# COMPONENTS OF VECTORS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two perpendicular vectors A = A + A where A is parallel to the ais while A is parallel to the ais, for eample A A A A (1) A Since the A vector is alwas parallel to the ais, we ma describe it b a single signed number A, which is positive when A points right but negative when A points left. Likewise, the A vectors ma be described b a single signed number A positive when A points up but negative when A points down. The two signed numbers A and A are called the componentsof the vector A. In two dimensions, an vector V can be completel specified b its components (V,V ). Describing motion in all 3 dimensions of space requires a coordinate sstem with 3 perpendicular aes (,,z). Consequentl, a 3D vector V has three components (V,V,V z ), and we need to know all 3 components to completel specif the vector. 1

2 Adding vectors in components. In component notations, adding vectors is ver eas: The components of a vector sum C = A+ B are simpl the algebraic sums C = A + B, C = A + B. (2) Here is the geometric eplanation of this rule: C B C B B (3) C A A A In the same wa, we ma sum up several vectors: To get the components of a vector sum C = A 1 + A 2 + A A n, (4) we separatel sum up the components of all the vectors and the components of all the vectors: C = A 1 + A 2 + A A n, (5) C = A 1 + A 2 + A A n. Note: the sums here are algebraic, so please mind the ± signs of the components. 2

3 For the 3D vectors, there are similar formulae, but there is one more algebraic sum for the z components: C = A 1 + A 2 + A A n, C = A 1 + A 2 + A A n, (6) C z = A 1z + A 2z + A 3z + + A nz. Vector subtraction in components works similar to vector addition. To get B = C A (7) in components, subtract the components of A from the components of C, B = C A, B = C A, (8) in 3D also B z = C z A z. Conversion from magnitude and direction to components. A vector quantit V has magnitude and direction. On a graph the magnitude is shown b the length of the arrowed line; algebraicall, the magnitude is a non-negative number V. In a 2D plane, the direction of a vector can be specified b the angle φ v it makes with the ais, for eample V φ v (9) Now let us draw a similar diagram which also includes the components (V,V ) of the 3

4 vector V: V V (10) φ v V Note the right triangle made b the three red lines; taking the ratios of this triangle s sides and appling basic trigonometr, we immediatel obtain V V = cosφ v, V V = sinφ v, (11) and therefore V = V cosφ v, V = V sinφ v. (12) The triangle on the diagram (10) is drawn for direction of Vin the first quadrant of the coordinate sstem (between the positive and positive direction, φ v < 90 ), but the formulae (12) for the components work for all possible directions, provided we alwas measure the angle φ v counterclockwise from the positive ais. For eample, for V in the second quadrant 90 < φ v < 180, V = V cosφ v < 0, V V = V sinφ v > 0, V φ v V (13) 4

5 Likewise, for V in the third quadrant 180 < φ v < 270, V = V cosφ v < 0, V = V sinφ v < 0, φ v V V V (14) or for V in the fourth quadrant 270 < φ v < 360, V = V cosφ v > 0, V = V sinφ v < 0, φ v V V V (15) 5

6 Conversion from components to magnitude and direction. Now supposed we know the (V,V ) components of a vector V; how do we find the vector s magnitude and direction? The magnitude V follows from the Pthagoras theorem for the right triangles on an of the diagrams on the last two pages: V 2 = V 2 + V 2 (16) regardless of the signs of the V and V and therefore V = V 2 + V 2. (17) To find the direction of V, we need a bit of trigonometr. Let s take the ratio of the two equations (12) for the components (V,V ): V V = V sinφ v V cosφ v = sinφ v cosφ v = tanφ v. (18) Thus the ratio V /V c gives us the tangent of the angle φ v, so naivel we ma calculate the angle φ v itself as the arc-tangent (the inverse tangent) of this ratio, φ v?? = arctan V V. (19) However, the formula ma be off b 180, so it might give us precisel the opposite direction. Indeed, the vectors V and V have opposite directions but similar ratios This ambiguit is related to the trigonometric identit V V = V V. (20) for an angle ϕ, tan(ϕ) = tan(ϕ±180 ). (21) 6

