EE361: Digital Computer Organization Course Syllabus
|
|
|
- Caitlin Walsh
- 9 years ago
- Views:
Transcription
1 EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices) interconnected (by Bus) in such a way as to enable the execution of a program (set of instructions) stored in memory. This course introduces students to the basic concepts of computers, their design and how they work. It encompasses the denition of the machine's instruction set architecture, its use in creating a program, and its implementation in hardware. The course addresses the bridge between gate logic and executable software, and includes programming both in assembly language (representing software) and HDL (representing hardware). We will study modern computer principles using a typical processor and emphasize system-level issues, understanding process performance, and the use of abstraction as a tool to manage complexity. We then learn how ecient memory systems are designed to work closely with the processor. Next, we study input/output (I/O) systems which bring the processor and memory together with a wide range of devices. Finally, we introduce systems with many processors. Catalog Description Introduction to computer organization, machine instructions, addressing modes, assembly language programming, integer and oating-point arithmetic, CPU performance and metrics, non-pipelined and pipelined processor design, datapath and control unit, pipeline hazards, memory system and cache memory. Prerequisite: EE 305, EE 360, IE 331 ECE M. Awedh
2 Textbook Computer Organization & Design: The Hardware/Software Interface, Fourth Edition, Patterson and Hennessy, Morgan Kaufmann Publishers, Course Learning Outcomes Upon completion of the course, students should posses the following knowledge and skills: ˆ An understanding of a machine's instruction set architecture (ISA) including basic instruction fetch and execute cycles, instruction formats, control ow, and operand addressing modes. ˆ The ability to create, assemble, execute, and debug assembly language programs along with a basic understanding of the assembly, linker, and loader processes. ˆ An understanding of a hardware description language, HDL (e.g., either VHDL or verilog) including their uses, structural, and behavioral descriptions. ˆ The ability to create, simulate, and debug a VHDL or verilog program. ˆ An understanding of the design and functioning of a machines central processing unit (CPU) including the datapath components (ALU, register le) and the control unit. ˆ An understanding of basic input/output functioning including program controlled I/O and interrupt I/O. ˆ An understanding of organization of memory hierarchies including the basics of cache design and DRAM architectures. ˆ Analyze the performance of processors and caches ECE M. Awedh
3 Course Information Grading Instructor Dr. Mohammad H. Awedh King Abdulaziz University Oce Location Building 42B, Room 412 Oce Phone Oce Hours Sunday 12:30 to 1:30 or by Appointment Meeting Sunday, Tuesday 11:00 12:20 Building 79, Room 201A Tutorial Thursday 11:00 12:50 Building 79, Room 201A The course has two major exams and a nal exam, weekly homework assignments, labs and a project. Exams will be cumulative, but will focus on the most recent material. Your homework should reect your individual work. Grading will follow approximately the divisions shown below. Participation 5œ Assignments 10œ Lab work 15œ Project 15œ Major Exam I 15œ Major Exam II 15œ Final Exam 25œ ˆ Late assignments are accepted up to 2 days late, but will be penalized 5œfor each late day. ˆ No makeup will be made for missing labs or exams. ECE M. Awedh
4 Class Web Page We shall use Moodle for this class. Moodle is a Course Management System (CMS) which helps to communicate outside of the classroom. Students in this class should visit the site and create an account. This site contains information about the class - syllabus, homework list, due dates for assignments, links to other web sites, etc. In addition, we shall also use it for discussion and questions about the material covered in the course. For each course, students should register for that course on the moodle site. Registration is enabled by a key that will be given to students in class during the rst lecture. You have to notice that registration for the course does not automatically entail registration on the moodle site and vice versa. ECE M. Awedh
5 Lecture Breakdown Week Topics 1 Introduction to computer organization, high-level, assembly, and machine languages, components of a computer system, processor datapath, control, memory hierarchy, disk storage, technology improvements, chip manufacturing process 2 Review of signed/unsigned integers, binary addition and subtraction, carry and overow. Instruction set architecture, registers, instruction formats, arithmetic instructions, immediate operands, bit manipulation. 3 Load and store instructions, ow control instructions, pseudoinstructions, and addressing modes. Translating expressions, if-else statements, loops, array indexing and traversal 4 MIPS assembly language programming, tools, program template, directives, text, data, and stack segments, dening data, arrays, and strings, symbol table, memory alignment, byte ordering, and console input and output. 5 Dening procedures, procedure calls and return address, nested procedure calls, passing arguments in registers, runtime stack, stack frames, local variables, value and reference parameters, saving and restoring registers. 6 Integer multiplication, unsigned and signed multiplication, sequential multiplier hardware, faster (tree) hardware multiplier, integer division, sequential divide hardware, integer multiplication and division in MIPS. 7 Floating point representation, IEEE 754 standard, normalized and denormalized numbers, zero, innity, NaN, FP comparison, FP addition, FP multiplication, rounding and accurate arithmetic. Floating-point instructions. ECE M. Awedh
