Vector has a magnitude and a direction. Scalar has a magnitude

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Vector has a magnitude and a direction. Scalar has a magnitude"

Transcription

1 Vector has a magnitude and a direction Scalar has a magnitude

2 Vector has a magnitude and a direction Scalar has a magnitude a brick on a table

3 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters)

4 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters) Brick moved 2 meters.

5 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters) Brick moved 2 meters to the right. Brick moved 2 meters.

6 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters) Brick moved 2 meters to the right. direction specified Brick moved 2 meters.

7 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters) Brick moved 2 meters to the right. s = 2 m to the right displacement direction specified Brick moved 2 meters. s = 2 m distance

8 Vector has a magnitude and a direction Scalar has a magnitude brick moves (2 meters) Brick moved 2 meters to the right. s = 2 m to the right direction specified Brick moved 2 meters. s = 2 m a vector displacement a scalar distance

9 Some quantities in physics Vector displacement s or s Scalar distance s different notations

10 Some quantities in physics Vector displacement s or s velocity v or v Scalar distance s speed, velocity v

11 Some quantities in physics Vector displacement s or s velocity v or v acceleration a or a Scalar distance s speed, velocity v acceleration a

12 Some quantities in physics Vector displacement s or s velocity v or v acceleration a or a force F or F Scalar distance s speed, velocity v acceleration a force F

13 Some quantities in physics Vector displacement s or s velocity v or v acceleration a or a force F or F Scalar distance s speed, velocity v acceleration a force F time t mass m

14 Working in 3D The moving brick was a 1D situation brick moves (2 meters) We will work primarily in 3D in this class.

15 Working in 3D The moving brick was a 1D situation brick moves (2 meters) We will work primarily in 3D in this class. Set up a right-handed coordinate system: y y z x x z right-handed system left-handed system

16 Working in 3D The moving brick was a 1D situation brick moves (2 meters) We will work primarily in 3D in this class. Set up a right-handed coordinate system: y y x The convention is to use a righthanded system. z x z right-handed system left-handed system

17 Displacement in 3D Something moves -3 m in the x direction, and -2 m in the y direction, and -6 m in the z direction

18 Displacement in 3D Something moves -3 m in the x direction, and -2 m in the y direction, and -6 m in the z direction = s a displacement in 3D

19 Displacement in 3D Something moves -3 m in the x direction, and -2 m in the y direction, and -6 m in the z direction = s a displacement in 3D Much better notation s = (3 m, 2 m, -6 m)

20 Displacement in 3D Something moves -3 m in the x direction, and -2 m in the y direction, and -6 m in the z direction = s a displacement in 3D Much better notation s = (3 m, 2 m, -6 m) More generally s = (s x, s y, s z ) components of the vector s

21 Visualizing the components s = (s x, s y, s z ) y s x z

22 Visualizing the components s = (s x, s y, s z ) s y y s z s s x (cf. actual physical model of this set up in class) x z

23 Visualizing the components s = (s x, s y, s z ) s y y s z s s x (cf. actual physical model of this set up in class) x z Magnitude of the vector? Pythagorean theorem gives it to us s = s = s2 x + s2 y + s2 z

24 A scalar times a vector Multiplying a vector by a scalar just scales the length of the vector. s = (s x, s y, s z ) as = (as x, as y, as z )

25 A scalar times a vector Multiplying a vector by a scalar just scales the length of the vector. s = (s x, s y, s z ) as = (as x, as y, as z ) y s 2s x z

26 Adding vectors Just add components. obvious for something like displacement s = (s x, s y, s z ) t = (t x, t y, t z ) s + t = (s x +t x, s y +t y, s z +t z )

27 Adding vectors Just add components. obvious for something like displacement s = (s x, s y, s z ) t = (t x, t y, t z ) Graphically + = s + t = (s x +t x, s y +t y, s z +t z )

28 Unit vectors Using two preceding rules (for as and s 1 +s 2 ), we can make a new useful notation using unit vectors. Define three unit vectors: x = (1, 0, 0) y = (0, 1, 0) z = (0, 0, 1) hat says that magnitude = 1

29 Unit vectors Using two preceding rules (for as and s 1 +s 2 ), we can make a new useful notation using unit vectors. Define three unit vectors: x = (1, 0, 0) y = (0, 1, 0) z = (0, 0, 1) hat says that magnitude = 1 Can assemble any vector by multiplying and adding these three vectors together

