Section 9.1 Vectors in Two Dimensions


 Gregory Bailey
 2 years ago
 Views:
Transcription
1 Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an arrow to specify the direction. We denote this vector by AB. Point A is the initial point, and B is the terminal point of the vector AB. The length of the line segment AB is called the magnitude or length of the vector and is denoted by AB. We use boldface letters to denote vectors. Thus, we write u = AB. Two vectors are considered equal if they have equal magnitude and the same direction. The Figures below illustrate the way we (a) add (b) subtract (c) multiply a vector by a scalar 1
2 Vectors in the Coordinate Plane By placing a vector in a coordinate plane, we can describe it analytically (that is, by using components). We represent a vector v as an ordered pair of real numbers. v = a,b where a is the horizontal component of v and b is the vertical component of v. The vector a, b has many different representations, depending on its initial point. (a) Find the component form of the vector u with initial point ( 2,5) and terminal point (,7). (b) If the vector v =,7 is sketched with initial point (2,4), what is its terminal point? (c) Sketch representations of the vector w = 2, with initial points at (0,0), (2,2), ( 2, 1), and (1,4). (a) The desired vector is u = ( 2),7 5 = 5,2 (b) Let the terminal point of v be (x,y). Then x 2,y 4 =,7 So x 2 = and y 4 = 7, or x = 5 and y = 11. The terminal point is (5,11). (c) Representations of the vector w are sketched in the Figure above. (a) Find the vector u with initial point ( 5,4) and terminal point (4,8). (b) If the vector v = 4,7 is sketched with initial point (4,5), what is its terminal point? 2
3 (a) Find the vector u with initial point ( 5,4) and terminal point (4,8). (b) If the vector v = 4,7 is sketched with initial point (4,5), what is its terminal point? (a) The desired vector is u = 4 ( 5),8 4 = 9,4 (b) Let the terminal point of v be (x,y). Then x 4,y 5 = 4,7 So x 4 = 4 and y 5 = 7, or x = 8 and y = 12. The terminal point is (8,12). Find the magnitude of each vector. (a) u = 2, (b) v = 5,0 (c) w = 5, 4 5 (a) u = 2 2 +( ) 2 = 1 (b) v = = 25 = 5 ( ) 2 ( ) (c) w = + = = 25 = 1 If u = 2, and v = 1,2, find u+v, u v, 2u, v, and 2u+v.
4 If u = 2, and v = 1,2, find u+v, u v, 2u, v, and 2u+v. We have u+v = 2, + 1,2 = 2+( 1), +2 = 1, 1 u v = 2, 1,2 = 2 ( 1), 2 =, 5 2u = 2 2, = 2(2),2( ) = 4, 6 v = 1,2 = ( )( 1),( )2 =, 6 2u+v = 2 2, + 1,2 = 4, 6 +,6 = 4+( ), 6+6 = 1,0 The zero vector is the vector 0 = 0,0. A vector of length 1 is called a unit vector. For instance, in the Example above, the vector w = 5, 4 is a unit vector. Two useful unit 5 vectors are i and j, defined by i = 1,0 j = 0,1 These vectors are special because any vector can be expressed in terms of them. (a) Write the vector u = 5, 8 in terms of i and j. (b) If u = i+2j and v = i+6j, write 2u+5v in terms of i and j. 4
5 (a) Write the vector u = 5, 8 in terms of i and j. (b) If u = i+2j and v = i+6j, write 2u+5v in terms of i and j. (a) u = 5i+( 8)j = 5i 8j (b) The properties of addition and scalar multiplication of vectors show that we can manipulate vectors in the same way as algebraic expressions. Thus 2u+5v = 2(i+2j)+5( i+6j) = (6i+4j)+( 5i+0j) = (6 5)i+(4+0)j = i+4j (a) A vector v has length 8 and direction π/. Find the horizontal and vertical components, and write v in terms of i and j. (b) Find the direction of the vector u = i+j. (a) We have v = a,b, where the components are given by a = 8cos π = = 4 and b = 8sin π = 8 Thus, v = 4,4 = 4i+4 j. 2 = 4 (b) From the Figure on the right we see that the direction θ has the property that tanθ = 1 = Thus, the reference angle for θ is π/6. Since the terminal point of the vector u is in Quadrant II, it follows that θ = 5π/6. A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the speed of the boat (relative to the water) is 10 mi/h and the river is flowing east at the rate of 5 mi/h, in what direction should she head the boat in order to arrive at the desired landing point? 5
6 A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the speed of the boat (relative to the water) is 10 mi/h and the river is flowing east at the rate of 5 mi/h, in what direction should she head the boat in order to arrive at the desired landing point? We choose a coordinate system with the origin at the initial position of the boat as shown in the Figure above. Let u and v represent the velocities of the river and the boat, respectively. Clearly, u = 5i, and since the speed of the boat is 10 mi/h, we have v = 10, so v = (10cosθ)i+(10sinθ)j where the angle θ is as shown in the Figure above. The true course of the boat is given by the vector w = u+v. We have w = u+v = 5i+(10cosθ)i+(10sinθ)j = (5+10cosθ)i+(10sinθ)j Since the woman wants to land at a point directly across the river, her direction should have horizontal component 0. In other words, she should choose θ in such a way that 5+10cosθ = 0 cosθ = 1 2 θ = 120 Thus she should head the boat in the direction θ = 120 (or N 0 W). 6
Solution: 2. Sketch the graph of 2 given the vectors and shown below.