6 Week Topics 8 CPU performance and metrics, CPI, performance equation, MIPS as a metric, Amdahl?s law, benchmarks and performance of recent processors. 9 Designing a processor, register transfer level, datapath components, clocking methodology, single-cycle datapath, implementing a register le and multifunction ALU. 10 Control signals and control unit, ALU control, single-cycle delay analysis and clock cycle, multi-cycle instruction execution, CPI of a multi-cycle processor, Performance comparison of a single-cycle versus a multi-cycle processor. 11 Pipelining versus serial execution, MIPS 5-stage pipeline, pipelined datapath, pipelined control, pipeline performance. 12 Pipeline hazards: structural, data, and control hazards, load delay, hazard detection, stall and forwarding unit, and delayed branching. 13 Main memory organization and performance, SRAM, DRAM, latency and bandwidth, memory hierarchy, cache memory, locality of reference. 14 Cache memory organization: direct-mapped, fully-associative, and setassociative caches, handling cache miss, write policy, and replacement policy. 15 Cache performance, memory stall cycles, and average memory access time. Tips for Success in this Class ˆ Don't miss class. New material is covered each lecture. If you miss class, you are responsible for covering the missed material on your own. Repeat lectures will not be given during oce hours. ˆ Read in advance. The reading assignments are listed in the class website. Your textbook author has written many digital design and computer engineering texts, and your text in particular is considered one of the most "readable" in print. The ECE M. Awedh
7 argument "but the book is dicult to read" receives very little respect in any forum. ˆ Start homework early. Give yourself some time to consider the problems and determine whether or not you need instructor assistance. Last-minute questions are a bad idea. ˆ Don't ignore the homework. They comprise 10% of your grade! ˆ Ask questions. This includes during class, during discussions, and during oce hours. I don't like a silent class feel free to ask questions or make reasonable comments at will (but no distracting side conversations). ˆ Don't arrive late for class. If you know you'll be delayed (or absent) for some reason, just let me know ahead of time in person or via . It's the courteous and adult thing to do. Policies ˆ All assignments will be due at the beginning of the class on the due date. No late submissions will be accepted unless a valid excuse is given to the instructor by the day prior to the due date. ˆ You are expected to attend all classes. If you miss a class, you are responsible for nding out the material covered in that class. If you miss an exam, a grade of zero will be assigned, unless a valid excuse is given. ˆ All assignments are expected to be done by each student individually. Verbal and informal exchange of ideas is permitted, indeed encouraged. However, written solution should NOT be shown to another student or copied from another student. Any act of academic dishonesty will result in an F grade. The material covered in this course is not hard, but it does require signicant amounts of eort. Be prepared to work hard and come out of this course with a good knowledge of the fundamentals of digital systems. Just like with anything worthwhile in life, if you aren't willing to put in the time and eort, you won't ever become good at it. Be prepared to devote considerable time and eort to this class. ECE M. Awedh
EE360: Digital Design I Course Syllabus
: Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential
EE411: Introduction to VLSI Design Course Syllabus
: Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.
Performance evaluation
Performance evaluation Arquitecturas Avanzadas de Computadores - 2547021 Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería 2015-1 Bibliography and evaluation Bibliography
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
Chapter 5 Instructor's Manual
The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction
CSC 2405: Computer Systems II
CSC 2405: Computer Systems II Spring 2013 (TR 8:30-9:45 in G86) Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Introductions Mirela Damian Room 167A in the Mendel Science Building [email protected]
Quiz for Chapter 1 Computer Abstractions and Technology 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,
A Lab Course on Computer Architecture
A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.