30 Unit vectors Using two preceding rules (for as and s 1 +s 2 ), we can make a new useful notation using unit vectors. Define three unit vectors: x = (1, 0, 0) y = (0, 1, 0) z = (0, 0, 1) hat says that magnitude = 1 s = (s x, s y, s z ) Can assemble any vector by multiplying and adding these three vectors together s = s x x + s y y + s z z equivalent

31 Representation is arbitrary Or: coordinate system is arbitrary Three identical vectors r 1 r 2 r 3

32 Representation is arbitrary Or: coordinate system is arbitrary Three identical vectors r 1 r 2 r 3 r 1 = r 2 = r 3 This equality is true.

33 Representation is arbitrary Or: coordinate system is arbitrary Three identical vectors No particular representation (coordinate system) has been chosen for any of these yet. r 1 r 2 r 3 r 1 = r 2 = r 3 This equality is true.

34 Representation is arbitrary Or: coordinate system is arbitrary Three identical vectors y r 1 r 2 r 3 x r 1 = r 2 = r 3 This equality is still true.

35 Choosing a particular representation is often convenient. s = (s x, s y, s z )

36 Choosing a particular representation is often convenient. s = (s x, s y, s z ) Also, thinking of the tail of the vector as being at the origin lets you think of vectors as points in 3D space. y s x z

37 Choosing a particular representation is often convenient. s = (s x, s y, s z ) Also, thinking of the tail of the vector as being at the origin lets you think of vectors as points in 3D space. y s x z But, take care! Vectors are fundamentally just lengths and directions and aren t tied to a representation. s

38 Derivative of a vector s = s x x + s y y + s z z ds ds x + ds y + ds z dt = x + y + z dt dt dt

39 Derivative of a vector s = s x x + s y y + s z z ds ds x + ds y + ds z dt = x + y + z dt dt dt If the position of an object is: Then the velocity is: x(t) v(t) = dx dt (example on blackboard)

40 Multiplying vectors (sort of) Given these objects called vectors, we can define various useful operations with them.

41 Multiplying vectors (sort of) Given these objects called vectors, we can define various useful operations with them. Two useful operations are multiplication-like in appearance. dot product and cross product

42 Multiplying vectors (sort of) Given these objects called vectors, we can define various useful operations with them. Two useful operations are multiplication-like in appearance. dot product and cross product For each: First, the definition. Then, some intuition.

43 Dot product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = s x t x + s y t y + s z t z A dot product yields a scalar

44 Dot product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = s x t x + s y t y + s z t z A dot product yields a scalar s t = s t cos θ st Alternative form: product of the magnitudes times cosine of the angle between the vectors

45 Dot product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = s x t x + s y t y + s z t z A dot product yields a scalar s t = s t cos θ st Alternative form: product of the magnitudes times cosine of the angle between the vectors Clearly: s s = s 2 and s t = t s

46 Dot product Why? Gives the product of the magnitudes, with the modification that it only counts the components that are parallel. a b

47 Dot product Why? Gives the product of the magnitudes, with the modification that it only counts the components that are parallel. a θ b

48 Dot product Why? Gives the product of the magnitudes, with the modification that it only counts the components that are parallel. a θ b a cos θ b a b = a b cos θ

49 Dot product Why? Can look at it in reverse a θ b a b cos θ a b = a b cos θ

50 Dot product Bonus Can get angle between two vectors knowing only the components without any trouble Consider: s 1 = (1, 3, -4) s 2 = (2, -6, 1) What s the angle between these vectors?

51 Dot product Bonus Can get angle between two vectors knowing only the components without any trouble Consider: s 1 = (1, 3, -4) s 2 = (2, -6, 1) What s the angle between these vectors? Equate the two expressions for dot product and solve for cos θ (1)(2) + (3)(-6) + (-4)(1) = [ (1) 2 + (3) 2 + (-4) 2 ] [ (2) 2 + (-6) 2 + (1) 2 ] cos θ

52 Cross product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = (s y t z - s z t y ) x + (s z t x - s x t z ) y + (s x t y - s y t x ) z A cross product yields another vector, perpendicular to the original two.

