Academic year: 2015/2016 Code: IES s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -

Size: px
Start display at page:

Download "Academic year: 2015/2016 Code: IES-1-307-s ECTS credits: 6. Field of study: Electronics and Telecommunications Specialty: -"

Transcription

1 Module name: Digital Electronics and Programmable Devices Academic year: 2015/2016 Code: IES s ECTS credits: 6 Faculty of: Computer Science, Electronics and Telecommunications Field of study: Electronics and Telecommunications Specialty: - Study level: First-cycle studies Form and type of study: - Lecture language: English Profile of education: Academic (A) Semester: 3 Course homepage: Responsible teacher: Academic teachers: Wiatr Kazimierz (wiatr@agh.edu.pl) Jamro Ernest (jamro@agh.edu.pl) Wiatr Kazimierz (wiatr@agh.edu.pl) Wielgosz Maciej (wielgosz@agh.edu.pl) Description of learning outcomes for module MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion) Social competence M_K001 Student is aware of the responsibility for their own work and willingness to comply with the principles of working in a team and bearing responsibility for cooperative tasks ES1A_K04 Involvement in teamwork Skills M_U001 Student can design, implement and test his own digital module. ES1A_U12, ES1A_U16, ES1A_U22 M_U002 Student can use the well-known methods, logical models and computer simulations for analysis and evaluation of the performance of digital electronic circuits ES1A_U07 M_U003 Student can develop documentation on the engineering projects and prepares a texts containing an overview of the project results ES1A_U03 M_U004 Student can compare the design of basic digital electronic systems and considering usability, power, speed, cost ES1A_U09, ES1A_U15 1 / 5

2 Knowledge M_W001 Student has knowledge of describing and analyzing the operation of basic logical functions; knows the hardware platform and tools to design and simulate digital circuits ES1A_W01, ES1A_W16 M_W002 Student has the ordered knowledge of propagation of digital signal, operation principles of digital electronic components; analog to digital, digital to analog converters ES1A_W05, ES1A_W12 M_W003 Student knows and understands principles of operation of complex digital components such as, memory, programmable devices, basic arithmetic modules ES1A_W05, ES1A_W12 FLO matrix in relation to forms of MLO code Student after module completion has the knowledge/ knows how to/is able to Form of Auditorium Laboratory Project Conversation seminar Seminar Practical Fieldwork Workshops Others E-learning Social competence M_K001 Skills M_U001 M_U002 M_U003 M_U004 Student is aware of the responsibility for their own work and willingness to comply with the principles of working in a team and bearing responsibility for cooperative tasks Student can design, implement and test his own digital module. Student can use the wellknown methods, logical models and computer simulations for analysis and evaluation of the performance of digital electronic circuits Student can develop documentation on the engineering projects and prepares a texts containing an overview of the project results Student can compare the design of basic digital electronic systems and considering usability, power, speed, cost / 5

3 Knowledge M_W001 M_W002 M_W003 Student has knowledge of describing and analyzing the operation of basic logical functions; knows the hardware platform and tools to design and simulate digital circuits Student has the ordered knowledge of propagation of digital signal, operation principles of digital electronic components; analog to digital, digital to analog converters Student knows and understands principles of operation of complex digital components such as, memory, programmable devices, basic arithmetic modules Module content This module is delivered as: lectures (45h), exercises (15h), laboratory (30h). 1.Propagation of digital signals in RLC network and transmission lines (3h) Response of RC network (differentiator and integrator, oscilloscope probe) and RLC network on step function and square wave. Response of transmission line on step function. Elimination of the reflections by proper termination of a transmission line in digital modules. 2.Boolean Algebra (3h) Boolean algebra (axioms, selected theorems and definitions), logical functions, canonical form of Boolean expressions, basic arithmetic operations, codes 3.Combinational circuits, gates (8h) Definition of combinational logic, gates (types, structure, technologies, parameters, characteristics, connection of gates constructed in different technologies). Logic simplifications methods: Karnaugh Map, Quina-McMcuskey a; hazards, multiplexers and demultiplexers. 4.Sequential circuits (10h) Sequential logic definition, types and parameters. Flip-flops, counters, registers, analysis of sequential logic, Moor and Mealy Finite State Machine (FSM), minimization of FSM, synchronous and asynchronous FSM, race condition, implementation of basic FSMs in the hardware description language, shift-registers. 5.Memory (4h) Memory types, structures and concept of operation: ROM/RAM, SRAM/DRAM. Typical read/write cycles for synchronous and asynchronous memories. Dual port memory, Specialized memories: FIFO (First-In First-Out), LUT (Look-Up Table). 6.Analog to Digital and Digital to Analog Converters (5h) Converters parameters. Structures and principle of operation for common converters: binary weighted DAC, R-2R (C-2C) ladder DAC, resistor string DAC, Flash 3 / 5

