Lesson 5 Linear Transformations in Geometry

Size: px
Start display at page:

Download "Lesson 5 Linear Transformations in Geometry"

Transcription

1 Lesson 5 Linear Transformations in Geometr Math 21b Februar 14, 2007 Announcements Homework for Februar 16: 2.2: 6,8,16,30,34,47*,50* Problem Session: Frida 1-2pm in SC 103b (?) M office hours: Monda 2-4, Tuesda 3-5 in SC 323 Visit the Section Zero blog: k14308&pageid=icb.page70643

2 Last Time Definition A function T from R m to R n is called a linear transformation if there is an n m matri A such that for all in R m. T ( ) = A.

3 Last Time Definition A function T from R m to R n is called a linear transformation if there is an n m matri A such that for all in R m. T ( ) = A. Theorem Let T : R m R n be a function. Then T is a linear transformation if and onl if (a) T ( v + w) = T ( v) + T ( w) (b) T (k v) = kt ( v) for all vectors v and w in R m and scalars k. Another propert (not independent of the first two) is that T ( 0) = 0.

4 Which of these are linear transformations? (a) T () = ([ ]) (b) T = 2 2 sin t (c) γ(t) = cos t t ([ ]) [ ] + (d) T =

5 Let T : R 2 R 2 be the transformation which rotates the plane b 30, then reflects in the -ais.

6 Let T : R 2 R 2 be the transformation which rotates the plane b 30, then reflects in the -ais. Question Is this is a linear transformation?

7 Is T ( v + w) = T ( v) + T ( w)?

8 Is T ( v + w) = T ( v) + T ( w)? v

9 Is T ( v + w) = T ( v) + T ( w)? v

10 Is T ( v + w) = T ( v) + T ( w)? T ( v) v

11 Is T ( v + w) = T ( v) + T ( w)? T ( v) v w

12 Is T ( v + w) = T ( v) + T ( w)? T ( v) v w

13 Is T ( v + w) = T ( v) + T ( w)? T ( v) v w T ( w)

14 Is T ( v + w) = T ( v) + T ( w)? v + w T ( v) v w T ( w)

15 Is T ( v + w) = T ( v) + T ( w)? v + w T ( v) v w T ( w)

16 Is T ( v + w) = T ( v) + T ( w)? T ( v) v v + w w T ( v + w) T ( w)

17 Is T ( v + w) = T ( v) + T ( w)? T ( v) v v + w w T ( v + w) T ( w)

18 Let T : R 2 R 2 be the transformation which rotates the plane b 30, then reflects in the -ais. Question Is this is a linear transformation? Answer. Yes!

19 Let T : R 2 R 2 be the transformation which rotates the plane b 30, then reflects in the -ais. Question Is this is a linear transformation? Answer. Yes! Question What is the matri A representing T?

20 Getting the matri from its effect 1 2 T ( v) = T. = T ( 1 e e m e m ) m = 1 T ( e 1 ) + 2 T ( e 2 ) + + m T ( e m ) = 1 a a m a m 1 = [ ] 2 a 1 a 2 a m. m = A v

21 Upshot To find the matri of a linear transformation, find the image of each standard basis vector and form the matri whose columns are those images.

22 Looking at our original T, we can find the images of each standard basis vector:

23 Looking at our original T, we can find the images of each standard basis vector: [ ] [ ] [ ] 1 3/2 3/2 e 1 = 0 1/2 1/2

24 Looking at our original T, we can find the images of each standard basis vector: [ ] [ ] [ ] 1 3/2 3/2 e 1 = 0 1/2 1/2 [ ] [ ] [ ] 1 1/2 1/2 e 2 = 0 3/2 3/2

25 Looking at our original T, we can find the images of each standard basis vector: [ ] [ ] [ ] 1 3/2 3/2 e 1 = 0 1/2 1/2 [ ] [ ] [ ] 1 1/2 1/2 e 2 = 0 3/2 3/2 So [ 3/2 1/2 A = 1/2 3/2 ]

26 Tpes of Linear Transformations

27 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T.

