# JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

Size: px
Start display at page:

Download "JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson"

## Transcription

1 JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson Introduction 8.5. The straight line passing through a given point and parallel to a given vector The straight line passing through two given points The perpendicular distance of a point from a straight line The shortest distance between two parallel straight lines The shortest distance between two skew straight lines Exercises Answers to exercises

2 UNIT VECTORS 5 VECTOR EQUATIONS OF STRAIGHT LINES INTRODUCTION The concept of vector notation and vector products provides a convenient method of representing straight lines and planes in space by simple vector equations. Such vector equations may then, if necessary, be converted back to conventional cartesian or parametric equations. We shall assume that the position vector of a variable point, P(x, y, z), is given by r = xi + yj + zk, and that the position vectors of fixed points, such as P 1 (x 1, y 1, z 1 ) and P (x, y, z ), are given by r 1 = x 1 i + y 1 j + z 1 k, r = x i + y j + z k, etc THE STRAIGHT LINE PASSING THROUGH A GIVEN POINT AND PARALLEL TO A GIVEN VECTOR We consider, here, the straight line passing through the point, P 1, with position vector, r 1, and parallel to the vector, a = a 1 i + a j + a 3 k. O P P 1 r r 1 a 1

3 From the diagram, OP = OP 1 + P 1 P. But, P 1 P = ta, for some number t. Hence, r = r 1 + ta, which is the vector equation of the straight line. The components of a form a set of direction ratios for the straight line. Notes: (i) The vector equation of a straight line passing through the origin and parallel to a given vector a will be of the form r = ta. (ii) By equating i, j and k components on both sides, the vector equation of the straight line passing through P 1 and parallel to a leads to parametric equations x = x 1 + a 1 t, y = y 1 + a t, z = z 1 + a 3 t; and, if these are solved for the parameter, t, we obtain x x 1 a 1 = y y 1 a = z z 1 a 3, which is the standard cartesian form of the straight line.

4 EXAMPLES 1. Determine the vector equation of the straight line passing through the point with position vector i 3j + k and parallel to the vector, i + 3j 4k. Express the vector equation of the straight line in standard cartesian form. Solution The vector equation of the straight line is or r = i 3j + k + t(i + 3j 4k) xi + yj + zk = (1 + t)i + ( 3 + 3t)j + (1 4t)k. Eliminating t from each component, we obtain the cartesian form of the straight line, x 1 = y = z The equations 3x + 1 = y 1 = z determine a straight line. Express them in vector form and obtain a set of direction ratios for the straight line. Solution Rewriting the equations so that the coefficients of x, y and z are unity, we have x = y 1 = z 5 3. Hence, in vector form, the equation of the line is r = 1 3 i + j + 5k + t ( 3 i + j 3k ). Thus, a set of direction ratios for the straight line are 3 : : 3 or : 6 : 9. 3

5 3. Show that the two straight lines where and r = r 1 + ta 1 and r = r + ta, r 1 = j, a 1 = i + j k, r = i + j + k, a = i j, have a common point and determine its co-ordinates. Solution Any point on the first line is such that x = t, y = 1 + t, z = t, for some parameter value, t; and any point on the second line is such that for some parameter value, s. x = 1 s, y = 1 s, z = 1, The lines have a common point if it is possible to find values of t and s such these are the same point. In fact, t = 1 and s = 1 are suitable values and give the common point ( 1, 1, 1) THE STRAIGHT LINE PASSING THROUGH TWO GIVEN POINTS If a straight line passes through the two given points, P 1 and P, then it is certainly parallel to the vector, a = P 1 P = (x x 1 )i + (y y 1 )j + (z z 1 )k. 4

6 P P P 1 r r r 1 O Thus, the vector equation of the straight line is r = r 1 + ta as before. Notes: (i) The parametric equations of the straight line passing through the points, P 1 and P, are x = x 1 + (x x 1 )t, y = y 1 + (y y 1 )t, z = z 1 + (z z 1 )t; and we notice that the base-points of the parametric representation (that is, P 1 and P ) have parameter values t = 0 and t = 1 respectively. (ii) The standard cartesian form of the straight line passing through P 1 and P is x x 1 x x 1 = y y 1 y y 1 = z z 1 z z 1. 5

7 EXAMPLE Determine the vector equation of the straight line passing through the two points, P 1 (3, 1, 5) and P ( 1, 4, ). Solution OP 1 = 3i j + 5k and P 1 P = ( 1 3)i + ( 4 + 1)j + ( 5)k = 4i 3j 3k. Hence, the vector equation of the straight line is r = 3i j + 5k t(4i + 3j + 3k) THE PERPENDICULAR DISTANCE OF A POINT FROM A STRAIGHT LINE For a straight line, l, passing through a given point, A, with position vector, a and parallel to a given vector, b, it may be necessary to determine the perpendicular distance, d, from this line, of a point, C, with position vector, c. O B A d C a c b l From the diagram, with Pythagoras Theorem, 6