4 ADC, signle- dual-slop ADC, SAR ADC, Pulse-Width Modulation DAC, sigma-delta. 7.Programmable Devices (6h) Programmable Devices structure and principle of operation, PAL / GAL/ FPGA. Implementation of combinational and sequencial logic in FPGAs. Dedicated modules incorporated in FPGAs: LUT, dedicated adders and multipliers, different memory types. Auditorium Exercises: 1.Combinational circuit (4h) Boolean algebra functions, canonical form of Boolean functions, analysis of combinational circuits, minimization of Boolean functions, elimination of hazards in combinational circuits, designing of combinational and arithmetic circuits 2.Sequential circuits (9h) flip-flop (timing, converting flip-flops), analysis and synthesis of basic sequential circuits (simple counter example), synthesis of Moore and Mealy FSM minimization of FSM, the complete design of a sequential circuit 3.Test (2h) Laboratory Laboratory 1.Propagation of digital signals in RLC network and transmission lines (3h) Introduction to the laboratory: generators and oscilloscopes. Response of RC network (differentiator and integrator, oscilloscope probe) and RLC network on step function and square wave. Response of transmission line on step function for different loads, elimination of the reflections, measurement of characteristic impedance. 2.Gates and Flip-Flops (3h) Measurement of true table, excitation table basic gates and flip-flops. Measurement of static and dynamic parameters of gates and flip-flops 3.Introduction to Computer Design (6h) Editing digital circuit schematic: add elements such as gates, flip-flops and others, connecting elements using single lines and buses. Editing a hierarchical schematics. The schematic simulation: editing stimules, analysing simulation results. Synthesis and implementation on specific hardware platform elected designs. 4.Combinational logics (3h) Design, simulation and implementation in FPGA an arbitrary selected combination logic or arithmetic unit. 5.Counters and registers (3h) Design, simulation and implementation in FPGA an arbitrary selected counter or register. 6.Finite State Machne (FSM) (3h) Design, simulation and implementation in FPGA an arbitrary selected FSM. 7.Memory (3h) Design, simulation and implementation in FPGA an arbitrary selected memory unit. 8.AD DA converters (3h) The measurement of selected parameters of the DAC. Getting familiar with the principle of operation (timing waveforms) of PWM and Sigma-Delta converters. Method of calculating the final grade In order to obtain a positive final evaluation a positive mark of laboratory, exercises and exam must be obtained. The final mark is a weighted average of labaratory (40%), exercises (20%) and exam (40%). 4 / 5

5 The final mark OK is equal: OK= [average[ (rounded up to the nearest half degree) provided that student obtained all positive marks in the first term. OK= [average] (rounded down to the nearest half degree) provided that student obtained all positive marks in the second term. OK= 3.0 student obtained positive marks in the third term Prerequisites and additional requirements Non Recommended literature and teaching resources (English version) and other links given in the lectures. A. K. Maini, Digital Electronics, Principle, Devices and Applications, Wiley, Indie, 2007 F. Vahid Digital Design, USA, Wiley 2007 Scientific publications of module course instructors related to the topic of the module Additional scientific publications not specified Additional information None Student workload (ECTS credits balance) Student activity form Participation in lectures Realization of independently performed tasks Participation in laboratory Preparation for Preparation of a report, presentation, written work, etc. Participation in auditorium Summary student workload Module ECTS credits Student workload 42 h 45 h 28 h 30 h 15 h 14 h 174 h 6 ECTS 5 / 5

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54

University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Fall 2005 Instructor Texts University of St. Thomas ENGR 230 ---- Digital Design 4 Credit Course Monday, Wednesday, Friday from 1:35 p.m. to 2:40 p.m. Lecture: Room OWS LL54 Lab: Section 1: OSS LL14 Tuesday

More information

EE360: Digital Design I Course Syllabus

EE360: Digital Design I Course Syllabus : Course Syllabus Dr. Mohammad H. Awedh Fall 2008 Course Description This course introduces students to the basic concepts of digital systems, including analysis and design. Both combinational and sequential