28 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution

29 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution e 1

30 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution T ( e 1 ) = e 1 ] [ 1/2 0

31 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution e 2 T ( e 1 ) = e 1 ] [ 1/2 0

32 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution [ ] 0 T ( e 2 ) = 1/2 e 2 T ( e 1 ) = e 1 ] [ 1/2 0

33 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution

34 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution e 2 e 1

35 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution [ ] 0 T ( e 2 ) = 1/2 T ( e 1 ) = [ 1/2 0 ]

36 Scaling Eample Let f : R 2 R 2 be the linear transformation which scales the plane b a factor of 1 2. Find the matri representing T. Solution [ ] 0 T ( e 2 ) = 1/2 T ( e 1 ) = [ 1/2 0 ] [ ] 1/2 0 We have A =. 0 1/2

37 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. [ ] 2 0. Describe the 0 1

38 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1

39 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 e 1

40 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 e 1 T ( e 1 ) = [ ] 2 0

41 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 e 2 e 1 T ( e 1 ) = [ ] 2 0

42 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 [ ] 0 T ( e 2 ) = e 1 2 e 1 T ( e 1 ) = [ ] 2 0

43 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1

44 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 e 2 e 1

45 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 [ ] 0 T ( e 2 ) = 1 T ( e 1 ) = [ ] 2 0

46 Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 2 0. Describe the 0 1 [ ] 0 T ( e 2 ) = 1 T ( e 1 ) = [ ] 2 0 T scales horizontal distances b 2 but leaves vertical distances alone.

47 The Dot Product Remember the dot product from Math 21a: v w = v 1 w 1 + v 2 w w m w m. Then (a) v w = w v (b) v ( u + w) = v u + v w (c) (k v) w = k( v w) = v (k w) (d) v v 0 for all v. v v = 0 v = 0. In fact, v = v v (e) v w = 0 v and w are perpendicular

48 Orthogonal Decomposition Fact Let L be an line and an vector. Then can be decomposed as = + where is parallel to L and is perpendicular to L.

49 Orthogonal Decomposition Fact Let L be an line and an vector. Then can be decomposed as = + where is parallel to L and is perpendicular to L. L

50 Orthogonal Decomposition Fact Let L be an line and an vector. Then can be decomposed as = + where is parallel to L and is perpendicular to L. L

51 Proof. Let v be an vector (so v v = 1) parallel to L. Then = k v for some k, and v = 0. So v = ( + ) v = v + v = k( v v) + 0 so k = v v v, meaning = v v v v, =.

52 Projections and Reflections Given L, there are two linear transformations associated to the orthogonal decomposition = + : The projection onto L: The reflection in L: proj L ( ) = ref L ( ) =

53 Eample Let f : R 2 R 2 be the linear transformation which projects onto the line = 2. Find the matri representing T.

54 Eample Let f : R 2 R 2 be the linear transformation which projects onto the line = 2. Find the matri representing T. Solution A = [ 1/5 2/5 2/5 4/5 ]

55 Eample Let f : R 2 R 2 be the linear transformation which reflects in the line = 2. Find the matri representing T.

56 Eample Let f : R 2 R 2 be the linear transformation which reflects in the line = 2. Find the matri representing T. Solution We have [ ] e 1 = e 1 e 4/5 1 = 2 /5 e 2 = e 2 e 2 = [ 2/5 1/5 ] So [ ] T ( e 1 ) = e 1 3/5 e 1 = [ ] 4/5 3/5 4/5 [ ] = A = T ( e 2 ) = e 4/5 2 4/5 3/5 e 2 = 3/5

57 Rotations Eample Let f : R 2 R 2 be the linear transformation which rotates an angle θ. Find the matri representing T.

