design Process The Design Process (cont ) Specification Functional description Design description Manufacturing Preliminary design Detail design Implementation Optimisation Verification Testing High-level (behavioural) simulation Schematic/HDL capture Logic simulation Timing analysis Simulation Logic synthesis & Optimisation Boundary-scan Built-in testing Top-down design strategies Refine Specification successively Decompose each component into small components Lowest-level primitive components Over-sold methodology - only works with plenty of experience Bottom-up design strategies Build-up from primitive components Combined to form more complex components Risk wrong interpretation of specifications Mixed strategies Mostly top-down, but also bits of bottom-up Reality: need to know both top level and bottom level constraints Topic 1 Slide 15 Topic 1 Slide 16
5 Design Descriptions Design Tools Schematic capture Good for multiple data flow Give overview picture Relates to hardware better Doesn't need to be good in computing High information density Back annotations possible Mixed analogue/digital possible Hardware Description Languages Flexible & parameterisable Excellent for optimisation & synthesis Direct mapping to algorithms Excellent for datapaths Readily interfaced to optimiser Easy to handle and transmit (electronically) Not good for algorithms Not good for datapaths Doesn't interface well in optimiser No good for synthesis software Difficult to reuse Not parameterisable Essentially serial representation May not show overall picture Often need good programming skill Divorce from physical hardware Need special software Topic 1 Slide 17 Topic 1 Slide 18 A typical digital system Implementation Technologies Digital Logic Microprocessor RAM/ROM Buffer memories Standard Logic Progammable Logic Devices ASICs Full Custom Bus interface circuits Complex ASIC Glue Logic SPLDs CPLDs FPGAs Microprocessor & RAM TTL 74xx CMOS 4xxx Gate Arrays Standard Cells Topic 1 Slide 19 Topic 1 Slide 20
University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE
INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:
A First Course in Digital Design Using VHDL and Programmable Logic
A First Course in Digital Design Using VHDL and Programmable Logic Shawki Areibi Abstract Present industry practice has created a high demand for systems designers with knowledge and experience in using
Digital Systems Design! Lecture 1 - Introduction!!
ECE 3401! Digital Systems Design! Lecture 1 - Introduction!! Course Basics Classes: Tu/Th 11-12:15, ITE 127 Instructor Mohammad Tehranipoor Office hours: T 1-2pm, or upon appointments @ ITE 441 Email:
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition
RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition A Tutorial Approach James O. Hamblen Georgia Institute of Technology Michael D. Furman Georgia Institute of Technology KLUWER ACADEMIC PUBLISHERS Boston
Introduction to Programmable Logic Devices. John Coughlan RAL Technology Department Detector & Electronics Division
Introduction to Programmable Logic Devices John Coughlan RAL Technology Department Detector & Electronics Division PPD Lectures Programmable Logic is Key Underlying Technology. First-Level and High-Level
Quartus II Software Design Series : Foundation. Digitale Signalverarbeitung mit FPGA. Digitale Signalverarbeitung mit FPGA (DSF) Quartus II 1
(DSF) Quartus II Stand: Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] Quartus II 1 Quartus II Software Design Series : Foundation 2007 Altera
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
Introduction to Digital System Design
Introduction to Digital System Design Chapter 1 1 Outline 1. Why Digital? 2. Device Technologies 3. System Representation 4. Abstraction 5. Development Tasks 6. Development Flow Chapter 1 2 1. Why Digital
7a. System-on-chip design and prototyping platforms
7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit
Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng
Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Architectures and Platforms
Hardware/Software Codesign Arch&Platf. - 1 Architectures and Platforms 1. Architecture Selection: The Basic Trade-Offs 2. General Purpose vs. Application-Specific Processors 3. Processor Specialisation
A Second Undergraduate Course in Digital Logic Design: The Datapath+Controller-Based Approach
A Second Undergraduate Course in Digital Logic Design: The Datapath+Controller-Based Approach Mitchell A. Thornton 1 and Aaron S. Collins 2 Abstract A second undergraduate course in digital logic design
Embedded Systems Engineering Certificate Program
Engineering Programs Embedded Systems Engineering Certificate Program Accelerate Your Career extension.uci.edu/embedded University of California, Irvine Extension s professional certificate and specialized
Digital Systems. Syllabus 8/18/2010 1
Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,
ELEC2141 DIGITAL CIRCUIT DESIGN
ELEC2141 DIGITAL CIRCUIT DESIGN Course Outline Semester 1, 2015 Course Staff Course Convener: Tutors: Dr. Aron Michael, Room 305, [email protected] Dr. Aron Michael, Room 305, [email protected]
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.
Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course
Digital Circuit Design
Test and Diagnosis of of ICs Fault coverage (%) 95 9 85 8 75 7 65 97.92 SSL 4,246 Shawn Blanton Professor Department of ECE Center for Silicon System Implementation CMU Laboratory for Integrated Systems
Contemporary Logic Design
KATZ_0201308576_MF.fm Page i Tuesday, November 16, 2004 8:05 PM Contemporary Logic Design Second Edition Randy H. Katz University of California, Berkeley Gaetano Borriello University of Washington Upper
Contents. System Development Models and Methods. Design Abstraction and Views. Synthesis. Control/Data-Flow Models. System Synthesis Models
System Development Models and Methods Dipl.-Inf. Mirko Caspar Version: 10.02.L.r-1.0-100929 Contents HW/SW Codesign Process Design Abstraction and Views Synthesis Control/Data-Flow Models System Synthesis
Rapid System Prototyping with FPGAs
Rapid System Prototyping with FPGAs By R.C. Coferand Benjamin F. Harding AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Newnes is an imprint of
Sistemas Digitais I LESI - 2º ano
Sistemas Digitais I LESI - 2º ano Lesson 6 - Combinational Design Practices Prof. João Miguel Fernandes ([email protected]) Dept. Informática UNIVERSIDADE DO MINHO ESCOLA DE ENGENHARIA - PLDs (1) - The
System-on. on-chip Design Flow. Prof. Jouni Tomberg Tampere University of Technology Institute of Digital and Computer Systems. jouni.tomberg@tut.
System-on on-chip Design Flow Prof. Jouni Tomberg Tampere University of Technology Institute of Digital and Computer Systems [email protected] 26.03.2003 Jouni Tomberg / TUT 1 SoC - How and with whom?
Serial port interface for microcontroller embedded into integrated power meter
Serial port interface for microcontroller embedded into integrated power meter Mr. Borisav Jovanović, Prof. dr. Predrag Petković, Prof. dr. Milunka Damnjanović, Faculty of Electronic Engineering Nis, Serbia
Active Learning in the Introduction to Digital Logic Design Laboratory Course
Active Learning in the Introduction to Digital Logic Design Laboratory Course Jing Pang Department of Electrical and Electronic Engineering, Computer Engineering Program, California State University, Sacramento,
High-Level Synthesis for FPGA Designs
High-Level Synthesis for FPGA Designs BRINGING BRINGING YOU YOU THE THE NEXT NEXT LEVEL LEVEL IN IN EMBEDDED EMBEDDED DEVELOPMENT DEVELOPMENT Frank de Bont Trainer consultant Cereslaan 10b 5384 VT Heesch
Best Practises for LabVIEW FPGA Design Flow. uk.ni.com ireland.ni.com
Best Practises for LabVIEW FPGA Design Flow 1 Agenda Overall Application Design Flow Host, Real-Time and FPGA LabVIEW FPGA Architecture Development FPGA Design Flow Common FPGA Architectures Testing and
Hardware and Software
Hardware and Software 1 Hardware and Software: A complete design Hardware and software support each other Sometimes it is necessary to shift functions from software to hardware or the other way around
Verification & Design Techniques Used in a Graduate Level VHDL Course
Verification & Design Techniques Used in a Graduate Level VHDL Course Prof. Swati Agrawal, BE, MS (SUNY, Buffalo, NY USA) 1 Associate Professor, Department of Electronics & Telecommunication, Bhilai Institute
KEEP IT SYNPLE STUPID
Utilizing Programmable Logic for Analyzing Hardware Targets Dmitry Nedospasov SHORT DESCRIPTION Hardware security analysis differs from software security analysis primarily in the tools
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online
A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana
Digital Systems. Role of the Digital Engineer