More information

Description of learning outcomes for module

Description of learning outcomes for module Module name: Advanced planning in operations management Academic year: 2015/2016 Code: ZZP-2-001-IM-s ECTS credits: 5 Faculty of: Management Field of study: Management Specialty: International Management

More information

ANALOG & DIGITAL ELECTRONICS

ANALOG & DIGITAL ELECTRONICS ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: apvajpeyi@iitg.ernet.in Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,

More information

A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online

A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online A Comparison of Student Learning in an Introductory Logic Circuits Course: Traditional Face-to-Face vs. Fully Online Dr. Brock J. LaMeres Assistant Professor Electrical & Computer Engineering Dept Montana

More information

Course Requirements & Evaluation Methods

Course Requirements & Evaluation Methods Course Title: Logic Circuits Course Prefix: ELEG Course No.: 3063 Sections: 01 & 02 Department of Electrical and Computer Engineering College of Engineering Instructor Name: Justin Foreman Office Location:

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008.

Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008. Philadelphia University Faculty of Information Technology Department of Computer Science ----- Semester, 2007/2008 Course Syllabus Course Title: Computer Logic Design Course Level: 1 Lecture Time: Course

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR.

COURSE SYLLABUS. PRE-REQUISITES: Take CETT-1303(41052); Minimum grade C, CR. COURSE SYLLABUS COURSE NUMBER AND TITLE: CETT 1325- Digital Fundamentals COURSE (CATALOG) DESCRIPTION An entry level course in digital electronics covering number systems, binary mathematics, digital codes,

More information

Comparing Student Learning in a Required Electrical Engineering Undergraduate Course: Traditional Face-to-Face vs. Online

Comparing Student Learning in a Required Electrical Engineering Undergraduate Course: Traditional Face-to-Face vs. Online Comparing Student Learning in a Required Electrical Engineering Undergraduate Course: Traditional Face-to-Face vs. Online Carolyn Plumb and Brock LaMeres Montana State University, Bozeman, Montana, U.S.A.,

More information

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards

Read-only memory Implementing logic with ROM Programmable logic devices Implementing logic with PLDs Static hazards Points ddressed in this Lecture Lecture 8: ROM Programmable Logic Devices Professor Peter Cheung Department of EEE, Imperial College London Read-only memory Implementing logic with ROM Programmable logic

More information

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii

CONTENTS PREFACE 1 INTRODUCTION 1 2 NUMBER SYSTEMS AND CODES 25. vii 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is CONTENTS PREFACE xv 1 INTRODUCTION 1 1.1 About Digital Design 1 1.2 Analog versus Digital 3 1.3 Digital Devices

More information

Digital Systems. Syllabus 8/18/2010 1

Digital Systems. Syllabus 8/18/2010 1 Digital Systems Syllabus 1 Course Description: This course covers the design and implementation of digital systems. Topics include: combinational and sequential digital circuits, minimization methods,

More information

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B.

Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology. Electronics & Communication Engineering. B. Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) Institute of Technology Electronics & Communication Engineering B.Tech III Semester 1. Electronic Devices Laboratory 2. Digital Logic Circuit Laboratory 3.

More information

ELECTRICAL ENGINEERING

ELECTRICAL ENGINEERING ELECTRICAL ENGINEERING The master degree programme of Teacher Training in Electronical Engineering is designed to develop graduates competencies in the field of Curriculum Development and Instructional

More information

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE

INTRODUCTION TO DIGITAL SYSTEMS. IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE INTRODUCTION TO DIGITAL SYSTEMS 1 DESCRIPTION AND DESIGN OF DIGITAL SYSTEMS FORMAL BASIS: SWITCHING ALGEBRA IMPLEMENTATION: MODULES (ICs) AND NETWORKS IMPLEMENTATION OF ALGORITHMS IN HARDWARE COURSE EMPHASIS:

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition

RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition RAPID PROTOTYPING OF DIGITAL SYSTEMS Second Edition A Tutorial Approach James O. Hamblen Georgia Institute of Technology Michael D. Furman Georgia Institute of Technology KLUWER ACADEMIC PUBLISHERS Boston

More information

Innovations in Remote Laboratories & Simulation Software for Online and On-Site Engineering Students