8 d = (AC) (AB). But, AC = c a, so that (AC) = (c a) (c a). Also, the length, AB, is the projection of AC onto the line, l, which is parallel to b. Hence, AB = (c a) b, b which gives the result [ ] (c a) b d = (c a) (c a). b From this result, d may be deduced. EXAMPLE Determine the perpendicular distance of the point (3, 1, 7) from the straight line passing through the two points, (,, 1) and (0, 3, 5). Solution In the standard formula, we have a = i + j j, b = (0 )i + (3 )j + (5 [ 1])k = i + j + 6k, b = ( ) = 41, 7

9 c = 3i j + 7k, and c a = (3 )i + ( 1 )j + (7 [ 1])k = i 3j + 8k. Hence, the perpendicular distance, d, is given by d = 1 + ( 3) + 8 (1)( ) + ( 3)(1) + (8)(6) 41 = which gives d THE SHORTEST DISTANCE BETWEEN TWO PARALLEL STRAIGHT LINES The result of the previous section may also be used to determine the shortest distance between two parallel straight lines, because this will be the perpendicular distance from one of the lines of any point on the other line. We may consider the perpendicular distance between (a) the straight line passing through the fixed point with position vector r 1 and parallel to the fixed vector, a and (b) the straight line passing through the fixed point with position vector r, also parallel to the fixed vector, a. These will have vector equations, r = r 1 + ta and r = r + ta. 8

10 P 1 d r 1 F P r a In the diagram, F is the foot of the perpendicular onto the second line from the point P 1 on the first line and the length of this perpendicular is d. Hence, [ ] d (r r 1 ) a = (r r 1 ) (r r 1 ). a EXAMPLE Determine the shortest distance between the straight line passing through the point with position vector r 1 = 4i j + k, parallel to the vector b = i + j + k, and the straight line passing through the point with position vector r = i + 3j k, parallel to b. Solution From the formula, d = ( 6i + 4j k) ( 6i + 4j k) [ ( 6i + 4j k) (i + j + k) 3 ]. That is, d = ( ) [ ] = = 15 3, 9

11 which gives d THE SHORTEST DISTANCE BETWEEN TWO SKEW STRAIGHT LINES Two straight lines are said to be skew if they are not parallel and do not intersect each other. It may be shown that such a pair of lines will always have a common perpendicular (that is, a straight line segment which meets both, and is perpendicular to both). Its length will be the shortest distance between the two skew lines. For the straight lines, whose vector equations are r = r 1 + ta 1 and r = r + ta, suppose that the point, M 1, on the first line and the point, M, on the second line are the ends of the common perpendicular and have position vectors, m 1 and m, respectively. Then, m 1 = r 1 + t 1 a 1 and m = r + t a, for some values, t 1 and t, of the parameter, t. M 1 M Firstly, we have 10

12 M 1 M = m m 1 = (r r 1 ) + t a t 1 a 1. Secondly, a vector which is certainly perpendicular to both of the skew lines is a 1 x a, so that a unit vector perpendicular to both of the skew lines is a 1 x a a 1 x a. This implies that (r r 1 ) + t a t 1 a 1 = ±d a 1 x a a 1 x a, where d is the shortest distance between the skew lines. Finally, if we take the scalar (dot) product of both sides of this result with the vector a 1 x a, we obtain (r r 1 ) (a 1 x a ) = ±d a 1 x a a 1 x a, giving d = (r r 1 ) (a 1 x a ) a 1 x a. EXAMPLE Determine the perpendicular distance between the two skew lines r = r 1 + ta 1 and r = r + ta, where r 1 = 9j + k, a 1 = 3i j + k, 11

13 r = 6i 5j + 10k, a = 3i + j + 4k. Solution r r 1 = 6i 14j + 8k and i j k a 1 x a = = 6i 15j + 3k, 3 4 so that d = ( 6)( 6) + ( 14)( 15) + (8)(3) = = 70 = EXERCISES 1. Determine the vector equation, and hence the parametric equations, of the straight line which passes through the point, (5,, 1), and is parallel to the vector i 3j + k.. The equations x + 7 = 3y 1 5 = z determine a straight line. Determine the equation of the line in vector form, and state a set of direction ratios for this line. 3. Show that there is a point common to the two straight lines where r = r 1 + ta 1 and r = r + ta, r 1 = 3j + k, r = i + j + 3k, 1