Digital Systems Role of the Digital Engineer Digital Design Engineers attempt to clearly define the problem(s) Possibly, break the problem into many smaller problems Engineers then develop a strategy for
Agenda. Michele Taliercio, Il circuito Integrato, Novembre 2001
Agenda Introduzione Il mercato Dal circuito integrato al System on a Chip (SoC) La progettazione di un SoC La tecnologia Una fabbrica di circuiti integrati 28 How to handle complexity G The engineering
ECE 156A - Syllabus. Lecture 0 ECE 156A 1
ECE 156A - Syllabus Lecture 0 ECE 156A 1 Description Introduction to HDL basic elements, HDL simulation concepts, HDL concurrent statements with examples and applications, writing HDL for synthesis, and
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design
Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Department of Electrical and Computer Engineering Overview The VLSI Design program is part of two tracks in the department:
Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1
Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite
Course Requirements & Evaluation Methods
Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:
Testing & Verification of Digital Circuits ECE/CS 5745/6745. Hardware Verification using Symbolic Computation
Testing & Verification of Digital Circuits ECE/CS 5745/6745 Hardware Verification using Symbolic Computation Instructor: Priyank Kalla ([email protected]) 3 Credits Mon, Wed, 1:25-2:45pm, WEB L105 Office
Systems on Chip Design
Systems on Chip Design College: Engineering Department: Electrical First: Course Definition, a Summary: 1 Course Code: EE 19 Units: 3 credit hrs 3 Level: 3 rd 4 Prerequisite: Basic knowledge of microprocessor/microcontroller
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
FPGA-based MapReduce Framework for Machine Learning
FPGA-based MapReduce Framework for Machine Learning Bo WANG 1, Yi SHAN 1, Jing YAN 2, Yu WANG 1, Ningyi XU 2, Huangzhong YANG 1 1 Department of Electronic Engineering Tsinghua University, Beijing, China
Lesson 7: SYSTEM-ON. SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY. Chapter-1L07: "Embedded Systems - ", Raj Kamal, Publs.: McGraw-Hill Education
Lesson 7: SYSTEM-ON ON-CHIP (SoC( SoC) AND USE OF VLSI CIRCUIT DESIGN TECHNOLOGY 1 VLSI chip Integration of high-level components Possess gate-level sophistication in circuits above that of the counter,
Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )
Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present
Design of Digital Circuits (SS16)
Design of Digital Circuits (SS16) 252-0014-00L (6 ECTS), BSc in CS, ETH Zurich Lecturers: Srdjan Capkun, D-INFK, ETH Zurich Frank K. Gürkaynak, D-ITET, ETH Zurich Labs: Der-Yeuan Yu [email protected] Website:
Reconfigurable Computing. Reconfigurable Architectures. Chapter 3.2
Reconfigurable Architectures Chapter 3.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Coarse-Grained Reconfigurable Devices Recall: 1. Brief Historically development (Estrin Fix-Plus
數 位 積 體 電 路 Digital Integrated Circuits
IEE5049 - Spring 2012 數 位 積 體 電 路 Digital Integrated Circuits Course Overview Professor Wei Hwang 黃 威 教 授 Department of Electronics Engineering National Chiao Tung University [email protected] Wei
Design of a High Speed Communications Link Using Field Programmable Gate Arrays
Customer-Authored Application Note AC103 Design of a High Speed Communications Link Using Field Programmable Gate Arrays Amy Lovelace, Technical Staff Engineer Alcatel Network Systems Introduction A communication
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.
Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.