Innovations in Remote Laboratories & Simulation Software for Online and On-Site Engineering Students Paper ID #6793 Innovations in Remote Laboratories & Simulation Software for Online and On-Site Engineering Students Dr. Jodi Reeves, National University Dr. Jodi Reeves is an associate professor in the

More information

CpE358/CS381. Switching Theory and Logical Design. Class 4

CpE358/CS381. Switching Theory and Logical Design. Class 4 Switching Theory and Logical Design Class 4 1-122 Today Fundamental concepts of digital systems (Mano Chapter 1) Binary codes, number systems, and arithmetic (Ch 1) Boolean algebra (Ch 2) Simplification

More information

ELEC2141 DIGITAL CIRCUIT DESIGN

ELEC2141 DIGITAL CIRCUIT DESIGN ELEC2141 DIGITAL CIRCUIT DESIGN Course Outline Semester 1, 2015 Course Staff Course Convener: Tutors: Dr. Aron Michael, Room 305, a.michael@unsw.edu.au Dr. Aron Michael, Room 305, a.michael@unsw.edu.au

More information

ECE 156A - Syllabus. Lecture 0 ECE 156A 1

ECE 156A - Syllabus. Lecture 0 ECE 156A 1 ECE 156A - Syllabus Lecture 0 ECE 156A 1 Description Introduction to HDL basic elements, HDL simulation concepts, HDL concurrent statements with examples and applications, writing HDL for synthesis, and

More information

ENEE Electrical & Computer Engineering Summer 2015

ENEE Electrical & Computer Engineering Summer 2015 This printed version of the Schedule of Classes is current as of 12/14/15 10:19 PM. ENEE Electrical & Computer Engineering Summer 2015 ENEE200 Social and Ethical Dimensions of Engineering Technology Credits:

More information

BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16

BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 BSEE Degree Plan Bachelor of Science in Electrical Engineering: 2015-16 Freshman Year ENG 1003 Composition I 3 ENG 1013 Composition II 3 ENGR 1402 Concepts of Engineering 2 PHYS 2034 University Physics

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD)

AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD) AC 2007-2485: PRACTICAL DESIGN PROJECTS UTILIZING COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLD) Samuel Lakeou, University of the District of Columbia Samuel Lakeou received a BSEE (1974) and a MSEE (1976)

More information

Metropolitan State University of Denver

Metropolitan State University of Denver ELECTRICAL ENGINEERING TECHNOLOGY Electrical Engineering Technology (EET) graduates have much of the know-why of the engineer and much of the knowhow of the technician. The EET curriculum combines theory

More information

Systems on Chip Design

Systems on Chip Design Systems on Chip Design College: Engineering Department: Electrical First: Course Definition, a Summary: 1 Course Code: EE 19 Units: 3 credit hrs 3 Level: 3 rd 4 Prerequisite: Basic knowledge of microprocessor/microcontroller

More information

CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

More information

2.1 Digital Electronics. Title: Electronics and Automatic Engineering

2.1 Digital Electronics. Title: Electronics and Automatic Engineering Electronic Engineering PBL at the Design Engineering School of Valencia, Spain Ballester Sarrias, E. School of Design Engineering ETSID / Dean Universitat Politècnica de València Ibáñez Civera, J.; Masot

More information

RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY

RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY RUTGERS UNIVERSITY Department of Electrical and Computer Engineering 14:332:233 DIGITAL LOGIC DESIGN LABORATORY Fall 2012 Contents 1 LABORATORY No 1 3 11 Equipment 3 12 Protoboard 4 13 The Input-Control/Output-Display

More information

Online Development of Digital Logic Design Course

Online Development of Digital Logic Design Course Online Development of Digital Logic Design Course M. Mohandes, M. Dawoud, S. Al Amoudi, A. Abul Hussain Electrical Engineering Department & Deanship of Academic Development King Fahd University of Petroleum

More information

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic

Aims and Objectives. E 3.05 Digital System Design. Course Syllabus. Course Syllabus (1) Programmable Logic Aims and Objectives E 3.05 Digital System Design Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk How to go

More information

CpE358/CS381. Switching Theory and Logical Design. Class 10

CpE358/CS381. Switching Theory and Logical Design. Class 10 CpE358/CS38 Switching Theory and Logical Design Class CpE358/CS38 Summer- 24 Copyright 24-373 Today Fundamental concepts of digital systems (Mano Chapter ) Binary codes, number systems, and arithmetic

More information

College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei. Course Outline Cover Page