7 Therefore, given the components of a vector, its direction is φ v = either arctan V V or arctan V V ± 180, depending on the signs of the V and V. (22) Using conversion to add vectors. Consider a simple problem: A person rides a bike for 10.0 km in the direction 30 (counterclockwise from the ais), then changes direction to 150 (also counterclockwise from the ais) and rides for 20.0 km. Find his net displacement vector. D 2 D net = D 1 + D 2 D net (23) D 1 To solve this problem, we start b converting the displacement vectors D 1 and D 2 into components: D 1 = 10.0 km cos(30 ) = km, D 1 = (10.0 km;30 ) = D 1 = 10.0 km sin(30 ) = km, (24) D 2 = 20.0 km cos(150 ) = km, D 2 = (20.0 km;150 ) = D 2 = 20.0 km sin(150 ) = km. Net, we add the two vectors in components: D net D net = D 1 + D 2 = km km = 8.66 km, = D 1 + D 2 = km km = km. (25) Finall, we convert the components of the net displacement vector into its direction and 7

8 magnitude. For the magnitude we have and hence As to the direction, D net 2 = ( D net ) 2 ( ) + D net 2 = ( 8.66 km) 2 + ( km) 2 = 75 km km 2 = 300 km 2 (26) D net = 300 km km. (27) D net D net = km 8.66 km Dnet = 1.73 = arctan D net = 60. (28) The 60 angle is the same as = +300, which correspond to the direction of D net being in the fourth quadrant. However, the signs of the components D net < 0, D net > 0 show that the direction of D net is in the second quadrant. This means that the arc-tangent is off b 180, so the correct direction of the net displacement vector is φ net = = +120 (counterclockwise from the ais). (29) The above eample illustrate a general rule for calculating sums of several vectors, A net = A 1 + A A n. (30) (1) First, convert all the vectors into components, A i, = A i cosφ i, A i, = A i sinφ i, for i = 1,2,...,n. (31) (2) Second, add the vectors in components, A net = A 1, + A 2, + + A n,, A net = A 1, + A 2, + + A n,. (32) (3) Finall, convert the components of the A net into its magnitude and direction. 8

9 Navigation Convention In navigation, the directions are given b angles counted clockwise from North instead of counterclockwise from the ais (whatever that might be). For eample, an airplane fling in the Southwest direction which is 225 clockwise from North is said to have heading 225. N 225 W E (33) v plane S To avoid confusion when ou work a navigation-related problem, it is best to avoid the and aes altogether and use the North and East aes instead of them. In particular, for the vectors ou should use the North and East components instead of the and components. In this convention, V N = V cosφ v, V E = V sinφ v, for φ v counted clockwise from North. (34) Foreample, foraplaneflingatspeedv = 220MPHintheSouthwest direction(φ v = 225 ), the velocit vector v has components v N = 220 MPH cos225 = 155 MPH, v E = 220 MPH sin225 = 155 MPH. (35) Note negative signs of the components since the plane is fling South and West instead of North and East. 9

10 Multipling vectors b scalars. The product of a scalar s and a vector V is a vector s V. Its magnitude is the absolute value of s times the magnitude of V, s V = s V. (36) The direction of the product sv is the same as direction of V for positive s but opposite from the direction of V for negative s. (For s = 0 the product sv = 0 the zero vector and its direction is undefined.) In components, B = sa has B = s A, B = s A, and in 3D also B z = s A z. (37) The product of a vector and a scalar obes the usual algebraic rules for opening parentheses: s ( V1 + V ) 2 = sv1 + sv 2, s ( V1 V ) 2 = sv1 sv 2, (s 1 +s 2 ) V = s 1 V + s2 V, (s 1 s 2 ) V = s 1 V s2 V, (38) ( ) s 1 s2v = (s1 s 2 ) V,... Phsical Eample: For a motion at constant velocit vector v i.e., motion at constant speed in a constant direction the displacement vector after time t is given b D = t v. (39) Interms ofthe time-dependent positionvector (AKAradius-vector) R(t) ofthemoving bod whose components R (t) and R (t) are simpl the time-dependent coordinates (,) of 10

11 the bod the displacement vector is the vector difference D = R = R(t) R 0, (40) so eq. (39) becomes R(t) = R 0 + t v. (41) In components, this formula means (t) = 0 + t v and (t) = 0 + t v (42) uniform motion in both and directions. Division: You cannot divide a scalar b vector, or a vector b another vector. However, ou can divide a vector b a scalar simpl multipl the vector b the inverse scalar, V s def = 1 s V. (43) For eample, to find the average velocit vector of some bod, divide its displacement vector b the time this displacement took, v avg = R t. (44) In the limit of a ver short time interval, this formula gives ou the instantaneous velocit vector v(t) = lim t 0 R(t+ t) R(t). (45) t In general, the velocit vector changes with time, which leads to the acceleration vector v(t+ t) v(t) a(t) = lim. (46) t 0 t 11