58 Rotations Eample Let f : R 2 R 2 be the linear transformation which rotates an angle θ. Find the matri representing T. Solution [ ] cos θ sin θ A = sin θ cos θ

59 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. [ ] 1 1/2. Describe the 0 1

60 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1

61 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 e 1

62 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 e 1 [ ] 1 T ( e 1 ) = 0

63 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 e 2 e 1 [ ] 1 T ( e 1 ) = 0

64 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 e 2 T ( e 2 ) = e 1 [ ] 1 T ( e 1 ) = 0 [ 1/2 1 ]

65 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1

66 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 e 2 e 1

67 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 T ( e 1 ) = T ( e 2 ) = [ ] 1 0 [ 1/2 1 ]

68 Shears Eample Let T : R 2 R 2 be multiplication b A = geometric effect of T on the plane. Solution [ ] 1 1/2. Describe the 0 1 T ( e 1 ) = T ( e 2 ) = [ ] 1 0 [ 1/2 1 ] T is called a (horizontal) shear transformation.

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

More information

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations. Foley & Van Dam, Chapter 5 2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

More information

Affine Transformations

Affine Transformations A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector . w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29 up vector view vector observer center of interest 30 Computer

More information

Problem set on Cross Product

Problem set on Cross Product 1 Calculate the vector product of a and b given that a= 2i + j + k and b = i j k (Ans 3 j - 3 k ) 2 Calculate the vector product of i - j and i + j (Ans ) 3 Find the unit vectors that are perpendicular

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

More information

Cross Products and Moments of Force

Cross Products and Moments of Force 4 Cross Products and Moments of Force Ref: Hibbeler 4.2-4.3, edford & Fowler: Statics 2.6, 4.3 In geometric terms, the cross product of two vectors, A and, produces a new vector, C, with a direction perpendicular

More information

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V. .4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v

Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v 12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

Rotation and Inter interpolation Using Quaternion Representation

Rotation and Inter interpolation Using Quaternion Representation This week CENG 732 Computer Animation Spring 2006-2007 Week 2 Technical Preliminaries and Introduction to Keframing Recap from CEng 477 The Displa Pipeline Basic Transformations / Composite Transformations

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

Math 215 HW #6 Solutions

Math 215 HW #6 Solutions Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

More information

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

More information

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures. Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra OTTO BRETSCHER http://www.prenhall.com/bretscher Chapter 7 Eigenvalues and Eigenvectors Chia-Hui Chang Email: chia@csie.ncu.edu.tw National Central University, Taiwan 7.1 DYNAMICAL

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

ex) What is the component form of the vector shown in the picture above?

ex) What is the component form of the vector shown in the picture above? Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope 5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

More information

Vector Calculus: a quick review

Vector Calculus: a quick review Appendi A Vector Calculus: a quick review Selected Reading H.M. Sche,. Div, Grad, Curl and all that: An informal Tet on Vector Calculus, W.W. Norton and Co., (1973). (Good phsical introduction to the subject)

More information

8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections 8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

Chapter 4. Moment - the tendency of a force to rotate an object

Chapter 4. Moment - the tendency of a force to rotate an object Chapter 4 Moment - the tendency of a force to rotate an object Finding the moment - 2D Scalar Formulation Magnitude of force Mo = F d Rotation is clockwise or counter clockwise Moment about 0 Perpendicular

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

SECTION 7-4 Algebraic Vectors

SECTION 7-4 Algebraic Vectors 7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction. Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

More information

Addition and Subtraction of Vectors

Addition and Subtraction of Vectors ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

The Projection Matrix

The Projection Matrix The Projection Matrix David Arnold Fall 996 Abstract In this activity you will use Matlab to project a set of vectors onto a single vector. Prerequisites. Inner product (dot product) and orthogonal vectors.

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

More information

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

More information

Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

More information

Orthogonal Projections and Orthonormal Bases

Orthogonal Projections and Orthonormal Bases CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Applications of Trigonometry

Applications of Trigonometry 5144_Demana_Ch06pp501-566 01/11/06 9:31 PM Page 501 CHAPTER 6 Applications of Trigonometr 6.1 Vectors in the Plane 6. Dot Product of Vectors 6.3 Parametric Equations and Motion 6.4 Polar Coordinates 6.5

More information

Mechanics 1: Vectors

Mechanics 1: Vectors Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information