College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei. Course Outline Cover Page College of Micronesia FSM P.O. Box 159 Kolonia, Pohnpei Course Outline Cover Page Telephone Systems VTE 280 Course Title Department and Number Course Description: This course is designed to introduce students

More information

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO)

REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) CARIBBEAN EXAMINATIONS COUNCIL REPORT ON CANDIDATES WORK IN THE CARIBBEAN ADVANCED PROFICIENCY EXAMINATION MAY/JUNE 2008 ELECTRICAL AND ELECTRONIC TECHNOLOGY (TRINIDAD AND TOBAGO) Copyright 2008 Caribbean

More information

A First Course in Digital Design Using VHDL and Programmable Logic

A First Course in Digital Design Using VHDL and Programmable Logic A First Course in Digital Design Using VHDL and Programmable Logic Shawki Areibi Abstract Present industry practice has created a high demand for systems designers with knowledge and experience in using

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

Conversion Between Analog and Digital Signals

Conversion Between Analog and Digital Signals ELET 3156 DL - Laboratory #6 Conversion Between Analog and Digital Signals There is no pre-lab work required for this experiment. However, be sure to read through the assignment completely prior to starting

More information

Digital Systems Design! Lecture 1 - Introduction!!

Digital Systems Design! Lecture 1 - Introduction!! ECE 3401! Digital Systems Design! Lecture 1 - Introduction!! Course Basics Classes: Tu/Th 11-12:15, ITE 127 Instructor Mohammad Tehranipoor Office hours: T 1-2pm, or upon appointments @ ITE 441 Email:

More information

Chapter 5. Sequential Logic

Chapter 5. Sequential Logic Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends

More information

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH

More information

ESYST 123 - Residential Wiring

ESYST 123 - Residential Wiring ESYST 123 - Residential Wiring Approval Date: Effective Term: Department: ELECTRONIC SYSTEMS TECHNOLOGY Division: Career Technical Education Units: 4.00 Grading Option: Letter Grade Transferability: CSU

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

EEL 4712: DIGITAL DESIGN http://mil.ufl.edu/4712/

EEL 4712: DIGITAL DESIGN http://mil.ufl.edu/4712/ Page 1/6 Revision 4 EEL 4712: DIGITAL DESIGN http://mil.ufl.edu/4712/ INSTRUCTOR Dr. Eric M. Schwartz MAEB 321 392-2541 ems@mil.ufl.edu Office Hours: Mon: Period 9; Fri: Period 7 LECTURES MWF 8 th period

More information

Efficient Teaching of Digital Design with Automated Assessment and Feedback

Efficient Teaching of Digital Design with Automated Assessment and Feedback Efficient Teaching of Digital Design with Automated Assessment and Feedback 1 Paul W. Nutter, Member, IEEE, 2 Vasilis F. Pavlidis, Member, IEEE, and 2 Jeffrey Pepper 1 Nano Engineering and Storage Technology

More information

Design of a High Speed Communications Link Using Field Programmable Gate Arrays

Design of a High Speed Communications Link Using Field Programmable Gate Arrays Customer-Authored Application Note AC103 Design of a High Speed Communications Link Using Field Programmable Gate Arrays Amy Lovelace, Technical Staff Engineer Alcatel Network Systems Introduction A communication

More information

Computer Engineering Technology

Computer Engineering Technology Computer Engineering Technology Dr. Adam Filios, Chair Electrical & Computer Engineering Technology Dept. adam.filios@farmingdale.edu 631-420-2084 School of Engineering Technology Bachelor of Science Degree

More information

Electrical Engineering and Computer Science

Electrical Engineering and Computer Science Electrical Engineering and Computer Science Bachelor s Degree Program (BSc) SES UG Handbook EECS Fall 2013 01 (July 28, 2014) Page: ii Contents 1 Electrical Engineering and Computer Science 1 1.1 Concept......................................

More information

FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE

FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE Form 2A, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: CET 2600 COURSE TITLE: Network Fundamentals PREREQUISITE(S): CTS 1131 and CTS 1133 COREQUISITE(S): STUDENT

More information

Lecture 7: Clocking of VLSI Systems

Lecture 7: Clocking of VLSI Systems Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis

More information

Electrical Engineering and Computer Science

Electrical Engineering and Computer Science Electrical Engineering and Computer Science Bachelor s Degree Program (BSc) SES UG Handbook EECS Fall 2012 02 Page: ii Contents 1 Electrical Engineering and Computer Science 1 1.1 Concept......................................