San José State University Computer Science Department CS 147, Section 03 Introduction to Computer Architecture Fall, 2015
San José State University Computer Science Department CS 147, Section 03 Introduction to Computer Architecture Fall, 2015 Course and Contact Information Instructor: Kaushik Patra Office Location: DH 282
Price/performance Modern Memory Hierarchy
Lecture 21: Storage Administration Take QUIZ 15 over P&H 6.1-4, 6.8-9 before 11:59pm today Project: Cache Simulator, Due April 29, 2010 NEW OFFICE HOUR TIME: Tuesday 1-2, McKinley Last Time Exam discussion
Introducción. Diseño de sistemas digitales.1
Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1
Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software
Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:
Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove
Pentium vs. Power PC Computer Architecture and PCI Bus Interface
Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the
2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce
2010-2011 Assessment for Master s Degree Program Fall 2010 - Spring 2011 Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge
CPU Organization and Assembly Language
COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:
COMPUTER HARDWARE. Input- Output and Communication Memory Systems
COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected].
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected] Review Computers in mid 50 s Hardware was expensive
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54
Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday
MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1
MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable
Faculty of Engineering Student Number:
Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:
Computer Organization and Components
Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides
CHAPTER 4 MARIE: An Introduction to a Simple Computer
CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks
on an system with an infinite number of processors. Calculate the speedup of
1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements
Computer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine
7 Objectives After completing this lab you will: know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine Introduction Branches and jumps provide ways to change
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands
SIM-PL: Software for teaching computer hardware at secondary schools in the Netherlands Ben Bruidegom, [email protected] AMSTEL Instituut Universiteit van Amsterdam Kruislaan 404 NL-1098 SM Amsterdam
Computer Organization
Computer Organization and Architecture Designing for Performance Ninth Edition William Stallings International Edition contributions by R. Mohan National Institute of Technology, Tiruchirappalli PEARSON
A SystemC Transaction Level Model for the MIPS R3000 Processor
SETIT 2007 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA A SystemC Transaction Level Model for the MIPS R3000 Processor
Administrative Issues
CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming
CHAPTER 7: The CPU and Memory
CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides
Computer Systems Design and Architecture by V. Heuring and H. Jordan
1-1 Chapter 1 - The General Purpose Machine Computer Systems Design and Architecture Vincent P. Heuring and Harry F. Jordan Department of Electrical and Computer Engineering University of Colorado - Boulder
Digital Systems. Syllabus 8/18/2010 1
Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,
How To Understand The Design Of A Microprocessor
Computer Architecture R. Poss 1 What is computer architecture? 2 Your ideas and expectations What is part of computer architecture, what is not? Who are computer architects, what is their job? What is
Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:
55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................
Processor Architectures
ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture
CS 261 C and Assembly Language Programming. Course Syllabus
CS 261 C and Assembly Language Programming Course Syllabus Spring 2016 Lecture: Tuesdays and Thursdays 9:10AM to 10:25 in VSCI 255 3 Semester Hours Instructor: Dick Lang, Ph.D. [email protected]
Unit 4: Performance & Benchmarking. Performance Metrics. This Unit. CIS 501: Computer Architecture. Performance: Latency vs.
This Unit CIS 501: Computer Architecture Unit 4: Performance & Benchmarking Metrics Latency and throughput Speedup Averaging CPU Performance Performance Pitfalls Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'
CS 300 Data Structures Syllabus - Fall 2014
CS 300 Data Structures Syllabus - Fall 2014 Catalog Description Data structures are fundamental to advanced, efficient programming. Topics including asymptotic analysis, stacks, queues, linked lists, trees,
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc
Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc
what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?
Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the
VHDL Test Bench Tutorial
University of Pennsylvania Department of Electrical and Systems Engineering ESE171 - Digital Design Laboratory VHDL Test Bench Tutorial Purpose The goal of this tutorial is to demonstrate how to automate
CSE 141 Introduction to Computer Architecture Summer Session I, 2005. Lecture 1 Introduction. Pramod V. Argade June 27, 2005
CSE 141 Introduction to Computer Architecture Summer Session I, 2005 Lecture 1 Introduction Pramod V. Argade June 27, 2005 CSE141: Introduction to Computer Architecture Instructor: Pramod V. Argade ([email protected])
Design of Digital Circuits (SS16)
Design of Digital Circuits (SS16) 252-0014-00L (6 ECTS), BSc in CS, ETH Zurich Lecturers: Srdjan Capkun, D-INFK, ETH Zurich Frank K. Gürkaynak, D-ITET, ETH Zurich Labs: Der-Yeuan Yu [email protected] Website:
CS 394 Introduction to Computer Architecture Spring 2012
CS 394 Introduction to Computer Architecture Spring 2012 Class Room/Hours: NA (Online course) Lab Room/Hours: NA Instructor: Abu Asaduzzaman (Dr. Zaman) Office Room: 253 Jabara Hall E-mail: [email protected]
a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.
CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:
Pipelining Review and Its Limitations
Pipelining Review and Its Limitations Yuri Baida [email protected] [email protected] October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic
Slide Set 8. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng
Slide Set 8 for ENCM 369 Winter 2015 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2015 ENCM 369 W15 Section
OpenSPARC T1 Processor
OpenSPARC T1 Processor The OpenSPARC T1 processor is the first chip multiprocessor that fully implements the Sun Throughput Computing Initiative. Each of the eight SPARC processor cores has full hardware
An Introduction to the ARM 7 Architecture
An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new
Digital Systems Design! Lecture 1 - Introduction!!
ECE 3401! Digital Systems Design! Lecture 1 - Introduction!! Course Basics Classes: Tu/Th 11-12:15, ITE 127 Instructor Mohammad Tehranipoor Office hours: T 1-2pm, or upon appointments @ ITE 441 Email:
Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce
Assessment Plan for CS and CIS Degree Programs Computer Science Dept. Texas A&M University - Commerce Program Objective #1 (PO1):Students will be able to demonstrate a broad knowledge of Computer Science
CSE 141L Computer Architecture Lab Fall 2003. Lecture 2
CSE 141L Computer Architecture Lab Fall 2003 Lecture 2 Pramod V. Argade CSE141L: Computer Architecture Lab Instructor: TA: Readers: Pramod V. Argade ([email protected]) Office Hour: Tue./Thu. 9:30-10:30
(Refer Slide Time: 02:39)
Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering, Indian Institute of Technology, Delhi Lecture - 1 Introduction Welcome to this course on computer architecture.
Computer Architecture TDTS10
why parallelism? Performance gain from increasing clock frequency is no longer an option. Outline Computer Architecture TDTS10 Superscalar Processors Very Long Instruction Word Processors Parallel computers
Instruction Set Architecture (ISA)
Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine
MipsIt A Simulation and Development Environment Using Animation for Computer Architecture Education
MipsIt A Simulation and Development Environment Using Animation for Computer Architecture Education Mats Brorsson Department of Microelectronics and Information Technology, KTH, Royal Institute of Technology
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013
18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization
The WIMP51: A Simple Processor and Visualization Tool to Introduce Undergraduates to Computer Organization David Sullins, Dr. Hardy Pottinger, Dr. Daryl Beetner University of Missouri Rolla Session I.
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
Pipeline Hazards. Structure hazard Data hazard. ComputerArchitecture_PipelineHazard1
Pipeline Hazards Structure hazard Data hazard Pipeline hazard: the major hurdle A hazard is a condition that prevents an instruction in the pipe from executing its next scheduled pipe stage Taxonomy of
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995
UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,
İSTANBUL AYDIN UNIVERSITY
İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER
CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of
CS:APP Chapter 4 Computer Architecture Wrap-Up William J. Taffe Plymouth State University using the slides of Randal E. Bryant Carnegie Mellon University Overview Wrap-Up of PIPE Design Performance analysis
Performance Metrics and Scalability Analysis. Performance Metrics and Scalability Analysis
Performance Metrics and Scalability Analysis 1 Performance Metrics and Scalability Analysis Lecture Outline Following Topics will be discussed Requirements in performance and cost Performance metrics Work
Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1
Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite
Using Graphics and Animation to Visualize Instruction Pipelining and its Hazards
Using Graphics and Animation to Visualize Instruction Pipelining and its Hazards Per Stenström, Håkan Nilsson, and Jonas Skeppstedt Department of Computer Engineering, Lund University P.O. Box 118, S-221
Digitale Signalverarbeitung mit FPGA (DSF) Soft Core Prozessor NIOS II Stand Mai 2007. Jens Onno Krah
(DSF) Soft Core Prozessor NIOS II Stand Mai 2007 Jens Onno Krah Cologne University of Applied Sciences www.fh-koeln.de [email protected] NIOS II 1 1 What is Nios II? Altera s Second Generation
CS 51 Intro to CS. Art Lee. September 2, 2014
CS 51 Intro to CS Art Lee September 2, 2014 Announcements Course web page at: http://www.cmc.edu/pages/faculty/alee/cs51/ Homework/Lab assignment submission on Sakai: https://sakai.claremont.edu/portal/site/cx_mtg_79055
