2.1 Three Dimensional Curves and Surfaces

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2.1 Three Dimensional Curves and Surfaces"

Transcription

1 . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The line then is the line parallel to the vector v = (a, b, c) passing through the point P (,, ). In particular, if we view the vector as having its initial point at P, then we can move awa from P along the line b adding multiples of v. In other L.5. P,,.5. v a,b,c Figure : Parametric equation of a line. words, we can move tv along the line. In other words, the position of point Q(,, ) on the line is given b (,, ) = (,, ) + t(a, b, c) = ( + at, + bt, + ct). () This gives us the parametric equations of a line in 3-space for a line passing through P (,, ) and parallel to v = ai + bj + ck : = + at, = + bt, = + ct. ()

2 Here t is the parameter that determines how far along the line ou have moved. Eample: Find the parametric equation of the line passing through P (, 3, ), parallel to i j + 3k. Solution: The line is given b parametric equations = + t, = 3 t, = + 3t. Note that these lines are infinite. If we want onl a line segment we must restrict the parameter. Thus, the line given in the eample can be restricted to the line segment joining P (, 3, ) to Q(3,, 5) if we restrict t to the interval t. Finall, two lines that are not parallel and do not cross are called skew lines.... Representing the parametric equation using vectors If instead of an initial point P (,, ), we define a position vector r = (,, ) to give an initial position on a line and r = (,, ) for an point on the line parallel to v = (a, b, c) through P, then equation () can be represented b the vector equation of a line as r = r + tv. (3) This is shown in Figure. Note that all these vectors are defined with initial points at the origin. This is entirel equivalent to the equations in (), but the notation is obviousl briefer, and the interpretation is purel in terms of vectors. If ou need to think about this more intuitivel, think of r as ordinar position vectors in space, r as a velocit vector and t as time. This then looks like one of the usual equations for linear motion in vector form. However, we can use this more generall for an parameter t and appropriate vector v. Let s return to the previous eample: Eample: Find the vector equation of the line passing through P (, 3, ), parallel to i j + 3k.. Solution: The initial position is given b the vector r = (, 3, ),

3 ..5 L P,..5 r r v t v Figure : Vector equation of a line r = r + vt. and the vector equation is r = (, 3, )+t(,, 3) = (+t, 3 t, +3t) = (+t)i+(3 t)j+(+3t)k. It is important to be comfortable with all these was of writing parametric equations of a line... Planes The first tpe of planes we might think of are the coordinate planes. The -plane, for eample, is the set of a and with =. B etension, we can imagine planes parallel to the coordinate planes. For eample, the plane = a is the set of all and such that = a. These tpes of planes are shown in Figure 3. 3

4 a b c Figure 3: Planes parallel to the coordinate aes.... Planes specified b a point and normal vector An plane in 3-space can be uniquel determined b giving a point on the plane and a vector perpendicular to the plane, called a normal vector. Suppose we want to find an equation of the plane passing through P (,, ) and perpendicular to n = (a, b, c). Let us define the vector r = (,, ) pointing to P, and r = (,, ) pointing to another point Q. Since n is perpendicular to the plane, n r = n r =, and therefore which in component form is written which results in the equation n (r r ) =, (4) (a, b, c) (,, ) =, (5) a( ) + b( ) + c( ) =. (6) This is known as the point-normal form of the equation of a plane. Equation (4) is the vector form of this equation. Eample: Find the equation of the plane passing though (,, ) and with normal vector n = (, 3, ). Solution: We use equation (6) to give us ( ) + 3( ) + ( + ) =, 4

5 which can be simplified to =. In fact, this final form can be generalised to a + b + c + d =, (7) which is the equation with graph that is a plane with n = (a, b, c) as a normal. This is called the general form of the equation of a plane. d is determined b knowing a point that lies in the plane and substituting into the equation to find d. Other was to determine a plane are a point and two vectors parallel to the plane, or three points in the plane. Note that these allow us to find a normal vector and so the equation of the plane. The cross-product of two vectors in the plane will give a vector normal to the plane. Three points P, P and P 3 allow us to define two vectors P P and P P 3, which again allow us to find the normal vector.... Intersecting planes Two distinct planes have an acute angle of intersection, θ π/. The angle is the same as either the angle between n and n or between n and n depending on the direction of the normal vectors. However, in either case the angle is given b cos θ = n n n n. (8) The absolute value ensures that regardless of the sign of the normal vectors we alwas have an acute angle. Eample: Find the angle between the planes + = 3, =. Solution: The normal vectors are given b n = (,, ) and n = (, 4, 4), and the angle is found from cos θ = = 8 (3)(6) = 4 9, 5

