Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89

2 9 CHAPTER 6 LINEAR TRANSFORMATION Recall, from calculus courses, a funtion f : X Y from a set X to a set Y associates to each x X a unique element f(x) Y Following is some commonly used terminologies: X is called the domain of f Y is called the codomain of f If f(x) = y, then we say y is the image of x The preimage of y is preimage(y) = {x X : f(x) = y} 4 The range of f is the set of images of elements in X In this section we deal with functions from a vector sapce V to another vector space W, that respect the vector space structures Such a function will be called a linear transformation, defined as follows Definition 6 Let V and W be two vector spaces A function T : V W is called a linear transformation of V into W, if following two prperties are true for all u,v V and scalars c T(u+v) = T(u)+T(v) (We say that T preserves additivity) T(cu) = ct(u) (We say that T preserves scalar multiplication) Reading assignment Read Textbook, Examples -, p 6- Trivial Examples: Following are two easy exampes

3 6 INTRO TO LINEAR TRANSFORMATION 9 Let V,W be two vector spaces Define T : V W as T(v) = for all v V Then T is a linear transformation, to be called the zero transformation Let V be a vector space Define T : V V as T(v) = v for all v V Then T is a linear transformation, to be called the identity transformation of V 6 Properties of linear transformations Theorem 6 Let V and W be two vector spaces Suppose T : V W is a linear transformation Then T() = T( v) = T(v) for all v V T(u v) = T(u) T(v) for all u,v V 4 If v = c v + c v + + c n v n then T(v) = T (c v + c v + + c n v n ) = c T (v )+c T (v )+ +c n T (v n ) Proof By property () of the definition 6, we have T() = T() = T() =

4 9 CHAPTER 6 LINEAR TRANSFORMATION So, () is proved Similarly, T( v) = T(( )v) = ( )T(v) = T(v) So, () is proved Then, by property () of the definition 6, we have T(u v) = T(u + ( )v) = T(u) + T(( )v) = T(u) T(v) The last equality follows from () So, () is proved To prove (4), we use induction, on n For n = : we have T(c v ) = c T(v ), by property () of the definition 6 For n =, by the two properties of definition 6, we have T(c v + c v ) = T(c v ) + T(c v ) = c T(v ) + c T(v ) So, (4) is prove for n = Now, we assume that the formula (4) is valid for n vectors and prove it for n We have T (c v + c v + + c n v n ) = T (c v + c v + + c n v n )+T (c n v n ) = (c T (v ) + c T (v ) + + c n T (v n )) + c n T(v n ) So, the proof is complete 6 Linear transformations given by matrices Theorem 6 Suppose A is a matrix of size m n Given a vector v = v v Rn define T(v) = Av = A v v v n v n Then T is a linear transformation from R n to R m

5 6 INTRO TO LINEAR TRANSFORMATION 9 Proof From properties of matrix multiplication, for u,v R n and scalar c we have and T(u + v) = A(u + v) = A(u) + A(v) = T(u) + T(v) The proof is complete T(cu) = A(cu) = cau = ct(u) Remark Most (or all) of our examples of linear transformations come from matrices, as in this theorem Reading assignment Read Textbook, Examples -, p 65-6 Projections along a vector in R n Projections in R n is a good class of examples of linear transformations We define projection along a vector Recall the definition 56 of orthogonal projection, in the context of Euclidean spaces R n Definition 64 Suppose v R n is a vector Then, for u R n define proj v (u) = v u v v Then proj v : R n R n is a linear transformation Proof This is because, for another vector w R n and a scalar c, it is easy to check proj v (u+w) = proj v (u)+proj v (w) and proj v (cu) = c (proj v (u)) The point of such projections is that any vector u R n can be written uniquely as a sum of a vector along v and another one perpendicular to v: u = proj v (u) + (u proj v (u))