DNA Data and Program Representation. Alexandre David 1.2.05 [email protected]
DNA Data and Program Representation Alexandre David 1.2.05 [email protected] Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued
Chapter 6. 6.1 Introduction. Storage and Other I/O Topics. p. 570( 頁 585) Fig. 6.1. I/O devices can be characterized by. I/O bus connections
Chapter 6 Storage and Other I/O Topics 6.1 Introduction I/O devices can be characterized by Behavior: input, output, storage Partner: human or machine Data rate: bytes/sec, transfers/sec I/O bus connections
ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science
ADVANCED SCHOOL OF SYSTEMS AND DATA STUDIES (ASSDAS) PROGRAM: CTech in Computer Science Program Schedule CTech Computer Science Credits CS101 Computer Science I 3 MATH100 Foundations of Mathematics and
How To Write Portable Programs In C
Writing Portable Programs COS 217 1 Goals of Today s Class Writing portable programs in C Sources of heterogeneity Data types, evaluation order, byte order, char set, Reading period and final exam Important
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
VLIW Processors. VLIW Processors
1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW
Central Processing Unit (CPU)
Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following
AC 2007-2027: A PROCESSOR DESIGN PROJECT FOR A FIRST COURSE IN COMPUTER ORGANIZATION
AC 2007-2027: A PROCESSOR DESIGN PROJECT FOR A FIRST COURSE IN COMPUTER ORGANIZATION Michael Black, American University Manoj Franklin, University of Maryland-College Park American Society for Engineering
Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2
Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of
Floating Point Fused Add-Subtract and Fused Dot-Product Units
Floating Point Fused Add-Subtract and Fused Dot-Product Units S. Kishor [1], S. P. Prakash [2] PG Scholar (VLSI DESIGN), Department of ECE Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu,
Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.
1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components
Computer Systems Structure Main Memory Organization
Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory
CS 3530 Operating Systems. L02 OS Intro Part 1 Dr. Ken Hoganson
CS 3530 Operating Systems L02 OS Intro Part 1 Dr. Ken Hoganson Chapter 1 Basic Concepts of Operating Systems Computer Systems A computer system consists of two basic types of components: Hardware components,
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59
COMP 303 MIPS Processor Design Project 4: MIPS Processor Due Date: 11 December 2009 23:59 Overview: In the first projects for COMP 303, you will design and implement a subset of the MIPS32 architecture
Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine
Chapter 4 Lecture 5 The Microarchitecture Level Integer JAVA Virtual Machine This is a limited version of a hardware implementation to execute the JAVA programming language. 1 of 23 Structured Computer
OC By Arsene Fansi T. POLIMI 2008 1
IBM POWER 6 MICROPROCESSOR OC By Arsene Fansi T. POLIMI 2008 1 WHAT S IBM POWER 6 MICROPOCESSOR The IBM POWER6 microprocessor powers the new IBM i-series* and p-series* systems. It s based on IBM POWER5
In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller
In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency
More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction
ECE 3803: Microprocessor System Design D Term 2011 Course Syllabus Department of Electrical and Computer Engineering Worcester Polytechnic Institute
ECE 3803: Microprocessor System Design D Term 2011 Course Department of Electrical and Computer Engineering Worcester Polytechnic Institute Instructor: Gene Bogdanov, AK020, [email protected], 508-831-6640
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Introduction to MIPS Assembly Programming
1 / 26 Introduction to MIPS Assembly Programming January 23 25, 2013 2 / 26 Outline Overview of assembly programming MARS tutorial MIPS assembly syntax Role of pseudocode Some simple instructions Integer
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
PCSpim Tutorial. Nathan Goulding-Hotta 2012-01-13 v0.1
PCSpim Tutorial Nathan Goulding-Hotta 2012-01-13 v0.1 Download and install 1. Download PCSpim (file PCSpim_9.1.4.zip ) from http://sourceforge.net/projects/spimsimulator/files/ This tutorial assumes you
CIS570 Modern Programming Language Implementation. Office hours: TDB 605 Levine [email protected]. [email protected].
CIS570 Modern Programming Language Implementation Instructor: Admin. Assistant: URL: E Christopher Lewis Office hours: TDB 605 Levine [email protected] Cheryl Hickey [email protected] 502
