Affine Transformations

Save this PDF as:

Size: px
Start display at page:

Transcription

1 A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates 338 C5 3D form of the affine transformations 34 C THE NEED FOR GEOMETRIC TRANSFORMATIONS One could imagine a computer graphics sstem that requires the user to construct everthing directl into a single scene But one can also immediatel see that this would be an etremel limiting approach In the real world things come from various places and are arranged together to create a scene Further man of these things are themselves collections of smaller parts that are assembled together We ma wish to define one object relative to another for eample we ma want to place a hand at the end of an arm Also it is often the case that parts of an object are similar like the tires on a car And even things that are built on scene like a house for eample are designed elsewhere at a scale that is usuall man times smaller than the house as it is built Even more to the point we will often want to animate the objects in a scene requiring the abilit to move them around relative to each other For animation we will want to be able to move not onl the objects but also the camera as we render a sequence of images as time advances to create an illusion of motion We need good mechanisms within a computer graphics sstem to provide the fleibilit implied b all of the issues raised above 335

2 336 Foundations of Phsicall Based Modeling and Animation The figure below shows an eample of what we mean On the left a clinder has been built in a convenient place and to a convenient size Because of the requirements of a scene it is first scaled to be longer and thinner than its original design rotated to a desired orientation in space and then moved to a desired position (ie translated) The set of operations providing for all such transformations are known as the affine transforms The affines include translations and all linear transformations like scale rotate and shear O Original clinder model C2 O Transformed clinder It has been scaled rotated and translated AFFINE TRANSFORMATIONS Let us first eamine the affine transforms in 2D space where it is eas to illustrate them with diagrams then later we will look at the affines in 3D Consider a point = ( ) Affine transformations of are all transforms that can be written a + b + c = d + e + f where a through f are scalars For eample if a e = and b d = then we have a pure translation +c = + f f c If b d = and c f = then we have a pure scale a = e e o a

3 Affine Transformations 337 And if a e = cos θ b = sin θ d = sin θ and c f = then we have a pure rotation about the origin cos θ sin θ = sin θ + cos θ o Finall if a e = and c f = we have the shear transforms + b = + d b d o In summar we have the four basic affine transformations shown in the figure below: Translate moves a set of points a fied distance in and Scale scales a set of points up or down in the and directions Rotate rotates a set of points about the origin Shear offsets a set of points a distance proportional to their and coordinates Note that onl shear and scale change the shape determined b a set of points Translate Scale Rotate Shear

4 338 Foundations of Phsicall Based Modeling and Animation C3 MATRIX REPRESENTATION OF THE LINEAR TRANS- FORMATIONS The affine transforms scale rotate and shear are actuall linear transforms and can be represented b a matri multiplication of a point represented as a vector [ ] [ ] [ ] [ ] a + b a b = = d + e d e or = M where M is the matri One ver nice feature of the matri representation is that we can use it to factor a comple transform into a set of simpler transforms For eample suppose we want to scale an object up to a new size shear the object to a new shape and finall rotate the object Let S be the scale matri H be the shear matri and R be the rotation matri Then = R(H(S)) defines a sequence of three transforms: st-scale 2nd-shear 3rd-rotate Because matri multiplication is associative we can remove the parentheses and multipl the three matrices together giving a new matri M = RHS Now we can rewrite our transform = (RHS) = M If we have to transform thousands of points on a comple model it is clearl easier to do one matri multiplication rather than three each time we want to transform a point Thus matrices are a ver powerful wa to encapsulate a comple transform and to store it in a compact and convenient form In matri form we can catalog the linear transforms as [ ] [ ] [ ] s cos θ sin θ h Scale: Rotate: Shear: s sin θ cos θ h where s and s scale the and coordinates of a point θ is an angle of counterclockwise rotation around the origin h is a horizontal shear factor and h is a vertical shear factor C4 HOMOGENEOUS COORDINATES Since the matri form is so hand for building up comple transforms from simpler ones it would be ver useful to be able to represent all of the affine transforms b matrices The problem is that translation is not a linear transform The wa out of this dilemma is to turn the 2D problem into a 3D problem but in homogeneous coordinates We first take all of our points = ( ) epress them as 2D vectors [ ] and make these

5 Affine Transformations 339 into 3D vectors with identical (thus the term homogeneous) 3rd coordinates set to : [ ] = B convention we call this third coordinate the w coordinate to distinguish it from the usual 3D z coordinate We also etend our 2D matrices to 3D homogeneous form b appending an etra row and column giving s cos θ sin θ h Scale: s Rotate: sin θ cos θ Shear: h Note what happens when we multipl our 3D homogeneous matrices b 3D homogeneous vectors: a b a + b d e = d + e This is the same result as in 2D with the eception of the etra w coordinate which remains p 2 p p 3 p All we have reall done is to place all of our 2D points on the plane w = in 3D space and now plane w= we do all the operations on this plane Reall the w operations are still 2D operations But the magic happens when we place the translation parameters c and f in the matri in the 3rd column: a b c a + b + c d e f = d + e + f We can now do translations as linear operations in homogeneous coordinates! So we can add a final matri to our catalog: Translate: where is the translation in the direction and is the translation in the direction The astute reader will see the trick behind the magic 2D translation is now being epressed as a shear in 3D space