6 94 CHAPTER 6 LINEAR TRANSFORMATION It is easy to check that (u proj v (u)) proj v (u) Exercise 65 (Ex 4, p 7) Let T(v,v,v ) = (v + v, v v,v v ) Compute T( 4, 5, ) Solution: T( 4, 5, ) = ( ( 4)+5, 5 ( 4), 4 ) = (,, 5) Compute the preimage of w = (4,, ) Solution: Suppose (v,v,v ) is in the preimage of (4,, ) Then (v + v, v v,v v ) = (4,, ) So, v +v = 4 v v = v v = The augmented matrix of this system is 4 its Gauss Jordan f orm So, Preimage((4,, )) = {(574, 8574, 574)}

7 6 INTRO TO LINEAR TRANSFORMATION 95 Exercise 66 (Ex p 7) Determine whether the function T : R R T(x,y) = (x,y) is linear? Solution: We have T((x,y) + (z,w)) = T(x + z,y + w) = ((x + z),y + w) (x,y) + (z,w) = T(x,y) + T(z,w) So, T does not preserve additivity So, T is not linear Alternately, you could check that T does not preserve scalar multiplication Alternately, you could check this failure(s), numerically For example, T((, ) + (, )) = T(, ) = (9, ) T(, ) + T(, ) Exercise 67 (Ex 4, p 7) Let T : R R be a linear transformation such that T(,, ) = (, 4, ), T(,, ) = (,, ), T(,, ) = (,, ) Compute T(, 4, ) Solution: We have (, 4, ) = (,, ) + 4(,, ) (,, ) So, T(, 4, ) = T(,, )+4T(,, ) T(,, ) = (, 4, )+(,, )+(,, ) = (, 5, ) Remark A linear transformation T : V V can be defined, simply by assigning values T(v i ) for any basis {v,v,,v n } of V In this case of the our problem, values were assigned for the standard basis {e,e,e } of R

8 96 CHAPTER 6 LINEAR TRANSFORMATION Exercise 68 (Ex 8, p 7) Let 4 A = Let T : R 5 R be the linear transformation T(x) = Ax Compute T(,,,, ) Solution: T(,,,, ) = 4 = 7 5 Compute preimage, under T, of (, 8) Solution: The preimage consists of the solutions of the linear system 4 x x x x 4 = 8 The augmented matrix of this system is 4 8 x 5 The Gauss-Jordan form is

9 6 INTRO TO LINEAR TRANSFORMATION 97 We use parameters x = t,x 4 = s,x 5 = u and the solotions are given by x = 5 + t + 5s + 4u,x = t,x = 4 + 5s,x 4 = s,x 5 = u So, the preimage T (, 8) = {(5+t+5s+4u, t, 4+5s, s, u) : t,s,u R} Exercise 69 (Ex 54 (edited), p 7) Let T : R R be the linear transformation such that T(, ) = (, ) and T(, ) = (, ) Compute T(, 4) Solution: We have to write (, 4) = a(, )+b(, ) Solving (, 4) = 5(, ) 5(, ) So, T(, 4) = 5T(, ) 5T(, ) = 5(, ) 5(, ) = (, 5) Compute T(, ) Solution: We have to write (, ) = a(, )+b(, ) Solving (, ) = 5(, ) 5(, ) So, T(, ) = 5T(, ) 5T(, ) = 5(, ) 5(, ) = (, ) Exercise 6 (Ex 6 (edited), p 7) Let T : R R the projection T(u) = proj v (u) where v = (,, )

10 98 CHAPTER 6 LINEAR TRANSFORMATION Find T(x,y,z) Solution: See definition 64 proj v (x,y,z) = v (x,y,z) v v = (,, ) (x,y,z) (,, ) ( x + y + z = Compute T(5,, 5) (,, ) = x + y + z (,, ), x + y + z, x + y + z Solution: We have ( x + y + z T(5,, 5) =, x + y + z, x + y + z ) ( =,, ) Compute the matrix of T ) Solution: The matrix is given by A =, because T(x,y,z) = x y z