7.4 Vectors, Operations, and the Dot Product Quantities such as area, volume, length, temperature, and speed have magnitude only and can be completely characterized by a single real number with a unit
More informationex) What is the component form of the vector shown in the picture above?
Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationOne advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the xaxis points out
More informationExample SECTION 131. XAXIS  the horizontal number line. YAXIS  the vertical number line ORIGIN  the point where the xaxis and yaxis cross
CHAPTER 13 SECTION 131 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants XAXIS  the horizontal
More informationPHYSICS 149: Lecture 4
PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all
More informationDefinition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.
6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3.
More informationDifference between a vector and a scalar quantity. N or 90 o. S or 270 o
Vectors Vectors and Scalars Distinguish between vector and scalar quantities, and give examples of each. method. A vector is represented in print by a bold italicized symbol, for example, F. A vector has
More informationReview A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A0 A.1 Vectors A2 A.1.1 Introduction A2 A.1.2 Properties of a Vector A2 A.1.3 Application of Vectors
More informationLecture L3  Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3  Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
More informationUnified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
More informationLecture 4. Vectors. Motion and acceleration in two dimensions. Cutnell+Johnson: chapter ,
Lecture 4 Vectors Motion and acceleration in two dimensions Cutnell+Johnson: chapter 1.51.8, 3.13.3 We ve done motion in one dimension. Since the world usually has three dimensions, we re going to do
More information5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
More informationSection V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
More informationAddition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
More informationSection 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More informationREVIEW OVER VECTORS. A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example.
REVIEW OVER VECTORS I. Scalars & Vectors: A scalar is a quantity that is defined by its value only. This value can be positive, negative or zero Example mass = 5 kg A vector is a quantity that can be described
More informationVECTORS. A vector is a quantity that has both magnitude and direction.
VECTOS Definition: A vector is a quantity that has both magnitude and direction. NOTE: The position of a vector has no bearing on its definition. A vector can be slid horizontally or vertically without
More informationMechanics 1: Vectors
Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized
More informationVectors are quantities that have both a direction and a magnitude (size).
Scalars & Vectors Vectors are quantities that have both a direction and a magnitude (size). Ex. km, 30 ο north of east Examples of Vectors used in Physics Displacement Velocity Acceleration Force Scalars
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 1  LOADING SYSTEMS TUTORIAL 1 NONCONCURRENT COPLANAR FORCE SYSTEMS 1. Be able to determine the effects
More informationLinear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
More informationELEMENTS OF VECTOR ALGEBRA
ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions
More informationSouth Carolina College and CareerReady (SCCCR) PreCalculus
South Carolina College and CareerReady (SCCCR) PreCalculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More informationUnit 11 Additional Topics in Trigonometry  Classwork
Unit 11 Additional Topics in Trigonometry  Classwork In geometry and physics, concepts such as temperature, mass, time, length, area, and volume can be quantified with a single real number. These are
More informationAP Physics  Vector Algrebra Tutorial
AP Physics  Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
More informationVectors. Vector Multiplication
Vectors Directed Line Segments and Geometric Vectors A line segment to which a direction has been assigned is called a directed line segment. The figure below shows a directed line segment form P to Q.
More informationVector Spaces; the Space R n
Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which
More information28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition
More information11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
More informationPHYSICS 151 Notes for Online Lecture #6
PHYSICS 151 Notes for Online Lecture #6 Vectors  A vector is basically an arrow. The length of the arrow represents the magnitude (value) and the arrow points in the direction. Many different quantities
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationMATH 304 Linear Algebra Lecture 24: Scalar product.
MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent
More informationMAC 1114. Learning Objectives. Module 10. Polar Form of Complex Numbers. There are two major topics in this module:
MAC 1114 Module 10 Polar Form of Complex Numbers Learning Objectives Upon completing this module, you should be able to: 1. Identify and simplify imaginary and complex numbers. 2. Add and subtract complex
More informationChapter 3. Technical Measurement and Vectors
Chapter 3. Technical Measurement and Vectors Unit Conversions 31. soccer field is 100 m long and 60 m across. What are the length and width of the field in feet? 100 cm 1 in. 1 ft (100 m) 328 ft 1 m 2.54
More informationVectors What are Vectors? which measures how far the vector reaches in each direction, i.e. (x, y, z).
1 1. What are Vectors? A vector is a directed line segment. A vector can be described in two ways: Component form Magnitude and Direction which measures how far the vector reaches in each direction, i.e.
More information1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two nonzero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
More information1.3 Displacement in Two Dimensions
1.3 Displacement in Two Dimensions So far, you have learned about motion in one dimension. This is adequate for learning basic principles of kinematics, but it is not enough to describe the motions of
More informationVectors and Scalars. AP Physics B
Vectors and Scalars P Physics Scalar SCLR is NY quantity in physics that has MGNITUDE, but NOT a direction associated with it. Magnitude numerical value with units. Scalar Example Speed Distance ge Magnitude
More informationIntroduction to Vectors
Introduction to Vectors A vector is a physical quantity that has both magnitude and direction. An example is a plane flying NE at 200 km/hr. This vector is written as 200 Km/hr at 45. Another example is
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More informationThe Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
More information2. Right Triangle Trigonometry
2. Right Triangle Trigonometry 2.1 Definition II: Right Triangle Trigonometry 2.2 Calculators and Trigonometric Functions of an Acute Angle 2.3 Solving Right Triangles 2.4 Applications 2.5 Vectors: A Geometric
More information1.4 Velocity and Acceleration in Two Dimensions
Figure 1 An object s velocity changes whenever there is a change in the velocity s magnitude (speed) or direction, such as when these cars turn with the track. 1.4 Velocity and Acceleration in Two Dimensions
More informationA Review of Vector Addition
Motion and Forces in Two Dimensions Sec. 7.1 Forces in Two Dimensions 1. A Review of Vector Addition. Forces on an Inclined Plane 3. How to find an Equilibrant Vector 4. Projectile Motion Objectives Determine
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationVECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
More information(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its
(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:
More informationCHAPTER 4 Motion in 2D and 3D
General Physics 1 (Phys : Mechanics) CHAPTER 4 Motion in 2D and 3D Slide 1 Revision : 2. Displacement vector ( r): 1. Position vector (r): r t = x t i + y t j + z(t)k Particle s motion in 2D Position vector
More informationModule 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
More informationExamples of Scalar and Vector Quantities 1. Candidates should be able to : QUANTITY VECTOR SCALAR
Candidates should be able to : Examples of Scalar and Vector Quantities 1 QUANTITY VECTOR SCALAR Define scalar and vector quantities and give examples. Draw and use a vector triangle to determine the resultant
More informationChapter 3B  Vectors. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 3B  Vectors A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Vectors Surveyors use accurate measures of magnitudes and directions to
More informationv 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3space. This time the outcome will be a vector in 3space. Definition
More informationMATHEMATICAL VECTOR ADDITION
MATHEMATICAL VECTOR ADDITION Part One: The Basics When combining two vectors that act at a right angle to each other, you are able to use some basic geometry to find the magnitude and direction of the
More information13.4 THE CROSS PRODUCT
710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product
More informationNotice that v v w (4)( 15) ( 3)( 20) (0)(2) ( 2)( 15) (2)( 20) (5)(2)
The Cross Product When discussing the dot product, we showed how two vectors can be combined to get a number. Here, we shall see another way of combining vectors, this time resulting in a vector. This
More information6. LECTURE 6. Objectives
6. LECTURE 6 Objectives I understand how to use vectors to understand displacement. I can find the magnitude of a vector. I can sketch a vector. I can add and subtract vector. I can multiply a vector by
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationVectors. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Vectors Spring /
Vectors Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Vectors Spring 2012 1 / 18 Introduction  Definition Many quantities we use in the sciences such as mass, volume, distance, can be expressed
More informationθ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:
Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationSection V.3: Dot Product
Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,
More informationGeorgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1
Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationChapter 3 Kinematics in Two or Three Dimensions; Vectors. Copyright 2009 Pearson Education, Inc.