53 Cross product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = (s y t z - s z t y ) x + (s z t x - s x t z ) y + (s x t y - s y t x ) z A cross product yields another vector, perpendicular to the original two. s t = s t sin θ st u Alternative form. Here, the vector u points perpendicular to the plane of s and t, according to a right-hand rule

54 Cross product s = s x x + s y y + s z z t = t x x + t y y + t z z s t = (s y t z - s z t y ) x + (s z t x - s x t z ) y + (s x t y - s y t x ) z A cross product yields another vector, perpendicular to the original two. s t = s t sin θ st u Not commutative! Alternative form. Here, the vector u points perpendicular to the plane of s and t, according to a right-hand rule s t = -t s

55 Cross product Why? Gives the product of the magnitudes with the modification that it neglects any parallel components. a θ b vector pointing out of page vector pointing into page a b a sin θ b a b = a b sin θ

56 Cross product Bonus If you are familiar with matrices and determinants a b = x y z a x a y a z b x b y b z

57 Cross product Bonus If you are familiar with matrices and determinants a b = x y z a x a y a z b x b y b z For the curious: The result of a cross product is subtly different from a regular vector and is sometimes called a pseudovector or axial vector. (further discussion in class)

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

Lecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter ,

Lecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter , Lecture 4 Vectors Motion and acceleration in two dimensions Cutnell+Johnson: chapter 1.5-1.8, 3.1-3.3 We ve done motion in one dimension. Since the world usually has three dimensions, we re going to do

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

ELEMENTS OF VECTOR ALGEBRA

ELEMENTS OF VECTOR ALGEBRA ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Vector Algebra II: Scalar and Vector Products

Vector Algebra II: Scalar and Vector Products Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

More information

1.3 Displacement in Two Dimensions

1.3 Displacement in Two Dimensions 1.3 Displacement in Two Dimensions So far, you have learned about motion in one dimension. This is adequate for learning basic principles of kinematics, but it is not enough to describe the motions of

More information

Solution: 2. Sketch the graph of 2 given the vectors and shown below.

Solution: 2. Sketch the graph of 2 given the vectors and shown below. 7.4 Vectors, Operations, and the Dot Product Quantities such as area, volume, length, temperature, and speed have magnitude only and can be completely characterized by a single real number with a unit

More information

Vectors are quantities that have both a direction and a magnitude (size).

Vectors are quantities that have both a direction and a magnitude (size). Scalars & Vectors Vectors are quantities that have both a direction and a magnitude (size). Ex. km, 30 ο north of east Examples of Vectors used in Physics Displacement Velocity Acceleration Force Scalars

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Review A: Vector Analysis

Review A: Vector Analysis MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A-0 A.1 Vectors A-2 A.1.1 Introduction A-2 A.1.2 Properties of a Vector A-2 A.1.3 Application of Vectors

More information

Section V.3: Dot Product

Section V.3: Dot Product Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body

Mechanics lecture 7 Moment of a force, torque, equilibrium of a body G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

More information

Announcements. 2-D Vector Addition

Announcements. 2-D Vector Addition Announcements 2-D Vector Addition Today s Objectives Understand the difference between scalars and vectors Resolve a 2-D vector into components Perform vector operations Class Activities Applications Scalar

More information

PHYSICS 151 Notes for Online Lecture #6

PHYSICS 151 Notes for Online Lecture #6 PHYSICS 151 Notes for Online Lecture #6 Vectors - A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities

More information

Motion in Space: Velocity and Acceleration

Motion in Space: Velocity and Acceleration Study Sheet (13.4) Motion in Space: Velocity and Acceleration Here, we show how the ideas of tangent and normal vectors and curvature can be used in physics to study: The motion of an object, including

More information

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

More information

The Dot and Cross Products

The Dot and Cross Products The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

3. KINEMATICS IN TWO DIMENSIONS; VECTORS.

3. KINEMATICS IN TWO DIMENSIONS; VECTORS. 3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector

More information

1.4 Velocity and Acceleration in Two Dimensions

1.4 Velocity and Acceleration in Two Dimensions Figure 1 An object s velocity changes whenever there is a change in the velocity s magnitude (speed) or direction, such as when these cars turn with the track. 1.4 Velocity and Acceleration in Two Dimensions

More information

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors. 3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

More information

SUMMING VECTOR QUANTITIES USING PARALELLOGRAM METHOD

SUMMING VECTOR QUANTITIES USING PARALELLOGRAM METHOD EXPERIMENT 2 SUMMING VECTOR QUANTITIES USING PARALELLOGRAM METHOD Purpose : Summing the vector quantities using the parallelogram method Apparatus: Different masses between 1-1000 grams A flat wood, Two

More information

Assignment 3. Solutions. Problems. February 22.