12 Motion at constant acceleration. Consider motion of some bod having a constant acceleration vector a. (Neither direction nor magnitude of a changes with time.) The velocit vector of such a bod changes with time according to v(t) = v 0 + t a (47) where v 0 is the initial velocit vector at time t 0 = 0. Note: eq. (46) looks simple in vector notations, or in components v (t) = v 0 + t a, v (t) = v 0 + t a, (48) but it leads to rather complicated formulae for the time dependence of the speed v(t) and the direction of motion. The time-dependent position vector R(t) of a uniforml accelerating bod is given b R(t) = R 0 + t v t2 a, (49) or in components (t) = 0 + t v t2 a, (t) = 0 + t v t2 a. (50) Projectile Motion A projectile is an object ou shoot, kick, throw, or otherwise send fling towards a target, for eample a basketball, a bullet, or a grenade. In phsics, projectile motion is a motion of a bod that has been released with some initial velocit (which generall has both horizontal and vertical components) and then flies free from forces other than gravit and air resistance. When the air resistance ma be neglected which is the onl case we shall stud in this class the projectile has a constant acceleration vector a = g due to gravit. Consequentl, the projectile s velocit vector v(t) and position vector R(t) evolve with time according to eqs. (47) through (50). 12

13 A projectile moves in a vertical plane, so its motion can be described using 2D vectors and their components. Let s use a coordinate sstem where the ais points verticall up while the ais is horizontal. (In 3D, the ais points along the horizontal components of the initial velocit.) In these coordinates, the downward acceleration vector a = g has components a = 0, a = g. (51) Consequentl, eqs. (48) and (50) become v (t) = v 0 = const (time independent), (t) = 0 + v 0 t, v (t) = v 0 g t, (52) (t) = 0 + v 0 t g 2 t2. Note that the first two of these equations which describe the horizontal motion are completel independent from the last two equations describing the vertical motion. Thus, the projectile moves horizontall at constant velocit as if there were no vertical motion, and at the same time it moves verticall up and down at constant acceleration as if there were no horizontal motion! 13

### Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

### Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

### Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

### sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

### Section 10-5 Parametric Equations

88 0 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY. A hperbola with the following graph: (2, ) (0, 2) 6. A hperbola with the following graph: (, ) (2, 2) C In Problems 7 2, find the coordinates of an foci relative

### Chapter 3 Vectors 3.1 Vector Analysis Introduction to Vectors Properties of Vectors Cartesian Coordinate System...

Chapter 3 Vectors 3.1 Vector Analsis... 1 3.1.1 Introduction to Vectors... 1 3.1.2 Properties of Vectors... 1 3.2 Cartesian Coordinate Sstem... 5 3.2.1 Cartesian Coordinates... 6 3.3 Application of Vectors...

### In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

### Vector Fields and Line Integrals

Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.

### Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

### INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

### UNITS, PHYSICAL QUANTITIES AND VECTORS

UNITS, PHYSICAL QUANTITIES AND VECTORS 1 1.37. IDENTIFY: Vector addition problem. We are given the magnitude and direction of three vectors and are asked to find their sum. SET UP: A B C 3.25 km 2.90 km

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Addition and Subtraction of Vectors

ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

### 10.2 The Unit Circle: Cosine and Sine

0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

### C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

### Module 8 Lesson 4: Applications of Vectors

Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems

### Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2015

Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 25 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

### Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

### D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

### 2.1 Three Dimensional Curves and Surfaces

. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

### SECTION 7-4 Algebraic Vectors

7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

### D) A block pulled with a constant force will have a constant acceleration in the same direction as the force.

Phsics 100A Homework 4 Chapter 5 Newton s First Law A)If a car is moving to the left with constant velocit then the net force applied to the car is zero. B) An object cannot remain at rest unless the net

### SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

### LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

### DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

### Translating Points. Subtract 2 from the y-coordinates

CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

### Trigonometry Review Workshop 1

Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

### Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

### Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

### PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

### Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### Alex and Morgan were asked to graph the equation y = 2x + 1

Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

### The Graph of a Linear Equation

4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

### Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

### Q (x 1, y 1 ) m = y 1 y 0

. Linear Functions We now begin the stud of families of functions. Our first famil, linear functions, are old friends as we shall soon see. Recall from Geometr that two distinct points in the plane determine