11 6 KERNEL AND RANGE OF LINEAR TRANSFORMATION99 6 Kernel and Range of linear Transformation We will essentially, skip this section Before we do that, let us give a few definitions Definition 6 Let V,W be two vector spaces and T : V W a linear transformation Then the kernel of T, denoted by ker(t), is the set of v V such that T(v) = Notationally, ker(t) = {v V : T(v) = } It is easy to see the ker(t) is a subspace of V Recall, range of T, denoted by range(t), is given by range(t) = {v W : w = T(v) for some v V } It is easy to see the range(t) is a subspace of W We say the T is isomorphism, if T is one-to-one and onto It follows, that T is an isomorphism if ker(t) = {} and range(t) = W

12 CHAPTER 6 LINEAR TRANSFORMATION 6 Matrices for Linear Transformations Homework: Textbook, 6, Ex 5, 7,,, 7, 9,,, 5, 9,,, 5(a,b), 7(a,b), 9, 4, 45, 47; p 97 Optional Homework: Textbook, 6, Ex 57, 59; p 98 (We will not grade them) In this section, to each linear transformation we associate a matrix Linear transformations and matrices have very deep relationships In fact, study of linear transformations can be reduced to the study of matrices and conversely First, we will study this relationship for linear transformations T : R n R m ; and later study the same for linear transformations T : V W of general vector spaces In this section, we will denote the vectors in R n, as column matrices Recall, written as columns, the standard basis of R n is given by B = {e,e,,e n },,, Theorem 6 Let T : R n R m be a linear transformation Write T(e ) = a a,t(e ) = a a,,t(e n) = a n a n a m a m a mn

13 6 MATRICES FOR LINEAR TRANSFORMATIONS These columns T(e ),T(e ),T(e n ) form a m n matrix A as follows, a a a n A = a a a n a m a m a mn This matrix A has the property that T(v) = Av for all v R n This matrix A is called the standard matrix of T Proof We can write v R n as v v = v = v e + v e + + v n e n v n We have, Av = a a a n a a a n a m a m a mn v v v n = v a a a m +v a a a m + +v n = v T (e )+v T (e )+ +v n T (e n ) = T (v e + v e + + v n e n ) = T(v) The proof is complete Reading assignment: Read Textbook, Examples,; page 89-9 In our context of linear transformations, we recall the following definition of composition of functions Definition 6 Let a n a n a mn T : R n R m, T : R m R p

14 CHAPTER 6 LINEAR TRANSFORMATION be two linear transformations Define the composition T : R n R p of T with T as T(v) = T (T (v)) for v R n The composition T is denoted by T = T ot Diagramatically, R n T R m T=T ot T R p Theorem 6 Suppose T : R n R m, T : R m R p are two linear transformations Then, the composition T = T ot : R n R p is a linear transformation Suppose A is the standard matrix of T and A is the standard matrix of T Then, the standard matrix of the composition T = T ot is the product A = A A Proof For u,v R n and scalars c, we have T(u+v) = T (T (u+v)) = T (T (u)+t v)) = T (T (u))+t T (v)) = T(u)+T(v) and T(cu) = T (T (cu)) = T (ct (u)) = ct (T (u)) = ct(u) So, T preserves addition and scalar multiplication Therefore T is a linear transformation and () is proved To prove (), we have T(u) = T (T (u)) = T (A u) = A (A u) = (A A )u

15 6 MATRICES FOR LINEAR TRANSFORMATIONS Therefore T(e ) is the first column of A A, T(e ) is the second column of A A, and so on Therefore, the standard matrix of T is A A The proof is complete Reading assignment: Read Textbook, Examples ; page 9 Definition 64 Let T : R n R n, T : R n R n be two linear transformations such that for every v R n we have T (T (v)) = v and T (T (v)) = v, then we say that T is the inverse of T, and we say that T is invertible Such an inverse T of T is unique and is denoted by T (Remark Let End(R n ) denote the set of all linear transformations T : R n R n Then End(R n ) has a binary operation by composition The identity operation I : R n R n acts as the identitiy under this composition operation The definition of inverse of T above, just corresponds to the inverse under this composition operation) Theorem 65 Let T : R n R n be a linear transformations and let A be the standard matrix of T Then, the following are equivalent, T is invertible T is an isomorphism A is invertible And, if T is invertible, then the standard matrix of T is A