Assignment 3. Solutions. Problems. February 22. Assignment. Solutions. Problems. February.. Find a vector of magnitude in the direction opposite to the direction of v = i j k. The vector we are looking for is v v. We have Therefore, v = 4 + 4 + 4 =.

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

REVIEW OVER VECTORS. A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example.

REVIEW OVER VECTORS. A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example. REVIEW OVER VECTORS I. Scalars & Vectors: A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example mass = 5 kg A vector is a quantity that can be described

More information

Review of Vector Analysis in Cartesian Coordinates

Review of Vector Analysis in Cartesian Coordinates R. evicky, CBE 6333 Review of Vector Analysis in Cartesian Coordinates Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers.

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

More information

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd

Physics 53. Rotational Motion 1. We're going to turn this team around 360 degrees. Jason Kidd Physics 53 Rotational Motion 1 We're going to turn this team around 360 degrees. Jason Kidd Rigid bodies To a good approximation, a solid object behaves like a perfectly rigid body, in which each particle

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

More information

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000) Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1)

Chapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1) COROLLARY I. A body, acted on by two forces simultaneously, will describe the diagonal of a parallelogram in the same time as it would describe the sides by those forces separately. Isaac Newton - Principia

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

More information

Equilibrium of Concurrent Forces (Force Table)

Equilibrium of Concurrent Forces (Force Table) Equilibrium of Concurrent Forces (Force Table) Objectives: Experimental objective Students will verify the conditions required (zero net force) for a system to be in equilibrium under the influence of

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Lab 2: Vector Analysis

Lab 2: Vector Analysis Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments

More information

Lecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial

Vectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

More information

Vectors and Scalars. AP Physics B

Vectors and Scalars. AP Physics B Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Vectors SCALAR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the scalar product of two vectors. Table of contents Begin Tutorial

Vectors SCALAR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the scalar product of two vectors. Table of contents Begin Tutorial Vectors SCALAR PRODUCT Graham S McDonald A Tutorial Module for learning about the scalar product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises

More information

12.1. Vector-Valued Functions. Vector-Valued Functions. Objectives. Space Curves and Vector-Valued Functions. Space Curves and Vector-Valued Functions

12.1. Vector-Valued Functions. Vector-Valued Functions. Objectives. Space Curves and Vector-Valued Functions. Space Curves and Vector-Valued Functions 12 Vector-Valued Functions 12.1 Vector-Valued Functions Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives! Analyze and sketch a space curve given

More information

RELATIVE MOTION ANALYSIS: VELOCITY

RELATIVE MOTION ANALYSIS: VELOCITY RELATIVE MOTION ANALYSIS: VELOCITY Today s Objectives: Students will be able to: 1. Describe the velocity of a rigid body in terms of translation and rotation components. 2. Perform a relative-motion velocity

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

Section 10.4 Vectors

Section 10.4 Vectors Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

Vectors. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Vectors Spring /

Vectors. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Vectors Spring / Vectors Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Vectors Spring 2012 1 / 18 Introduction - Definition Many quantities we use in the sciences such as mass, volume, distance, can be expressed

More information

1. Units and Prefixes

1. Units and Prefixes 1. Units and Prefixes SI units Units must accompany quantities at all times, otherwise the quantities are meaningless. If a person writes mass = 1, do they mean 1 gram, 1 kilogram or 1 tonne? The Système

More information

9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration

9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Ch 9 Rotation 9.1 Rotational Kinematics: Angular Velocity and Angular Acceleration Q: What is angular velocity? Angular speed? What symbols are used to denote each? What units are used? Q: What is linear

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

All About Motion - Displacement, Velocity and Acceleration

All About Motion - Displacement, Velocity and Acceleration All About Motion - Displacement, Velocity and Acceleration Program Synopsis 2008 20 minutes Teacher Notes: Ian Walter Dip App Chem; GDipEd Admin; TTTC This program explores vector and scalar quantities

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

MATH 304 Linear Algebra Lecture 24: Scalar product.