More information

DISTANCE DEGREE PROGRAM CURRICULUM NOTE:

DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Bachelor of Science in Electrical Engineering DISTANCE DEGREE PROGRAM CURRICULUM NOTE: Some Courses May Not Be Offered At A Distance Every Semester. Chem 121C General Chemistry I 3 Credits Online Fall

More information

Binary Adders: Half Adders and Full Adders

Binary Adders: Half Adders and Full Adders Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order

More information

Electronics Technology

Electronics Technology Teacher Assessment Blueprint Electronics Technology Test Code: 5907 / Version: 01 Copyright 2011 NOCTI. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information

More information

LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS

LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with the proper polarity to avoid damage.

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with the proper polarity to avoid damage. HARDWARE LAB 5/DESIGN PROJECT Finite State Machine Design of a Vending Machine Using Xilinx ISE Project Navigator and Spartan 3E FPGA Development Board with VHDL Acknowledgements: Developed by Bassam Matar,

More information

Digital to Analog and Analog to Digital Conversion

Digital to Analog and Analog to Digital Conversion Real world (lab) is Computer (binary) is digital Digital to Analog and Analog to Digital Conversion V t V t D/A or DAC and A/D or ADC D/A Conversion Computer DAC A/D Conversion Computer DAC Digital to

More information

Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004

Gray Code Generator and Decoder by Carsten Kristiansen Napier University. November 2004 Gray Code Generator and Decoder by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Design of a Gray Code Generator and

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture

ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture ÇANKAYA UNIVERSITY Faculty of Engineering and Architecture Course Definition Form This form should be used for both a new elective or compulsory course being proposed and curricula development processes

More information

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2016

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2016 CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2016 1. Professor : Haldun Hadimioglu SYLLABUS Office : 10.009 2MTC Tel : (646) 997-3101 Fax : (646) 997-3609 haldun@nyu.edu http://cse.poly.edu/haldun

More information

MsC in Advanced Electronics Systems Engineering

MsC in Advanced Electronics Systems Engineering MsC in Advanced Electronics Systems Engineering 1 2 General overview Location: Dijon, University of Burgundy, France Tuition Fees : 475 / year Course Language: English Course duration: 1 year Level: Second

More information

FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE. CTS 2655 and CNT 2102 with grade of C or higher in both courses

FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE. CTS 2655 and CNT 2102 with grade of C or higher in both courses Form 2A, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: CTS 2662 COURSE TITLE: PREREQUISITE(S): COREQUISITE(S): Voice Over IP CTS 2655 and CNT 2102 with grade

More information

MARKET RESEARCH COURSE SYLLABUS

MARKET RESEARCH COURSE SYLLABUS University of Split Department of Professional Studies MARKET RESEARCH COURSE SYLLABUS 1 Type of study programme Study programme Course title Course code ECTS (Number of credits allocated) Course status

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT

ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT 216 ON SUITABILITY OF FPGA BASED EVOLVABLE HARDWARE SYSTEMS TO INTEGRATE RECONFIGURABLE CIRCUITS WITH HOST PROCESSING UNIT *P.Nirmalkumar, **J.Raja Paul Perinbam, @S.Ravi and #B.Rajan *Research Scholar,

More information

Switching and Finite Automata Theory

Switching and Finite Automata Theory Switching and Finite Automata Theory Understand the structure, behavior, and limitations of logic machines with this thoroughly updated third edition. New topics include: CMOS gates logic synthesis logic

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

Contemporary Logic Design

Contemporary Logic Design KATZ_0201308576_MF.fm Page i Tuesday, November 16, 2004 8:05 PM Contemporary Logic Design Second Edition Randy H. Katz University of California, Berkeley Gaetano Borriello University of Washington Upper

More information

EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC

EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC YEDITEPE UNIVERSITY ENGINEERING & ARCHITECTURE FACULTY INDUSTRIAL ELECTRONICS LABORATORY EE 432 INDUSTRIAL ELECTRONICS EXPERIMENT 2 TRAFFIC LIGHT CONTROL SYSTEM FOR AN INTERSECTION USING S7-300 PLC Introduction:

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Mallard TM : Asynchronous Learning in Two Engineering Courses

Mallard TM : Asynchronous Learning in Two Engineering Courses Mallard TM : Asynchronous Learning in Two Engineering Courses Michael L. Swafford, Charles R. Graham, Donna J. Brown, Timothy N. Trick University of Illinois at Urbana-Champaign Abstract Mallard TM is