Chapter 3 Kinematics in Two or Three Dimensions; Vectors Vectors and Scalars Units of Chapter 3 Addition of Vectors Graphical Methods Subtraction of Vectors, and Multiplication of a Vector by a Scalar
More informationectors and Application P(x, y, z)! $ ! $ & " 11,750 12,750 13,750
thstrack MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) odule 3 Topic 3 Module 9 Introduction Vectors and Applications to Matrices ectors
More informationPractice Problems for Midterm 1
Practice Problems for Midterm 1 Here are some problems for you to try. A few I made up, others I found from a variety of sources, including Stewart s Multivariable Calculus book. (1) A boy throws a football
More informationChapter 3 Vectors. m = m1 + m2 = 3 kg + 4 kg = 7 kg (3.1)
COROLLARY I. A body, acted on by two forces simultaneously, will describe the diagonal of a parallelogram in the same time as it would describe the sides by those forces separately. Isaac Newton  Principia
More informationChapter 10: Terminology and Measurement in Biomechanics
Chapter 10: Terminology and Measurement in Biomechanics KINESIOLOGY Scientific Basis of Human Motion, 11th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt
More informationAssignment 3. Solutions. Problems. February 22.
Assignment. Solutions. Problems. February.. Find a vector of magnitude in the direction opposite to the direction of v = i j k. The vector we are looking for is v v. We have Therefore, v = 4 + 4 + 4 =.
More informationLecture PowerPoints. Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli
Lecture PowerPoints Chapter 3 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the
More informationBasic Electrical Theory
Basic Electrical Theory Mathematics Review PJM State & Member Training Dept. Objectives By the end of this presentation the Learner should be able to: Use the basics of trigonometry to calculate the different
More informationLecture Outline Chapter 5. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.
Lecture Outline Chapter 5 Physics, 4 th Edition James S. Walker Chapter 5 Newton s Laws of Motion Dynamics Force and Mass Units of Chapter 5 Newton s 1 st, 2 nd and 3 rd Laws of Motion The Vector Nature
More informationFURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level  MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: 97 Mathematics
More information1. Units and Prefixes
1. Units and Prefixes SI units Units must accompany quantities at all times, otherwise the quantities are meaningless. If a person writes mass = 1, do they mean 1 gram, 1 kilogram or 1 tonne? The Système
More information81 Introduction to Vectors
State whether each quantity described is a vector quantity or a scalar quantity. 1. a box being pushed at a force of 125 newtons This quantity has a magnitude of 125 newtons, but no direction is given.
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More informationConcepts in Calculus III
Concepts in Calculus III Beta Version UNIVERSITY PRESS OF FLORIDA Florida A&M University, Tallahassee Florida Atlantic University, Boca Raton Florida Gulf Coast University, Ft. Myers Florida International
More informationVector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
More informationTriangle Trigonometry and Circles
Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of
More information3. KINEMATICS IN TWO DIMENSIONS; VECTORS.
3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationThe Dot Product. If v = a 1 i + b 1 j and w = a 2 i + b 2 j are vectors then their dot product is given by: v w = a 1 a 2 + b 1 b 2
The Dot Product In this section, e ill no concentrate on the vector operation called the dot product. The dot product of to vectors ill produce a scalar instead of a vector as in the other operations that
More informationVector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
More informationVectors Math 122 Calculus III D Joyce, Fall 2012
Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More informationCartesian Coordinate System. Also called rectangular coordinate system x and y axes intersect at the origin Points are labeled (x,y)
Physics 1 Vectors Cartesian Coordinate System Also called rectangular coordinate system x and y axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference line
More informationVector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
More informationGeometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in threedimensional space, we also examine the
More informationChapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7 In this section, we discuss linear transformations 89 9 CHAPTER
More informationLab 2: Vector Analysis
Lab 2: Vector Analysis Objectives: to practice using graphical and analytical methods to add vectors in two dimensions Equipment: Meter stick Ruler Protractor Force table Ring Pulleys with attachments
More information73 Parallel and Perpendicular Lines
Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 73 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines
More informationMath, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
More informationMathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is nonnegative
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationChapter 3 Practice Test
Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?
More information