MATH 304 Linear Algebra Lecture 24: Scalar product. MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent

More information

Basic Electrical Theory

Basic Electrical Theory Basic Electrical Theory Mathematics Review PJM State & Member Training Dept. Objectives By the end of this presentation the Learner should be able to: Use the basics of trigonometry to calculate the different

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

The Vector or Cross Product

The Vector or Cross Product The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

More information

Vectors and the Inclined Plane

Vectors and the Inclined Plane Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

More information

2 Using the definitions of acceleration and velocity

2 Using the definitions of acceleration and velocity Physics I [P161] Spring 2008 Review for Quiz # 3 1 Main Ideas Two main ideas were introduced since the last quiz. 1. Using the definitions of acceleration and velocity to obtain equations of motion (chapter

More information

One advantage of this algebraic approach is that we can write down

One advantage of this algebraic approach is that we can write down . Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

More information

Vectors-Algebra and Geometry

Vectors-Algebra and Geometry Chapter Two Vectors-Algebra and Geometry 21 Vectors A directed line segment in space is a line segment together with a direction Thus the directed line segment from the point P to the point Q is different

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

More information

physics 111N motion in a plane

physics 111N motion in a plane physics 111N motion in a plane position & displacement vectors ym! the position vector points from the origin to the object t2.83 s 15 10 5 0 5 10 15 xm we re plotting the plane (e.g. billiard table viewed

More information

LS.6 Solution Matrices

LS.6 Solution Matrices LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

More information

2.2 Magic with complex exponentials

2.2 Magic with complex exponentials 2.2. MAGIC WITH COMPLEX EXPONENTIALS 97 2.2 Magic with complex exponentials We don t really know what aspects of complex variables you learned about in high school, so the goal here is to start more or

More information

Introduction and Mathematical Concepts

Introduction and Mathematical Concepts CHAPTER 1 Introduction and Mathematical Concepts PREVIEW In this chapter you will be introduced to the physical units most frequently encountered in physics. After completion of the chapter you will be

More information

Vectors What are Vectors? which measures how far the vector reaches in each direction, i.e. (x, y, z).

Vectors What are Vectors? which measures how far the vector reaches in each direction, i.e. (x, y, z). 1 1. What are Vectors? A vector is a directed line segment. A vector can be described in two ways: Component form Magnitude and Direction which measures how far the vector reaches in each direction, i.e.

More information

Section 9.1 Vectors in Two Dimensions

Section 9.1 Vectors in Two Dimensions Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

Trigonometry (Chapter 6) Sample Test #1 First, a couple of things to help out:

Trigonometry (Chapter 6) Sample Test #1 First, a couple of things to help out: First, a couple of things to help out: Page 1 of 20 More Formulas (memorize these): Law of Sines: sin sin sin Law of Cosines: 2 cos 2 cos 2 cos Area of a Triangle: 1 2 sin 1 2 sin 1 2 sin 1 2 Solve the

More information

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

Engineering Mechanics I. Phongsaen PITAKWATCHARA

Engineering Mechanics I. Phongsaen PITAKWATCHARA 2103-213 Engineering Mechanics I Phongsaen.P@chula.ac.th May 13, 2011 Contents Preface xiv 1 Introduction to Statics 1 1.1 Basic Concepts............................ 2 1.2 Scalars and Vectors..........................

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 3

ENGR-1100 Introduction to Engineering Analysis. Lecture 3 ENGR-1100 Introduction to Engineering Analysis Lecture 3 POSITION VECTORS & FORCE VECTORS Today s Objectives: Students will be able to : a) Represent a position vector in Cartesian coordinate form, from

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

More information

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.

Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image. Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical

More information

DISPLACEMENT AND FORCE IN TWO DIMENSIONS

DISPLACEMENT AND FORCE IN TWO DIMENSIONS DISPLACEMENT AND FORCE IN TWO DIMENSIONS Vocabulary Review Write the term that correctly completes the statement. Use each term once. coefficient of kinetic friction equilibrant static friction coefficient

More information

2.4 Motion and Integrals

2.4 Motion and Integrals 2 KINEMATICS 2.4 Motion and Integrals Name: 2.4 Motion and Integrals In the previous activity, you have seen that you can find instantaneous velocity by taking the time derivative of the position, and

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

More information

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR

Examples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant

More information