16 4 CHAPTER 6 LINEAR TRANSFORMATION Proof (First, recall definition 6, that T is isomorphism if T is to and onto) (Proof of () () :) Suppose T is invertible and T be the inverse Suppose T(u) = T(v) Then, u = T (T(u)) = T (T(v)) = v So, T is to Also, given u R n we have So, T is an isomorphism u = T(T (u)) So, T onto R n (Proof of () () :) So, assume T is an isomorphism Then, Ax = T(x) = T() x = So, Ax = has an unique solution Therefore A is invertible and () follows from () (Proof of () () :) Suppose A is invertible Let T (x) = A x, then T is a linear transformation and it is easily checked that T is the inverse of T So, () follows from () The proof is complete Reading assignment: Read Textbook, Examples 4; page 9 6 Nonstandard bases and general vector spaces The above discussion about (standard) matrices of linear transformations T had to be restricted to linear transformations T : R n R m This wa sbecause R n has a standard basis {e,e,,e n, } that we could use Suppose T : V W is a linear transformation between two abstract vector spaces V,W Since V and W has no standard bases, we cannot associate a matrix to T But, if we fix a basis B of V and B of W we can associate a matrix to T We do it as follows

17 6 MATRICES FOR LINEAR TRANSFORMATIONS 5 Theorem 66 Suppose T : V W is a linear transformation between two vector spaces V,W Let B = {v,v,,v n } be basis of V and B = {w,w,,w m } be basis of w We can write T(v ) = w w w m a a a m Writing similar equations for T(v ),,T(v n ), we get T(v ) T(v ) T(v n ) = w w w m a a a n a a a n a m a m a mn Then, for v = x v + x v + + x n v n, We have a a a n T(v) = w w w m a a a n a m a m a mn Write A = a ij Then, T is determined by A, with respect to bases B,B x x x n Exercise 67 (Ex 6, p 97) Let T(x,y,z) = (5x y + z, z + 4y, 5x + y)

18 6 CHAPTER 6 LINEAR TRANSFORMATION What is the standard matrix of T? Solution: We have T : R R We write vectors x R as columns x x = y instead of (x, y, z) Recall the standard basis e = We have T(e ) = z, e = 5 5, T(e ) =, e = So, the standard matrix of T is 5 A = Exercise 68 (Ex, p 97) Let of R, T(e ) = T(x,y,z) = (x + y, y z) Write down the standard matrix of T and use it to find T(,, ) Solution: In this case, T : R R With standard basis e,e,e as in exercise 67, we have T(e ) =, T(e ) =, T(e ) =

19 6 MATRICES FOR LINEAR TRANSFORMATIONS 7 So, the standard matrix of T is A = Therefore, T(,, ) = A = = 4 We will write our answer in as a row: T(,, ) = (, 4) Exercise 69 (Ex 8, p 97) Let T be the reflection in the line y = x in R So, T(x,y) = (y,x) Write down the standard matrix of T Solution: In this case, T : R R With standard basis e = (, ) T,e = (, ) T, we have T(e ) =, T(e ) = So, the standard matrix of T is A = Use the standard matrix to compute T(, 4) Solution: Of course, we know T(, 4) = (4, ) They want use to use the standard matrix to get the same answer We have 4 T(, 4) = A = = or T(, 4) = (4, ) 4 4

20 8 CHAPTER 6 LINEAR TRANSFORMATION Lemma 6 Suppose T : R R is the counterclockwise rotation by a fixed angle θ Then T(x,y) = cos θ sin θ x sin θ cos θ y Proof We can write x = r cos φ, y = r sin φ, where r = x + y, tanφ = y/x By definition T(x,y) = (r cos(φ + θ),r sin(φ + θ)) Using trig-formulas r cos(φ + θ) = r cosφcos θ r sin φ sin θ = x cos θ y sin θ and r sin(φ + θ) = r sin φ cos θ + r cos φ sin θ = y cos θ + x sin θ So, cos θ sin θ T(x,y) = sin θ cos θ The proof is complete x y Exercise 6 (Ex, p 97) Let T be the counterclockwise rotation in R by angle o Write down the standard matrix of T Solution: We use lemma 6, with θ = So, the standard matrix of T is A = cosθ sin θ cos sin = sin θ cos θ sin cos = 5 5