### (1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

### Introduction to Vectors

Introduction to Vectors A vector is a physical quantity that has both magnitude and direction. An example is a plane flying NE at 200 km/hr. This vector is written as 200 Km/hr at 45. Another example is

### Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

Plotting and Adjusting Your Course: Using Vectors and Trigonometry in Navigation ED 5661 Mathematics & Navigation Teacher Institute August 2011 By Serena Gay Target: Precalculus (grades 11 or 12) Lesson

### 6.3 Parametric Equations and Motion

SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

### Vectors. Chapter Outline. 3.1 Coordinate Systems 3.2 Vector and Scalar Quantities 3.3 Some Properties of Vectors

P U Z Z L E R When this honebee gets back to its hive, it will tell the other bees how to return to the food it has found. moving in a special, ver precisel defined pattern, the bee conves to other workers

### Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

. Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

### Affine Transformations

A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates

### Introduction and Mathematical Concepts

CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

### SL Calculus Practice Problems

Alei - Desert Academ SL Calculus Practice Problems. The point P (, ) lies on the graph of the curve of = sin ( ). Find the gradient of the tangent to the curve at P. Working:... (Total marks). The diagram

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### 3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses

3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript

CHALLENGE PROBLEMS CHALLENGE PROBLEMS: CHAPTER 0 A Click here for answers. S Click here for solutions. m m m FIGURE FOR PROBLEM N W F FIGURE FOR PROBLEM 5. Each edge of a cubical bo has length m. The bo

### 8-3 Dot Products and Vector Projections

8-3 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v

### Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

### Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry

1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Identifying second degree equations

Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

### CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES

6 LESSON CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES Learning Outcome : Functions and Algebra Assessment Standard 1..7 (a) In this section: The limit concept and solving for limits

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### 5.2 Inverse Functions

78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

### Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

### Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

### 2.4 Orthogonal Coordinate Systems

8/25/2005 section 2_4Orthogonal_Coordinate_Sstems_empt.doc 1/6 2.4 Orthogonal Coordinate Sstems Reading Assignment: pp.16-33 We live in a 3-dimensional world! Meaning: 1) 2) Q: What 3 scalar values and

### Section 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions

Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,

### Chapter 5: Applying Newton s Laws

Chapter 5: Appling Newton s Laws Newton s 1 st Law he 1 st law defines what the natural states of motion: rest and constant velocit. Natural states of motion are and those states are when a = 0. In essence,

### Systems of Linear Equations: Solving by Substitution

8.3 Sstems of Linear Equations: Solving b Substitution 8.3 OBJECTIVES 1. Solve sstems using the substitution method 2. Solve applications of sstems of equations In Sections 8.1 and 8.2, we looked at graphing

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### ASA Angle Side Angle SAA Side Angle Angle SSA Side Side Angle. B a C

8.2 The Law of Sines Section 8.2 Notes Page 1 The law of sines is used to solve for missing sides or angles of triangles when we have the following three cases: S ngle Side ngle S Side ngle ngle SS Side

CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

### MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

### Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Chapter 3 & 8.1-8.3 These are meant for practice. The actual test is different. Determine whether the pair of equations represents parallel lines. 1) 9 + 3 = 12 27 + 9 = 39 1) Determine whether the pair

### 2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### Applications of Trigonometry

5144_Demana_Ch06pp501-566 01/11/06 9:31 PM Page 501 CHAPTER 6 Applications of Trigonometr 6.1 Vectors in the Plane 6. Dot Product of Vectors 6.3 Parametric Equations and Motion 6.4 Polar Coordinates 6.5

### Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

### LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

### 2.4 Inequalities with Absolute Value and Quadratic Functions

08 Linear and Quadratic Functions. Inequalities with Absolute Value and Quadratic Functions In this section, not onl do we develop techniques for solving various classes of inequalities analticall, we

### How to add sine functions of different amplitude and phase

Physics 5B Winter 2009 How to add sine functions of different amplitude and phase In these notes I will show you how to add two sinusoidal waves each of different amplitude and phase to get a third sinusoidal

### Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

### Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

### Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

### 6.3 Polar Coordinates

6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard

### Similar Right Triangles

9.1 Similar Right Triangles Goals p Solve problems involving similar right triangles formed b the altitude drawn to the hpotenuse of a right triangle. p Use a geometric mean to solve problems. THEOREM

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to