14 and a 1 = i 4j k, a = 9i 3j 6k Determine the co-ordinates of the common point. 4. Determine, in standard cartesian form, the equation of the straight line passing through the two points, (, 4, 9) and (, 1, 6). 5. Determine the perpendicular distance of the point (0,, 5) from the straight line which passes through the point (1, 1, 3) and is parallel to the vector 3i + j + k. 6. Determine the shortest distance between the two parallel straight lines where r = r 1 + ta and r = r + ta, r 1 = 3i + j + k, r = i j k and a = i + 5j + k. 7. Determine the shortest distance between the two skew straight lines r = r 1 + ta 1 and r = r + ta, where r 1 = i j + k, r = i + 3j + k, and a 1 = i j k, a = 5i + j k ANSWERS TO EXERCISES 1. r = (5i j + k + t(i 3j + k), giving x = 5 + t, y = 3t, z = 1 + t. 13

15 . In vector form, the equation of the line is and set of direction ratios is r = i j 1 k + t ( 7i j 3 k ), 4 : 10 : 9 3. The common point has co-ordinates (1, 1, 1) x + 4 d = d = = y 4 5 = z d =

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### 5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

### FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

### Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

### C relative to O being abc,, respectively, then b a c.

2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

### Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### LINES AND PLANES CHRIS JOHNSON

LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance

### Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### CHAPTER FIVE. 5. Equations of Lines in R 3

118 CHAPTER FIVE 5. Equations of Lines in R 3 In this chapter it is going to be very important to distinguish clearly between points and vectors. Frequently in the past the distinction has only been a

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.

6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### 1.5 Equations of Lines and Planes in 3-D

40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

### Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

### Section 2.4: Equations of Lines and Planes

Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

### 1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

.(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

### Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES

Co-ordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian co-ordinates. The Gradient of a Line. As

### = y y 0. = z z 0. (a) Find a parametric vector equation for L. (b) Find parametric (scalar) equations for L.

Math 21a Lines and lanes Spring, 2009 Lines in Space How can we express the equation(s) of a line through a point (x 0 ; y 0 ; z 0 ) and parallel to the vector u ha; b; ci? Many ways: as parametric (scalar)

### Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

### 10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

### Equations of Lines and Planes

Calculus 3 Lia Vas Equations of Lines and Planes Planes. A plane is uniquely determined by a point in it and a vector perpendicular to it. An equation of the plane passing the point (x 0, y 0, z 0 ) perpendicular

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

### 1. Equations for lines on the plane and planes in the space.

1. Equations for lines on the plane and planes in the space. 1.1. General implicit vector equation. (1) a r=α This equation defines a line in the plane and a plane in the 3-space. Here r is the radius-vector

### 9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

### x(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3

CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract -

### Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Lines and Planes in R 3

.3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK)

Year 1 Pure Mathematics C1 Coordinate Geometry 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition).

### Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### i=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.

Length, norm, magnitude of a vector v=(v 1,,v n ) is v = (v 12 +v 22 + +v n2 ) 1/2. Examples v=(1,1,,1) v =n 1/2. Unit vectors u=v/ v corresponds to directions. Standard unit vectors i=(1,0), j=(0,1) in

### Vector Algebra II: Scalar and Vector Products

Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

### PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### Notes from February 11

Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

### Mathematics 205 HWK 6 Solutions Section 13.3 p627. Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors.

Mathematics 205 HWK 6 Solutions Section 13.3 p627 Note: Remember that boldface is being used here, rather than overhead arrows, to indicate vectors. Problem 5, 13.3, p627. Given a = 2j + k or a = (0,2,

### WORK SCHEDULE: MATHEMATICS 2007

, K WORK SCHEDULE: MATHEMATICS 00 GRADE MODULE TERM... LO NUMBERS, OPERATIONS AND RELATIONSHIPS able to recognise, represent numbers and their relationships, and to count, estimate, calculate and check

### 2.1 Three Dimensional Curves and Surfaces

. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

### MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

### Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

### LINES AND PLANES IN R 3

LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.

### 2 Session Two - Complex Numbers and Vectors

PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

### Plotting Lines in Mathematica

Lines.nb 1 Plotting Lines in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, 196 Auditorium Road Unit 39, Storrs CT 669-39. All rights reserved.

### Mathematics Notes for Class 12 chapter 10. Vector Algebra

1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### SQA Advanced Higher Mathematics Unit 3

SCHOLAR Study Guide SQA Advanced Higher Mathematics Unit 3 Jane S Paterson Heriot-Watt University Dorothy A Watson Balerno High School Heriot-Watt University Edinburgh EH14 4AS, United Kingdom. First published

### DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### Inner product. Definition of inner product

Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1 - LOADING SYSTEMS TUTORIAL 1 NON-CONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects

### Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### BX in ( u, v) basis in two ways. On the one hand, AN = u+

1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

### One advantage of this algebraic approach is that we can write down

. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

### MATH 275: Calculus III. Lecture Notes by Angel V. Kumchev

MATH 275: Calculus III Lecture Notes by Angel V. Kumchev Contents Preface.............................................. iii Lecture 1. Three-Dimensional Coordinate Systems..................... 1 Lecture

### 9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### Unit 5: Coordinate Geometry Practice Test

Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this

### Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### 4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin

4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the

### University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients