Similarity and Diagonalization. Similar Matrices


 Julius Hart
 1 years ago
 Views:
Transcription
1 MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that P AP = B. If A is similar to B, we write A B. Remarks If A B, we can write, equivalently, that A = P BP or AP = P B. If A B, we can write, equivalently, that A = P BP or AP = P B. The matrix P depends on A and B. It is not unique for a given pair of similar matrices A and B. To see this, simply take A = B = I, in which case I I, since P IP = I for any invertible matrix P. Theorem 4.2. Let A, B and C be n n matrices. a. A A. b. If A B, then B A. c. If A B and B C, then A C. This means that is an equivalence relation. The main problem is to find a good representative in each equivalence class. The real meaning of P AP is that this is the matrix of the same linear transformation (given in the standard basis by the matrix A) in a different basis, which consists of the columns of P. This really much better explains why many properties are the same for A and P AP. Theorem Let A and B be n n matrices with A B. Then a. det A = det B. b. A is invertible if and only if B is invertible. c. A and B have the same rank. d. A and B have the same characteristic polynomial. e. A and B have the same eigenvalues.
2 MATH022 Linear Algebra Brief lecture notes 49 Diagonalization Definition. An n n matrix A is diagonalizable if there is a diagonal matrix D such that A is similar to D that is, if there is an invertible matrix P such that P AP = D. Note that the eigenvalues of D are its diagonal elements, and these are the same eigenvalues as for A. Theorem Let A be an n n matrix. Then A is diagonalizable if and only if A has n linearly independent eigenvectors. More precisely, there exists an invertible matrix P and a diagonal matrix D such that P AP = D if and only if the columns of P are n linearly independent eigenvectors of A and the diagonal entries of D are the eigenvalues of A corresponding to the eigenvectors in P in the same order. Theorem If A is an n n matrix with n distinct eigenvalues, then A is diagonalizable....since eigenvectors for distinct eigenvalues are lin. indep. by Th Theorem Let A be an n n matrix and let λ, λ 2,..., λ k be distinct eigenvalues of A. If B i is a basis for the eigenspace E λi, then B = B B 2 B k (i.e., the total collection of basis vectors for all of the eigenspaces) is linearly independent. Lemma If A is an n n matrix, then the geometric multiplicity of each eigenvalue is less than or equal to its algebraic multiplicity. Theorem The Diagonalization Theorem Let A be an n n matrix whose distinct eigenvalues are λ, λ 2,..., λ k. The following statements are equivalent: a. A is diagonalizable. b. The union B of the bases of the eigenspaces of A (as in Theorem 4.24) contains n vectors (which is equivalent to k i= dim E λ i = n). c. The algebraic multiplicity of each eigenvalue equals its geometric multiplicity and all eigenvalues are real numbers this condition is missing in the textbook!.
3 MATH022 Linear Algebra Brief lecture notes 50 In these theorems the eigenvalues are supposed to be real numbers, although for real matrices there may be some complex roots of the characteristic polynomial (in fact, these theorems remain valid for vector spaces and matrices over C then, of course, one does not need the condition that the eigenvalues be all real). Theorem 4.27 and Th actually give a method to decide whether A is diagonalizable, and if yes, to find P such that P AP is diagonal: the columns of P are vectors of bases of the eigenspaces. Example. For A = the characteristic polynomial is 2 2 λ 2 2 det(a λi) = 2 λ λ = ( λ) ( λ) 4( λ) 4( λ) = = (λ 5)(λ + ) 2. Thus, eigenvalues are 5 and x Eigenspace E : (A ( )I) x = 0; x 2 = 0 0 ; x = x 2 x 3, x 3 0 where x 2, x 3 are free var.; E = s t s s, t R ; t a basis of E :, 0. 0 Eigenspace E 5 : (A 5I) x = 0; x x 2 = 0 0 ; solve this x 3 0 system...: x = x 2 = x 3, where x 3 is a free var.; E 5 = t t t R ; t a basis of E 5 :. Together the dimensions add up to 3, so B 5 B is a basis of R 3, so A is diagonalizable Let P = 0 ; then P AP = (Note that is we arrange the eigenvectors in a different order, then the eigenvalues on the diagonal must be arranged accordingly: let Q = 0 ; 0 then Q AQ = ) 0 0 5
4 MATH022 Linear Algebra Brief lecture notes Example. For A = 0 82 the eigenvalues are 3,, and 7. Since they are distinct, the matrix is diagonalizable (To find that P such that P AP = 0 0, one still needs to solve those linear systems (A (λ)i) x = 0...). Example. For A = the eigenvalue is 3 of alg. multiplicity Eigenspace E 3 : x = 0; matrix has rank 2, so dim E 3 =. So A is not digonalizable. 2 Example. Use diagonalization to find A 00 for A =. Eigenvalues 2 {[ 2 2 are... and 3. Eigenspace E 3 : x = 0; x 2 2 = x 2 ; basis. {} [ ]} ] 2 2 Eigenspace E : x = 0; x 2 2 = x 2 ; basis. Let P = ; 0 then P AP = D =. Now, A = P DP 0 3, so A 00 = (P DP ) 00 = 00 0 /2 /2 P DP P DP P DP = P D 00 P = = [ 0 3 ] /2 /2 0 /2 / /2 / = /2 / = [ /2 /2 ] 3 (/2)
5 MATH022 Linear Algebra Brief lecture notes 52 Orthogonality in R n We introduce the dot product of vectors in R n by setting that is, if then u = u v = u T v; u. u n u v = u T v = u u n and v = v. v n v. v n = u v + u 2 v u n v n. The dot product is frequently called scalar product or inner product; we shall use the latter term in a slightly more general context. Notice the following properties of the dot product which can be easily checked directly or immediately follow from the properties of matrix multiplication. They hold for arbitrary vectors u, v, w R n and arbitrary scalar λ. u v = v u (commutativity). u ( v + w) = u v + u w u (λ v) = λ( v u) (The last two properties are referred to as linearity of the dot product.) u u = u u 2 n and therefore u u 0. Moreover, if u u = 0 then u = 0. We define the length (or norm) v of vector v = v. v n by v = v v = v 2 + v v2 n Orthogonal and Orthonormal Sets of Vectors A set of vectors v, v 2,..., v k
6 MATH022 Linear Algebra Brief lecture notes 53 in R n is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal that is, if v i v j = 0 whenever i j for i, j =, 2,..., k The standard basis e, e 2,..., e n in R n is an orthogonal set, as is any subset of it. illustrates, there are many other possibilities. As the first example Example 5. Show that { v, v 2, v 3 } is an orthogonal set in R 3 if v = 2, v 2 = 0, v 3 = Solution We must show that every pair of vectors from this set is orthogonal. This is true, since v v 2 = 2(0) + () + ( )() = 0 v 2 v 3 = 0() + ( ) + ()() = 0 v v 3 = 2() + ( ) + ( )() = 0 Theorem 5.. If v, v 2,..., v k is an orthogonal set of nonzero vectors in R n, then these vectors are linearly independent. Proof If c, c 2,..., c k are scalars such that c v + c 2 v c k v k = 0, then or, equivalently, (c v + c 2 v c k v k ) v i = 0 v i = 0 Since c ( v v i ) + + c i ( v i v i ) + + c k ( v k v i ) = 0 () v, v 2,..., v k is an orthogonal set, all of the dot products in equation () are zero, except v i v i. Thus, equation () reduces to c i ( v i v i ) = 0
7 MATH022 Linear Algebra Brief lecture notes 54 Now, v i v i 0 because v i 0 by hypothesis. So we must have c i = 0. The fact that this is true for all i =,..., k implies that v, v 2,..., v k is a linearly independent set. Remark. Thanks to the Theorem 5., we know that if a set of vectors is orthogonal, it is automatically linearly independent. For example, we can immediately deduce that the three vectors in Example 5. are linearly independent. Contrast this approach with the work needed to establish their linear independence directly! An orthogonal basis for a subspace W of R n is a basis of W that is an orthogonal set. Example 5.2. The vectors v = 2, v 2 = 0, v 3 = from Example 5. are orthogonal and, hence, linearly independent. Since any three linearly independent vectors in R 3 form a basis in R 3, by the Fundamental Theorem of Invertible Matrices, it follows that v, v 2, v 3 is an orthogonal basis for R 3. Theorem 5.2 Let { v, v 2,..., v k } be an orthogonal basis for a subspace W of R n and let w be any vector in W. Then the unique scalars c, c 2,..., c k such that are given by Proof Since w = c v + c 2 v c k v k c i = w v i v i v i for i =,..., k v, v 2,..., v k is a basis for W, we know that there are unique scalars c, c 2,..., c k such that w = c v + c 2 v c k v k (from Theorem 3.29). To establish the formula for c i, we take the dot product of this linear combination with v i to obtain w v i = (c v + c 2 v c k v k ) v i = c ( v v i ) + + c i ( v i v i ) + + c k ( v k v i )
8 MATH022 Linear Algebra Brief lecture notes 55 = c i ( v i v i ) since v j v i = 0 for j i. Since v i 0, v i v i 0. Dividing by v i v i, we obtain the desired result. A unit vector is a vector of unit length. Notice that if v 0 then u = v v is a unit vector collinear (directed along the same line) as v: v = v u. A set of vectors in R n is an orthonormal set if it is an orthogonal set of unit vectors. An orthonormal basis for a subspace W of R n is a basis of W that is an orthonormal set. Theorem 5.3 Let { q, q 2,..., q k } be an orthonormal basis for a subspace W of R n and let w be any vector in W. Then w = ( w q ) q + ( w q 2 ) q ( w q k ) q k and this representation is unique. Theorem 5.4. The columns of an m n matrix Q form an orthonormal set if and only if Q T Q = I n. Proof. We need to show that (Q T Q) ij = { 0 if i j if i = j Let q i denote the ith column of Q (and, hence, the ith row of Q T ). Since the (i, j) entry of Q T Q is the dot product of the ith row of Q T and the jth column of Q, it follows that (Q T Q) ij = q i q j (2) by the definition of matrix multiplication. Now the columns of Q form an orthonormal set if and only if { 0 if i j q i q j = if i = j which, by equation (2) holds if and only if { (Q T 0 if i j Q) ij = if i = j
9 MATH022 Linear Algebra Brief lecture notes 56 This completes the proof. If the matrix Q in Theorem 5.4 is a square matrix, is has a special name. An n n matrix Q whose columns form an orthonormal set is called an orthogonal matrix. The most important fact about orthogonal matrices is given by the next theorem. Theorem 5.5. A square matrix Q is orthogonal if and only if Q = Q T. Proof. By Theorem 5.4, Q is orthogonal if and only if Q T Q = I. This is true if and only if Q is invertible and Q = Q T, by Theorem 3.3. Example Each of the following matrices is orthogonal: 0, 0 0, 0 [ ] / 2 / 2 / 2 /, 2 [ cos α sin α ] sin α cos α Theorem 5.6. equivalent: Let Q be an n n matrix. The following statements are a. Q is orthogonal. b. Q x = x for every x in R n. c. Q x Q y = x y for every x and y in R n. If Q is an orthogonal matrix, then its rows form an or Theorem 5.7. thonormal set. Theorem 5.8. Let Q be an orthogonal matrix. a. Q is orthogonal. b. det Q = ±. c. If λ is an eigenvalue of Q, then λ =. d. If Q and Q 2 are orthogonal n n matrices, then so is Q Q 2.
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More information1 Eigenvalues and Eigenvectors
Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationMAT 242 Test 2 SOLUTIONS, FORM T
MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationSection 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =
Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationUniversity of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More information4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION
4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationMATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.
MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An mbyn matrix is a rectangular array of numbers that has m rows and n columns: a 11
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationLecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
More informationMATH10212 Linear Algebra B Homework 7
MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More informationPresentation 3: Eigenvalues and Eigenvectors of a Matrix
Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues
More informationPractice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16.
Practice Math 110 Final Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. 1. Let A = 3 1 1 3 3 2. 6 6 5 a. Use Gauss elimination to reduce A to an upper triangular
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationNOTES on LINEAR ALGEBRA 1
School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura
More information(January 14, 2009) End k (V ) End k (V/W )
(January 14, 29) [16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of index p is necessarily normal. Let G act on cosets gh of H by left multiplication.
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationUsing determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:
Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationUniversity of Ottawa
University of Ottawa Department of Mathematics and Statistics MAT 1302A: Mathematical Methods II Instructor: Alistair Savage Final Exam April 2013 Surname First Name Student # Seat # Instructions: (a)
More informationMath 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010
Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 SelfAdjoint and Normal Operators
More informationSec 4.1 Vector Spaces and Subspaces
Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationv w is orthogonal to both v and w. the three vectors v, w and v w form a righthanded set of vectors.
3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with
More informationProblems for Advanced Linear Algebra Fall 2012
Problems for Advanced Linear Algebra Fall 2012 Class will be structured around students presenting complete solutions to the problems in this handout. Please only agree to come to the board when you are
More informationLinear Algebra I. Ronald van Luijk, 2012
Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.
More informationWHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?
WHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course
More informationAdvanced Techniques for Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz
Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional
More informationSolution based on matrix technique Rewrite. ) = 8x 2 1 4x 1x 2 + 5x x1 2x 2 2x 1 + 5x 2
8.2 Quadratic Forms Example 1 Consider the function q(x 1, x 2 ) = 8x 2 1 4x 1x 2 + 5x 2 2 Determine whether q(0, 0) is the global minimum. Solution based on matrix technique Rewrite q( x1 x 2 = x1 ) =
More informationChapter 20. Vector Spaces and Bases
Chapter 20. Vector Spaces and Bases In this course, we have proceeded stepbystep through lowdimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationIntroduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra  1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
More informationNOTES ON LINEAR TRANSFORMATIONS
NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all
More informationC 1 x(t) = e ta C = e C n. 2! A2 + t3
Matrix Exponential Fundamental Matrix Solution Objective: Solve dt A x with an n n constant coefficient matrix A x (t) Here the unknown is the vector function x(t) x n (t) General Solution Formula in Matrix
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More information2.5 Elementary Row Operations and the Determinant
2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationsome algebra prelim solutions
some algebra prelim solutions David Morawski August 19, 2012 Problem (Spring 2008, #5). Show that f(x) = x p x + a is irreducible over F p whenever a F p is not zero. Proof. First, note that f(x) has no
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More informationFacts About Eigenvalues
Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationEigenvalues and eigenvectors of a matrix
Eigenvalues and eigenvectors of a matrix Definition: If A is an n n matrix and there exists a real number λ and a nonzero column vector V such that AV = λv then λ is called an eigenvalue of A and V is
More informationMATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006
MATH 511 ADVANCED LINEAR ALGEBRA SPRING 26 Sherod Eubanks HOMEWORK 1 1.1 : 3, 5 1.2 : 4 1.3 : 4, 6, 12, 13, 16 1.4 : 1, 5, 8 Section 1.1: The EigenvalueEigenvector Equation Problem 3 Let A M n (R). If
More informationNumerical Analysis Lecture Notes
Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationMA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am  :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.
More informationCalculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants
Calculus and linear algebra for biomedical engineering Week 4: Inverse matrices and determinants Hartmut Führ fuehr@matha.rwthaachen.de Lehrstuhl A für Mathematik, RWTH Aachen October 30, 2008 Overview
More informationMatrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,
LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x
More information7  Linear Transformations
7  Linear Transformations Mathematics has as its objects of study sets with various structures. These sets include sets of numbers (such as the integers, rationals, reals, and complexes) whose structure
More information1 Orthogonal projections and the approximation
Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationLecture Notes 2: Matrices as Systems of Linear Equations
2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationSolution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.
Solutions to Math 30 Takehome prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)
More informationSection 4.4 Inner Product Spaces
Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer
More informationLecture Note on Linear Algebra 15. Dimension and Rank
Lecture Note on Linear Algebra 15. Dimension and Rank WeiShi Zheng, wszheng@ieee.org, 211 November 1, 211 1 What Do You Learn from This Note We still observe the unit vectors we have introduced in Chapter
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More informationCHARACTERISTIC ROOTS AND VECTORS
CHARACTERISTIC ROOTS AND VECTORS 1 DEFINITION OF CHARACTERISTIC ROOTS AND VECTORS 11 Statement of the characteristic root problem Find values of a scalar λ for which there exist vectors x 0 satisfying
More information5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES
5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves
More informationLinear Least Squares
Linear Least Squares Suppose we are given a set of data points {(x i,f i )}, i = 1,...,n. These could be measurements from an experiment or obtained simply by evaluating a function at some points. One
More informationMathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 19967 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More information2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors
2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the
More informationT ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationNotes on Jordan Canonical Form
Notes on Jordan Canonical Form Eric Klavins University of Washington 8 Jordan blocks and Jordan form A Jordan Block of size m and value λ is a matrix J m (λ) having the value λ repeated along the main
More informationLinear Algebra Test 2 Review by JC McNamara
Linear Algebra Test 2 Review by JC McNamara 2.3 Properties of determinants: det(a T ) = det(a) det(ka) = k n det(a) det(a + B) det(a) + det(b) (In some cases this is true but not always) A is invertible
More information4 MT210 Notebook 4 3. 4.1 Eigenvalues and Eigenvectors... 3. 4.1.1 Definitions; Graphical Illustrations... 3
MT Notebook Fall / prepared by Professor Jenny Baglivo c Copyright 9 by Jenny A. Baglivo. All Rights Reserved. Contents MT Notebook. Eigenvalues and Eigenvectors................................... Definitions;
More informationChapter 8. Matrices II: inverses. 8.1 What is an inverse?
Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we
More information1 Spherical Kinematics
ME 115(a): Notes on Rotations 1 Spherical Kinematics Motions of a 3dimensional rigid body where one point of the body remains fixed are termed spherical motions. A spherical displacement is a rigid body
More informationThe Hadamard Product
The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would
More informationLinear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.
Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a subvector space of V[n,q]. If the subspace of V[n,q]
More information