More information

路 論 Chapter 15 System-Level Physical Design

路 論 Chapter 15 System-Level Physical Design Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Business Communication Strategies inCroats and Their Meanings

Business Communication Strategies inCroats and Their Meanings University of Split Department of Professional Studies BUSINESS COMMUNICATION COURSE SYLLABUS 1 COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number of credits allocated)

More information

DAC Digital To Analog Converter

DAC Digital To Analog Converter DAC Digital To Analog Converter DAC Digital To Analog Converter Highlights XMC4000 provides two digital to analog converters. Each can output one analog value. Additional multiple analog waves can be generated

More information

Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation!

Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation! Resolving ABET/TAC Criteria on Continuous Improvement: Surviving ABET Accreditation! by Nasser Michigan Technological University alaraje@mtu.edu Abstract: The Electrical Engineering Technology program

More information

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();

More information

KEEP IT SYNPLE STUPID

KEEP IT SYNPLE STUPID Utilizing Programmable Logic for Analyzing Hardware Targets Dmitry Nedospasov SHORT DESCRIPTION Hardware security analysis differs from software security analysis primarily in the tools

More information

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın

Digital Design. Assoc. Prof. Dr. Berna Örs Yalçın Digital Design Assoc. Prof. Dr. Berna Örs Yalçın Istanbul Technical University Faculty of Electrical and Electronics Engineering Office Number: 2318 E-mail: siddika.ors@itu.edu.tr Grading 1st Midterm -

More information

Combinational Logic Design Process

Combinational Logic Design Process Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

More information

EE411: Introduction to VLSI Design Course Syllabus

EE411: Introduction to VLSI Design Course Syllabus : Introduction to Course Syllabus Dr. Mohammad H. Awedh Spring 2008 Course Overview This is an introductory course which covers basic theories and techniques of digital VLSI design in CMOS technology.

More information

How To Prepare And Manage A Project

How To Prepare And Manage A Project University of Split Department of Professional Studies PREPARATION AND PROJECT MANAGEMENT COURSE SYLLABUS 1 COURSE DETAILS Type of study programme Study programme Course title Course code ECTS (Number

More information

Serial port interface for microcontroller embedded into integrated power meter

Serial port interface for microcontroller embedded into integrated power meter Serial port interface for microcontroller embedded into integrated power meter Mr. Borisav Jovanović, Prof. dr. Predrag Petković, Prof. dr. Milunka Damnjanović, Faculty of Electronic Engineering Nis, Serbia

More information

Modeling Registers and Counters

Modeling Registers and Counters Lab Workbook Introduction When several flip-flops are grouped together, with a common clock, to hold related information the resulting circuit is called a register. Just like flip-flops, registers may

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design

Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Curriculum for a Master s Degree in ECE with focus on Mixed Signal SOC Design Department of Electrical and Computer Engineering Overview The VLSI Design program is part of two tracks in the department:

More information

Principles of Engineering (PLTW)

Principles of Engineering (PLTW) Indiana Department of Education Indiana Academic Course Framework Principles of Engineering (PLTW) Principles of Engineering is a course that focuses on the process of applying engineering, technological,

More information

Introduction to Digital Design Using Digilent FPGA Boards Block Diagram / Verilog Examples

Introduction to Digital Design Using Digilent FPGA Boards Block Diagram / Verilog Examples Introduction to Digital Design Using Digilent FPGA Boards Block Diagram / Verilog Examples Richard E. Haskell Darrin M. Hanna Oakland University, Rochester, Michigan LBE Books Rochester Hills, MI Copyright

More information

A Second Undergraduate Course in Digital Logic Design: The Datapath+Controller-Based Approach

A Second Undergraduate Course in Digital Logic Design: The Datapath+Controller-Based Approach A Second Undergraduate Course in Digital Logic Design: The Datapath+Controller-Based Approach Mitchell A. Thornton 1 and Aaron S. Collins 2 Abstract A second undergraduate course in digital logic design

More information

Master Specialization in Digital Design: Design and Programming of Embedded Systems

Master Specialization in Digital Design: Design and Programming of Embedded Systems Master Specialization in Digital Design: Design and Programming of Embedded Systems Jan Schmidt, Ph.D. Department of Digital Design Faculty of Information Technology Czech Technical University in Prague

More information