21 6 MATRICES FOR LINEAR TRANSFORMATIONS 9 Compute T(, ) Solution: We have T(, ) = A = 5 5 = + We write our answer as rows: T(, ) = (, + ) Exercise 6 (Ex, p 97) Let T be the projection on to the vector w = (, 5) in R : T(u) = proj w (u) Find the standard matrix Solution: See definition 64 T(x,y) = proj w (x,y) = w (x,y) (, 5) (x,y) x 5y w = (, 5) = (, 5) w (, 5) 6 ( ) x 5y 5x + 5y =, 6 6 So, with e = (, ) T,e = (, ) T we have (write/think everything as columns): T(e ) = So, the standard matrix is Compute T(, ) A =, T(e ) = Solution: We have T(, ) = A = We write our answer in row-form: T(, ) = ( 5, 65 6) =

22 CHAPTER 6 LINEAR TRANSFORMATION Exercise 6 (Ex 6, p 97) Let T(x,y,z) = (x y + z, x y,y 4z) Write down the standard matrix of T Solution: with e = (,, ) T,e = (,, ) T,e = (,, ) T we have (write/think everything as columns): T(e ) =, T(e ) = So, the standard matrix is A = Compute T(,, ) 4, T(e ) = 4 Solution: We have T(,, ) = A = 4 = 7 7 Exercise 64 (Ex 4, p 97) Let T : R R, T (x,y) = (x y, x + y) and T : R R, T (x,y) = (y, ) Compute the standard matrices of T = T ot and T = T T Solution: We solve it in three steps:

23 6 MATRICES FOR LINEAR TRANSFORMATIONS Step-: First, compute the standard matrix of T With e = (, ) T,e = (, ) T we have (write/think everything as columns): T (e ) =, T (e ) = So, the standard matrix of T is A = Step-: Now, compute the standard matrix of T With e = (, ) T,e = (, ) T we have : T (e ) =, T (e ) = So, the standard matrix of T is A = Step- By theorem 6, the standard matrix of T = T T is A A = = So, T(x,y) = (x+y, ) Similarly, the standard matrix of T = T T is A A = = So, T (x,y) = (y, y) Exercise 65 (Ex 46, p 97) Determine whether T(x,y) = (x + y,x y)

24 CHAPTER 6 LINEAR TRANSFORMATION is invertible or not Solution: Because of theorem 65, we will check whether the standard matrix of T is invertible or not With e = (, ) T,e = (, ) T we have : T(e ) =, T(e ) = So, the standard matrix of T is A = Note, deta = 4 So, T is invertible and hence T is invertible Exercise 66 (Ex 58, p 97) Determine whether T(x,y) = (x y,,x + y) Use B = {v = (, ),v = (, )} as basis of the domain R and B = {w = (,, ),w = (,, ),w = (,, )} as basis of codomain R Compute matrix of T with respect to B,B Solution: We use theorem 66 We have T(u ) = T(, ) = (,, ), T(u ) = T(, ) = (,, ) We solve the equation: (,, ) = aw + bw + cw = a(,, ) + b(,, ) + c(,, ) and we have (,, ) = (,, ) (,, )+(,, ) = w w w

25 64 TRANSITION MATRICES AND SIMILARITY Similarly, we solve (,, ) = aw + bw + cw = a(,, ) + b(,, ) + c(,, ) and we have (,, ) = (,, ) (,, ) + (,, ) = w w w So, the matrix of T with respect to the bases B,B is A = 64 Transition Matrices and Similarity We will skip this section I will just explain the section heading You know what are Transition matrices of a linear transformation T : V W They are a matrices described in theorem 66 Definition 64 Suppose A,B are two square matrices of size n n We say A,B are similar, if A = P BP for some invertible matrix P