6 34 Foundations of Phsicall Based Modeling and Animation Now suppose we have a 2 2 square centered at the origin and we want to first rotate the square b 45 about its center and then move the square so its center is at (3 2) We can do this in two steps as shown in the diagram to the right (-) (--) 2 translate (3 2) () rotate 45 o (-) (- 2 ) (32+ 2 ) (3-2 2 ) ( 2 ) (- 2 ) ( 2 ) ( ) (32) (32-2 ) In matri form: 3 cos 45 sin 45 M = T (32) R 45 = 2 sin 45 cos 45 cos 45 sin 45 3 = sin 45 cos /2 2/2 3 = 2/2 2/2 2 Note that 3 M = and M = 2 verifing that we get the same result shown in the figure C5 3D FORM OF THE AFFINE TRANSFORMATIONS Now we can etend all of these ideas to 3D in the following wa: Convert all 3D points to homogeneous coordinates = z z The etra (4th) coordinate is again called the w coordinate

7 Affine Transformations 34 2 Use matrices to represent the 3D affine transforms in homogeneous form The following matrices constitute the basic affine transforms in 3D epressed in homogeneous form: and s s Translate: Scale: z s z h h z h Shear: h z h z h z In addition there are three basic rotations in 3D cos θ Rotation about the ais: sin θ sin θ cos θ and cos θ sin θ Rotation about the ais: sin θ cos θ cos θ z sin θ z sin θ Rotation about the z ais: z cos θ z The rotations specified in this wa determine an amount of rotation about each of the individual aes of the coordinate sstem The angles θ θ and θ z of rotation about the three aes are called the Euler angles The can be used to describe an off-ais rotation b combining Euler angle rotations via matri multiplication Note however that the order of rotation affects the end result so besides specifing Euler angles an order of rotation must be specified In general affine transformations are associative but are not commutative so the order in which operations are done is highl important One can see this for rotations b computing the product R θ R θ R θz and comparing with the result obtained b the product R θz R θ R θ Please see Appendi D for a more powerful and general look at rotation

ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b

Section 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions

Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations

Geometric Transformations

CS3 INTRODUCTION TO COMPUTER GRAPHICS Geometric Transformations D and 3D CS3 INTRODUCTION TO COMPUTER GRAPHICS Grading Plan to be out Wednesdas one week after the due date CS3 INTRODUCTION TO COMPUTER

Some linear transformations on R 2 Math 130 Linear Algebra D Joyce, Fall 2015

Some linear transformations on R 2 Math 3 Linear Algebra D Joce, Fall 25 Let s look at some some linear transformations on the plane R 2. We ll look at several kinds of operators on R 2 including reflections,

Graphing Linear Equations

6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

The secret math behind

he secret math behind modern computer graphics b Magnus Ranlöf and Johan Winell ma 99 Preface D - graphics Computer graphic ma seem to become more and more complicated, but the fact is, it is controlled

This week. CENG 732 Computer Animation. The Display Pipeline. Ray Casting Display Pipeline. Animation. Applying Transformations to Points

This week CENG 732 Computer Animation Spring 2006-2007 Week 2 Technical Preliminaries and Introduction to Keframing Recap from CEng 477 The Displa Pipeline Basic Transformations / Composite Transformations

MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

SECTION 7-4 Algebraic Vectors

7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors

C W T 7 T 1 C T C P. C By

Calibrating a pan-tilt camera head P. M. Ngan and R. J. Valkenburg Machine Vision Team, Industrial Research Limited P. O. Bo 225, Auckland, New Zealand Tel: +64 9 303 4116, Fa: +64 9 302 8106 Email: fp.ngan,

STRESS TRANSFORMATION AND MOHR S CIRCLE

Chapter 5 STRESS TRANSFORMATION AND MOHR S CIRCLE 5.1 Stress Transformations and Mohr s Circle We have now shown that, in the absence of bod moments, there are si components of the stress tensor at a material

sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj

Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

2D Geometrical Transformations

2D Geometrical Transformations Translation -Moves points to new locations by adding translation amounts to the coordinates of the points T P(,y) P (,y ) = + d, =y + dy or = y P =P + T + d dy -Totranslate

Chapter 2: Concurrent force systems. Department of Mechanical Engineering

Chapter : Concurrent force sstems Objectives To understand the basic characteristics of forces To understand the classification of force sstems To understand some force principles To know how to obtain

Change of Coordinates in Two Dimensions

CHAPTER 5 Change of Coordinates in Two Dimensions Suppose that E is an ellipse centered at the origin. If the major and minor aes are horiontal and vertical, as in figure 5., then the equation of the ellipse

Linear transformations Affine transformations Transformations in 3D. Graphics 2011/2012, 4th quarter. Lecture 5: linear and affine transformations

Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors Multiplication of an n n matrix

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

Complex Numbers. w = f(z) z. Examples

omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1.