9/14/2011 14.9.2011 8:38
Algorithms and Implementation Platforms for Wireless Communications TLT-9706/ TKT-9636 (Seminar Course) BASICS OF FIELD PROGRAMMABLE GATE ARRAYS Waqar Hussain [email protected] Department of Computer
CHAPTER 3 Boolean Algebra and Digital Logic
CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4
NIOS II Based Embedded Web Server Development for Networking Applications
NIOS II Based Embedded Web Server Development for Networking Applications 1 Sheetal Bhoyar, 2 Dr. D. V. Padole 1 Research Scholar, G. H. Raisoni College of Engineering, Nagpur, India 2 Professor, G. H.
CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2016
CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2016 1. Professor : Haldun Hadimioglu SYLLABUS Office : 10.009 2MTC Tel : (646) 997-3101 Fax : (646) 997-3609 [email protected] http://cse.poly.edu/haldun
Implementation of Web-Server Using Altera DE2-70 FPGA Development Kit
1 Implementation of Web-Server Using Altera DE2-70 FPGA Development Kit A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF FOR THE DEGREE IN Bachelor of Technology In Electronics and Communication
FPGA. AT6000 FPGAs. Application Note AT6000 FPGAs. 3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 FPGAs.
3x3 Convolver with Run-Time Reconfigurable Vector Multiplier in Atmel AT6000 s Introduction Convolution is one of the basic and most common operations in both analog and digital domain signal processing.
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview
Computer Engineering: Incoming MS Student Orientation Requirements & Course Overview Prof. Charles Zukowski ([email protected]) Interim Chair, September 3, 2015 MS Requirements: Overview (see bulletin for
Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards
Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic
EE361: Digital Computer Organization Course Syllabus
EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)
Topics of Chapter 5 Sequential Machines. Memory elements. Memory element terminology. Clock terminology
Topics of Chapter 5 Sequential Machines Memory elements Memory elements. Basics of sequential machines. Clocking issues. Two-phase clocking. Testing of combinational (Chapter 4) and sequential (Chapter
Register File, Finite State Machines & Hardware Control Language
Register File, Finite State Machines & Hardware Control Language Avin R. Lebeck Some slides based on those developed by Gershon Kedem, and by Randy Bryant and ave O Hallaron Compsci 04 Administrivia Homework
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview
EEM870 Embedded System and Experiment Lecture 1: SoC Design Overview Wen-Yen Lin, Ph.D. Department of Electrical Engineering Chang Gung University Email: [email protected] Feb. 2013 Course Overview
Eastern Washington University Department of Computer Science. Questionnaire for Prospective Masters in Computer Science Students
Eastern Washington University Department of Computer Science Questionnaire for Prospective Masters in Computer Science Students I. Personal Information Name: Last First M.I. Mailing Address: Permanent
Example-driven Interconnect Synthesis for Heterogeneous Coarse-Grain Reconfigurable Logic
Example-driven Interconnect Synthesis for Heterogeneous Coarse-Grain Reconfigurable Logic Clifford Wolf, Johann Glaser, Florian Schupfer, Jan Haase, Christoph Grimm Computer Technology /99 Overview Ultra-Low-Power
Electronic system-level development: Finding the right mix of solutions for the right mix of engineers.
Electronic system-level development: Finding the right mix of solutions for the right mix of engineers. Nowadays, System Engineers are placed in the centre of two antagonist flows: microelectronic systems
International Workshop on Field Programmable Logic and Applications, FPL '99
International Workshop on Field Programmable Logic and Applications, FPL '99 DRIVE: An Interpretive Simulation and Visualization Environment for Dynamically Reconægurable Systems? Kiran Bondalapati and
Finite State Machine Design A Vending Machine
LAB 6 Finite State Machine Design A Vending Machine You will learn how turn an informal sequential circuit description into a formal finite-state machine model, how to express it using ABEL, how to simulate
White Paper 40-nm FPGAs and the Defense Electronic Design Organization
White Paper 40-nm FPGAs and the Defense Electronic Design Organization Introduction With Altera s introduction of 40-nm FPGAs, the design domains of military electronics that can be addressed with programmable
Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems
Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College [email protected] Based on EE271 developed by Mark Horowitz, Stanford University MAH
EE411: Introduction to VLSI Design Course Syllabus
: Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.