26 4 CHAPTER 6 LINEAR TRANSFORMATION 65 Applications of Linear Trans Homework: Textbook, 65 Ex (a), (a), 5, 7, 9, 5, 7, 9, 4, 49, 5, 5, 55, 6, 65; page In this section, we discuss geometric interpretations of linear transformations represented by elementary matrices Proposition 65 Let A be a matrix and x T(x,y) = A y We will write the right hand side as a row, which is an abuse of natation If A =, then T(x,y) = A x y = ( x,y) T represents the reflection in y axis See Textbook, Example (a), p47 for the diagram If A =, then T(x,y) = A x y = (x, y) T represents the reflection in x axis See Textbook, Example (b), p47 for the diagram

27 65 APPLICATIONS OF LINEAR TRANS 5 If A =, then T(x,y) = A x y = (y,x) T represents the reflection in line y = x See Textbook, Example (c), p47 for the diagram 4 If A = k, then T(x,y) = A x y = (kx,y) T If k >, then T represents expansion in horizontal direction and < k <, then T represents contraction in horizontal direction See Textbook, Example Fig 6, p49 for diagrams 5 If A = k, then T(x,y) = A x y = (x,ky) T If k >, then T represents expansion in vertical direction and < k <, then T represents contraction in vertical direction See Textbook, Example Fig 6, p49 for diagrams 6 If A = k, then T(x,y) = A x y = (x + ky,y) T Then T represents horizontal shear (Assume k > ) The upperhalf plane are sheared to right and lower-half plane are sheared to left The points on the x axis reamain fixed See Textbook, Example, fig 64, p49 for diagrams

28 6 CHAPTER 6 LINEAR TRANSFORMATION 7 If A = k, then T(x,y) = A x y = (x,kx + y) T Then T represents vertical shear (Assume k > ) The righthalf-plane are sheared to upward and left-half-plane are sheared to downward The points on the y axis reamain fixed See Textbook, Example, fig 65, p49 for diagrams 65 Computer Graphics Linear transformations are used in computer graphics to move figures on the computer screens I am sure all kinds of linear (and nonlinear) transformations are used Here, we will only deal with rotations by an angle θ, around () x axis, () y axis and () z axis as follows: Proposition 65 Suppose θ is an angle Suppose we want to rotate the point (x, y, z) counterclockwise about z axis through an angle θ Let us denote this transformation by T and write T(x,y,z) = (x,y,z ) T Then using lemma 6, we have T(x,y,z) = x y z = cos θ sin θ x sin θ cos θ y z = x cos θ y sin θ x sin θ + y cos θ Similarly, we can write down the linear transformations corresponding to rotation around x axis and y axis We write down the transition matrices for these three matrices as follows: z The standard matrix for this transformation of counterclockwise

29 65 APPLICATIONS OF LINEAR TRANS 7 rotation by an angle θ, about x axis is cosθ sin θ sinθ cosθ The standard matrix for this transformation of counterclockwise rotation by an angle θ, about y axis is cos θ sinθ sin θ cosθ The standard matrix for this transformation of counterclockwise rotation by an angle θ, about z axis is cos θ sin θ sin θ cos θ Reading assignment: Read Textbook, Examples 4 and 5; page 4-4 Exercise 65 (Ex 6, p 44) Let T(x,y) = (x, y) (This is a vertical expansion) Sketch the image of the unit square with vertices (, ), (, ), (, ), (, ) Solution: We have T(, ) = (, ), T(, ) = (, ), T(, ) = (, ), T(, ) = (, )

30 8 CHAPTER 6 LINEAR TRANSFORMATION Diagram:,,,,,, Here, the solid arrows represent the original rectangle and the brocken arrows represent the image Exercise 654 (Ex, p 44) Let T be the reflection in the line y = x Sketch the image of the rectangle with vertices (, ), (, ), (, ), (, ) Solution: Recall, (see Proposition 65 ()) that T(x, y) = (y, x) We have T(, ) = (, ),T(, ) = (, ),T(, ) = (, ),T(, ) = (, ) Diagram:,,,,,,, Here, the solid arrows represent the original rectangle and the brocken arrows represent the image

31 65 APPLICATIONS OF LINEAR TRANS 9 Exercise 655 (Ex 8, p 44) Suppose T is the expansion and contraction represented by T(x,y) = ( x, ) y Sketch the image of the rectangle with vertices (, ), (, ), (, ), (, ) Solution: Recall, (see Proposition 65 ()) that (x, y) = (y, x)we have T(, ) = (, ),T(, ) = (, ),T(, ) = (, ),T(, ) = (, ) Diagram:,,,,, 5,,, Here, the solid arrows represent the original rectangle and thebrocken arrows represent the image Exercise 656 (Ex 44, p 44) Give the geometric description of the linear transformation defined by the elementary matrix A = Solution: By proposition 65 (6) this is a horizontal shear Here, T(x,y) = (x + y,y)

32 CHAPTER 6 LINEAR TRANSFORMATION Exercise 657 (Ex 5 and 54, p 45) Find the matrix of the transformation T that will produce a 6 o rotation about the x axis Then compute the image T(,, ) Solution: By proposition 65 () the matrix is given by A = cos θ sin θ = cos 6 o sin 6 o = sinθ cos θ So, T(,, ) = A = sin 6 o cos 6 o = + Exercise 658 (Ex 64, p 45) Determine the matrix that will produce a 45 o rotation about the y axis followed by 9 o rotation about the z axis Then also compute the image of the line segment from (,, ) to (,, ) Solution: We will do it in three (or four) steps Step- Let T be the rotation by 45 o about the y axis By proposition 65 () the matrix of T is given by A = cos θ sinθ cos 45 sin 45 = sin θ cos θ sin 45 cos 45 = Step- Let T be the rotation by 9 o rotation about the z axis By proposition 65 () the matrix of T is given by B = cos θ sin θ cos 9 o sin 9 o sin θ cos θ = sin 9 o cos 9 o =

33 65 APPLICATIONS OF LINEAR TRANS Step- So, thematrix of the composite transformation T = T T is matrix BA = = The Last Part: So, T(,, ) = BA = =

34 CHAPTER 6 LINEAR TRANSFORMATION

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

0.1 Linear Transformations

.1 Linear Transformations A function is a rule that assigns a value from a set B for each element in a set A. Notation: f : A B If the value b B is assigned to value a A, then write f(a) = b, b is called

Linear Equations in Linear Algebra

1 Linear Equations in Linear Algebra 1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS LINEAR TRANSFORMATIONS A transformation (or function or mapping) T from R n to R m is a rule that assigns to each vector

α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

4.6 Null Space, Column Space, Row Space

NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232

Images and Kernels in Linear Algebra By Kristi Hoshibata Mathematics 232 In mathematics, there are many different fields of study, including calculus, geometry, algebra and others. Mathematics has been

Review: Vector space

Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.

Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

2.1 Functions. 2.1 J.A.Beachy 1. from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair

2.1 J.A.Beachy 1 2.1 Functions from A Study Guide for Beginner s by J.A.Beachy, a supplement to Abstract Algebra by Beachy / Blair 21. The Vertical Line Test from calculus says that a curve in the xy-plane

T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

Orthogonal Matrices. u v = u v cos(θ) T (u) + T (v) = T (u + v). It s even easier to. If u and v are nonzero vectors then

Part 2. 1 Part 2. Orthogonal Matrices If u and v are nonzero vectors then u v = u v cos(θ) is 0 if and only if cos(θ) = 0, i.e., θ = 90. Hence, we say that two vectors u and v are perpendicular or orthogonal

( ) which must be a vector

MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

A matrix over a field F is a rectangular array of elements from F. The symbol

Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

Solving Linear Systems, Continued and The Inverse of a Matrix

, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous

Some Basic Properties of Vectors in n

These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

Linear Transformations

a Calculus III Summer 2013, Session II Tuesday, July 23, 2013 Agenda a 1. Linear transformations 2. 3. a linear transformation linear transformations a In the m n linear system Ax = 0, Motivation we can

1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

Matrices: 2.3 The Inverse of Matrices

September 4 Goals Define inverse of a matrix. Point out that not every matrix A has an inverse. Discuss uniqueness of inverse of a matrix A. Discuss methods of computing inverses, particularly by row operations.

Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true

Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

7 - Linear Transformations

7 - Linear Transformations Mathematics has as its objects of study sets with various structures. These sets include sets of numbers (such as the integers, rationals, reals, and complexes) whose structure

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

Lecture notes on linear algebra

Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

Geometric Transformations

Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

Interpolating Polynomials Handout March 7, 2012

Interpolating Polynomials Handout March 7, 212 Again we work over our favorite field F (such as R, Q, C or F p ) We wish to find a polynomial y = f(x) passing through n specified data points (x 1,y 1 ),

1 Eigenvalues and Eigenvectors

Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

Algebra and Linear Algebra

Vectors Coordinate frames 2D implicit curves 2D parametric curves 3D surfaces Algebra and Linear Algebra Algebra: numbers and operations on numbers 2 + 3 = 5 3 7 = 21 Linear algebra: tuples, triples,...

Harvard College. Math 21b: Linear Algebra and Differential Equations Formula and Theorem Review

Harvard College Math 21b: Linear Algebra and Differential Equations Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu May 5, 2010 1 Contents Table of Contents 4 1 Linear Equations

2.1: MATRIX OPERATIONS

.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

Chapter 4: Binary Operations and Relations

c Dr Oksana Shatalov, Fall 2014 1 Chapter 4: Binary Operations and Relations 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition, subtraction,

NON SINGULAR MATRICES. DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that

NON SINGULAR MATRICES DEFINITION. (Non singular matrix) An n n A is called non singular or invertible if there exists an n n matrix B such that AB = I n = BA. Any matrix B with the above property is called

ex) What is the component form of the vector shown in the picture above?

Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by

WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?

WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course

5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES

5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves

1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

Modern Geometry Homework.

Modern Geometry Homework. 1. Rigid motions of the line. Let R be the real numbers. We define the distance between x, y R by where is the usual absolute value. distance between x and y = x y z = { z, z

1.5 Elementary Matrices and a Method for Finding the Inverse

.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

Homework: 2.1 (page 56): 7, 9, 13, 15, 17, 25, 27, 35, 37, 41, 46, 49, 67

Chapter Matrices Operations with Matrices Homework: (page 56):, 9, 3, 5,, 5,, 35, 3, 4, 46, 49, 6 Main points in this section: We define a few concept regarding matrices This would include addition of

Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

Geometric Transformation CS 211A

Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

Linear Equations and Inverse Matrices

Chapter 4 Linear Equations and Inverse Matrices 4. Two Pictures of Linear Equations The central problem of linear algebra is to solve a system of equations. Those equations are linear, which means that

1. For each of the following matrices, determine whether it is in row echelon form, reduced row echelon form, or neither.

Math Exam - Practice Problem Solutions. For each of the following matrices, determine whether it is in row echelon form, reduced row echelon form, or neither. (a) 5 (c) Since each row has a leading that

Linear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations

Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors Multiplication of an n n matrix

LECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A

LECTURE I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find such that A = y. Recall: there is a matri I such that for all R n. It follows that

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

.4 COORDINATES EXAMPLE Let V be the plane in R with equation x +2x 2 +x 0, a two-dimensional subspace of R. We can describe a vector in this plane by its spatial (D)coordinates; for example, vector x 5

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

Name: Section Registered In:

Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are

Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =

Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and

Sec 4.1 Vector Spaces and Subspaces

Sec 4. Vector Spaces and Subspaces Motivation Let S be the set of all solutions to the differential equation y + y =. Let T be the set of all 2 3 matrices with real entries. These two sets share many common

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in