Advanced Computer Graphics (2IV40) ~ 3D Transformations Kees Huiing Huub van de Wetering Winter 2005/6 Tpes (geometric) maintain distances & orientation (LH/RH): rigid bod transforms (rotations, translations)

SECTION 2-5 Combining Functions

2- Combining Functions 16 91. Phsics. A stunt driver is planning to jump a motorccle from one ramp to another as illustrated in the figure. The ramps are 10 feet high, and the distance between the ramps

The Graph of a Linear Equation

4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

Lines and planes in space (Sect. 12.5) Review: Lines on a plane. Lines in space (Today). Planes in space (Next class). Equation of a line

Lines and planes in space (Sect. 2.5) Lines in space (Toda). Review: Lines on a plane. The equations of lines in space: Vector equation. arametric equation. Distance from a point to a line. lanes in space

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are

Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector

. w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29 up vector view vector observer center of interest 30 Computer

7.4 Applications of Eigenvalues and Eigenvectors

37 Chapter 7 Eigenvalues and Eigenvectors 7 Applications of Eigenvalues and Eigenvectors Model population growth using an age transition matri and an age distribution vector, and find a stable age distribution

2D Geometric Transformations. COMP 770 Fall 2011

2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector multiplication Matrix-matrix multiplication

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

Chapter 3 Vectors 3.1 Vector Analysis Introduction to Vectors Properties of Vectors Cartesian Coordinate System...

Chapter 3 Vectors 3.1 Vector Analsis... 1 3.1.1 Introduction to Vectors... 1 3.1.2 Properties of Vectors... 1 3.2 Cartesian Coordinate Sstem... 5 3.2.1 Cartesian Coordinates... 6 3.3 Application of Vectors...

Linear Equations in Linear Algebra

1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A

Lines and Planes 1. x(t) = at + b y(t) = ct + d

1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

B4 Computational Geometry

3CG 2006 / B4 Computational Geometry David Murray david.murray@eng.o.ac.uk www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation

Families of Quadratics Objectives To understand the effects of a, b, and c on the graphs of parabolas of the form a 2 b c To use quadratic equations and graphs to analze the motion of projectiles To distinguish

C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

Section C Non Linear Graphs

1 of 8 Section C Non Linear Graphs Graphic Calculators will be useful for this topic of 8 Cop into our notes Some words to learn Plot a graph: Draw graph b plotting points Sketch/Draw a graph: Do not plot,

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

Introduction to polarization of light

Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.

ASEN Structures. Stress in 3D. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures Stress in 3D ASEN 3112 Lecture 1 Slide 1 ASEN 3112 - Structures Mechanical Stress in 3D: Concept Mechanical stress measures intensit level of internal forces in a material (solid

Geometric Camera Parameters

Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances

Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

Alex and Morgan were asked to graph the equation y = 2x + 1

Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

GLOBAL COORDINATE METHOD FOR DETERMINING SENSITIVITY IN ASSEMBLY TOLERANCE ANALYSIS

GOBA COORDINATE METOD FOR DETERMINING SENSITIVIT IN ASSEMB TOERANCE ANASIS Jinsong Gao ewlett-packard Corp. InkJet Business Unit San Diego, CA Kenneth W. Chase Spencer P. Magleb Mechanical Engineering

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:

3 3.1 2D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates.

geometric transforms

geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition

Slope-Intercept Form and Point-Slope Form

Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.

Solving Absolute Value Equations and Inequalities Graphically

4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

Translating Points. Subtract 2 from the y-coordinates

CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

2D Geometric Transformations

2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.

MATH 118, LECTURES 14 & 15: POLAR AREAS

MATH 118, LECTURES 1 & 15: POLAR AREAS 1 Polar Areas We recall from Cartesian coordinates that we could calculate the area under the curve b taking Riemann sums. We divided the region into subregions,

C3: Functions. Learning objectives

CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

MathsStart (NOTE Feb 2013: This is the old version of MathsStart. New books will be created during 2013 and 2014) Topic 3 Quadratic Functions 8 = 3 2 6 8 ( 2)( 4) ( 3) 2 1 2 4 0 (3, 1) MATHS LEARNING CENTRE

6.3 Parametric Equations and Motion

SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

Polynomial and Rational Functions

Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important

D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

Equilibrium of a Particle & Truss Analysis

Equilibrium of a article & Truss nalsis Notation: b = number of members in a truss () = shorthand for compression F = name for force vectors, as is X, and F = name of a truss force between joints named

MATH 2030: MATRICES. Av = 3

MATH 030: MATRICES Introduction to Linear Transformations We have seen that we ma describe matrices as smbol with simple algebraic properties like matri multiplication, addition and scalar addition In

PROBLEMS. m s TAC. m = 60 kg/m, determine the tension in the two supporting cables and the reaction at D.