Lab 1: Introduction to Xilinx ISE Tutorial
Lab 1: Introduction to Xilinx ISE Tutorial This tutorial will introduce the reader to the Xilinx ISE software. Stepby-step instructions will be given to guide the reader through generating a project, creating
Attaining EDF Task Scheduling with O(1) Time Complexity
Attaining EDF Task Scheduling with O(1) Time Complexity Verber Domen University of Maribor, Faculty of Electrical Engineering and Computer Sciences, Maribor, Slovenia (e-mail: [email protected]) Abstract:
Digital Design and Synthesis INTRODUCTION
Digital Design and Synthesis INTRODUCTION The advances in digital design owe its progress to 3 factors. First the acceleration at which the CMOS technology has advanced in last few decades and the way
Testing of Digital System-on- Chip (SoC)
Testing of Digital System-on- Chip (SoC) 1 Outline of the Talk Introduction to system-on-chip (SoC) design Approaches to SoC design SoC test requirements and challenges Core test wrapper P1500 core test
Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course
Session ENG 206-6 Design and Development of Virtual Instrument (VI) Modules for an Introductory Digital Logic Course Nikunja Swain, Ph.D., PE South Carolina State University [email protected] Raghu Korrapati,
Lecture 7: Clocking of VLSI Systems
Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis
Lab 1: Full Adder 0.0
Lab 1: Full Adder 0.0 Introduction In this lab you will design a simple digital circuit called a full adder. You will then use logic gates to draw a schematic for the circuit. Finally, you will verify
Introduction to Digital Design Using Digilent FPGA Boards Block Diagram / Verilog Examples
Introduction to Digital Design Using Digilent FPGA Boards Block Diagram / Verilog Examples Richard E. Haskell Darrin M. Hanna Oakland University, Rochester, Michigan LBE Books Rochester Hills, MI Copyright
Pre-tested System-on-Chip Design. Accelerates PLD Development
Pre-tested System-on-Chip Design Accelerates PLD Development March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com 1 Pre-tested
Lecture N -1- PHYS 3330. Microcontrollers
Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers
CSE140 Homework #7 - Solution
CSE140 Spring2013 CSE140 Homework #7 - Solution You must SHOW ALL STEPS for obtaining the solution. Reporting the correct answer, without showing the work performed at each step will result in getting
THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals
THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals Full Marks 100 (Theory 75, Practical 25) Introduction to Computers :- What is Computer?
Latch Timing Parameters. Flip-flop Timing Parameters. Typical Clock System. Clocking Overhead
Clock - key to synchronous systems Topic 7 Clocking Strategies in VLSI Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London Clocks help the design of FSM where
Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -
Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics
Figure 1 FPGA Growth and Usage Trends
White Paper Avoiding PCB Design Mistakes in FPGA-Based Systems System design using FPGAs is significantly different from the regular ASIC and processor based system design. In this white paper, we will
Digital Electronics Detailed Outline
Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept
International Journal of Advancements in Research & Technology, Volume 2, Issue3, March -2013 1 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 2, Issue3, March -2013 1 FPGA IMPLEMENTATION OF HARDWARE TASK MANAGEMENT STRATEGIES Assistant professor Sharan Kumar Electronics Department
Programmable Logic Controllers Definition. Programmable Logic Controllers History
Definition A digitally operated electronic apparatus which uses a programmable memory for the internal storage of instructions for implementing specific functions such as logic, sequencing, timing, counting,
Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language
Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,
Some programming experience in a high-level structured programming language is recommended.
Python Programming Course Description This course is an introduction to the Python programming language. Programming techniques covered by this course include modularity, abstraction, top-down design,
An Effective Deterministic BIST Scheme for Shifter/Accumulator Pairs in Datapaths
An Effective Deterministic BIST Scheme for Shifter/Accumulator Pairs in Datapaths N. KRANITIS M. PSARAKIS D. GIZOPOULOS 2 A. PASCHALIS 3 Y. ZORIAN 4 Institute of Informatics & Telecommunications, NCSR