PRLEMS 1. he uniform I-beam has a mass of 60 kg per meter of its length. Determine the tension in the two supporting cables and the reaction at D. (3/64) PRLEMS A( 500) m (5 23) m m = 60 kg/m determine

COMPLEX STRESS TUTORIAL 3 COMPLEX STRESS AND STRAIN

COMPLX STRSS TUTORIAL COMPLX STRSS AND STRAIN This tutorial is not part of the decel unit mechanical Principles but covers elements of the following sllabi. o Parts of the ngineering Council eam subject

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS

CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems

P1. Plot the following points on the real. P2. Determine which of the following are solutions

Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form

8 (-) Chapter Linear Equations in Two Variables and Their Graphs In this section Slope-Intercept Form Standard Form Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

TWO-DIMENSIONAL TRANSFORMATION

CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

Robot Manipulators. Position, Orientation and Coordinate Transformations. Fig. 1: Programmable Universal Manipulator Arm (PUMA)

Robot Manipulators Position, Orientation and Coordinate Transformations Fig. 1: Programmable Universal Manipulator Arm (PUMA) A robot manipulator is an electronically controlled mechanism, consisting of

Affine Transformations. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Affine Transformations University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Logistics Required reading: Watt, Section 1.1. Further reading: Foley, et al, Chapter 5.1-5.5. David

Parametric Surfaces. Solution. There are several ways to parameterize this. Here are a few.

Parametric Surfaces 1. (a) Parameterie the elliptic paraboloid = 2 + 2 + 1. Sketch the grid curves defined b our parameteriation. Solution. There are several was to parameterie this. Here are a few. i.

The Distance Formula and the Circle

10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

8 Graphs of Quadratic Expressions: The Parabola

8 Graphs of Quadratic Epressions: The Parabola In Topic 6 we saw that the graph of a linear function such as = 2 + 1 was a straight line. The graph of a function which is not linear therefore cannot be

Geometric Transformation CS 211A

Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to

NATIONAL QUALIFICATIONS

H Mathematics Higher Paper 1 Practice Paper A Time allowed 1 hour 0 minutes NATIONAL QUALIFICATIONS Read carefull Calculators ma NOT be used in this paper. Section A Questions 1 0 (40 marks) Instructions

LINEAR FUNCTIONS OF 2 VARIABLES

CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

x 2. 4x x 4x 1 x² = 0 x = 0 There is only one x-intercept. (There can never be more than one y-intercept; do you know why?)

Math Learning Centre Curve Sketching A good graphing calculator can show ou the shape of a graph, but it doesn t alwas give ou all the useful information about a function, such as its critical points and

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4

Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0 P(X, Y) X

Rotation of Aes For a discussion of conic sections, see Appendi. In precalculus or calculus ou ma have studied conic sections with equations of the form A C D E F Here we show that the general second-degree

Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

TRIGONOMETRIC FUNCTIONS

0 YEAR The Improving Mathematics Education in Schools (TIMES) Project TRIGNMETRIC FUNCTINS MEASUREMENT AND GEMETRY Module 25 A guide for teachers - Year 0 June 20 Trigonometric Functions (Measurement and

27.2. Multiple Integrals over Non-rectangular Regions. Introduction. Prerequisites. Learning Outcomes

Multiple Integrals over Non-rectangular Regions 7. Introduction In the previous Section we saw how to evaluate double integrals over simple rectangular regions. We now see how to etend this to non-rectangular

Isometry Transformations

Isometr Transformations Objective To review transformations that produce another figure while maintaining the same size and shape of the original figure. www.everdamathonline.com epresentations etoolkit

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

12.3 Inverse Matrices

2.3 Inverse Matrices Two matrices A A are called inverses if AA I A A I where I denotes the identit matrix of the appropriate size. For example, the matrices A 3 7 2 5 A 5 7 2 3 If we think of the identit

a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

Exponential and Logarithmic Functions

Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

Computer Graphics with OpenGL 3e

Computer Graphic with OpenGL 3e 5 Pearon Education Chapter 5 Geometric Tranformation 5 Pearon Education Baic two-dimenional geometric tranformation () Two-Dimenional tranlation One of rigid-bod tranformation,