6 n n. Θ 5 Θ Figure 4: Intersecting planes. which gives the angle θ = cos 4 9 =.4 rad = 63.6o....3 Distance problems involving planes There are three distance problems we will be concerned with: the distance between a point and a plane; the distance between two parallel planes; find the distance between two skew lines. Theorem: The distance D between a point P (,, ) and the plane a + b + c + d = is D = a + b + c + d a + b + c. (9) Proof: Let Q(,, ) be a point in the plane, and n = (a, b, c) the normal vector with its initial point is at Q. Consider Figure 5. The distance D is equal to the length of the orthogonal projection of QP onto n. Therefore, recalling proj b v = v b b b, () 6

7 P,, proj n QP D Q,, Figure 5: Projection onto normal vector: distance from plane. we get However, we can write D = proj n QP = QP n n QP = (,, ) QP na( ) + b( ) + c( ), n = QP n. () n () and which together give us n = a + b + c, (3) D = a( ) + b( ) + c( ) a + b + c. (4) Moreover, since Q lies in the plane, it satisfies the equation a + b + c + d =, (5) which allows us to find d, d = a b c, (6) and therefore we find the result. 7

8 Eample: Find the distance between the point P (4, 4, ) and the plane =. Solution: Using () we get D = ()(4) + ( )(4) + (4)() = 6 6 =. (7) To compute the distance between two parallel planes, compute the distance between one plane and an point in the other plane. To find the distance between skew lines, define two parallel planes each of which contains one of the skew lines. Then the distance between the planes gives the distance between the skew lines. Eample: Find the distance between the skew lines L : = + 4t = 5 4t, = + 5t, L : = + 8t = 4 3t, = 5 + t. Solution: Let P and P be parallel planes containing L and L respectivel. We can find a point on each line and hence in each plane b setting t =, giving Q (, 5, ) and Q (, 4, 5), see Figure 6. Let s use Q and find the L Q D L Q Figure 6: Distance between skew lines. equation of the plane P. Since the planes are parallel, the vectors used to define the parametric equations of the lines u = (4, 4, 5) and u = (8, 3, ) are both parallel to P. Hence i j k n = u u = = i + 36j + k, 8 3 8

9 is normal to P and P. With this normal vector and the point Q, we find the equation of P : (c ) + 36( 4) + ( 5) =, which can be written in the general form =. Therefore the distance from P to the point Q (, 5, ) is D = ()() + (36)(5) + ()( ) = 95 87, which in turn is the distance from L to L, since the lie in the parallel planes...3 Quadric Surfaces The generalisation to the general quadratic equation?? which from which conic sections were derived in -space is the second-degree equation in, and, A + B + C + D + E + F + G + H + Ik + J =. (8) The graphs of this famil of equations are called the quadric surfaces. There are si common tpes of quadrics,. Ellipsoid:. Hperboloid of One Sheet: 3. Hperboloid of Two Sheets: a + b + c = a + b c = c a b = 4. Elliptic Cone: = a + b 5. Elliptic Paraboloid: = a + b (9) 6. Hperbolic Paraboloid: = b a where we assume that a, b, c >. These are shown in Figure 7. The have the following traces 9

10 . Ellipsoid: Traces in the coordinate planes are ellipses.. Hperboloid of One Sheet: The trace in the -plane are ellipses, and traces in the - and -planes are hperbolas. 3. Hperboloid of Two Sheets: There is no trace in the -plane, although the traces in planes parallel to the -plane are ellipses provided there is a trace, and traces in the - and -planes are hperbolas. 4. Elliptic Cone: The trace in the -plane is a point and in planes parallel to the -plane the traces are ellipses, and traces in the - and planes are pairs of intersecting lines. 5. Elliptic Paraboloid: The trace in the -plane is a point and in planes parallel to and above the -plane the traces are ellipses, and traces in the - and -planes are parabolas. 6. Hperbolic Paraboloid: The trace in the -plane is a pair of intersecting lines, and traces in planes parallel to the -plane are hperbolas, which open in the -direction when above the -plane and open in the - direction when below the -plane. Traces in the - and -planes are parabolas. These of course can also appear in other orientations along different coordinate aes, or indeed with cross-product terms which would result in other orientations. If the elliptic cross-section of an elliptic cone or elliptic paraboloid is circular the are called a circular cone and a circular paraboloid respectivel. Of course an ellipsoid with all the cross-sections circular is a sphere, i.e. a = b = c. You are not epected to accuratel draw an of these surfaces. If asked for a sketch, draw the traces on the planes, and join these to give a rough idea of the shape. As with the conic sections we can translate a quadric surface b moving awa from the origin to (a, b, c), which will result in the change (,, ) ( a, b, c) in the equations for the surfaces. However, this will not be required for this course.

11 Figure 7: Quadric surfaces.

12 ..4 Clindrical and Spherical Coordinates We have alread met polar coordinates in -space. Now we introduce two coordinate sstems that are often useful when rectangular coordinates are awkward in 3-space. Clindrical coordinates (ρ, θ, ): In terms of clindrical coordinates the rectangular coordinates are written = ρ cos θ, = ρ sin θ,, () where ρ <, θ < π. This is shown in Figure 8 If we wish to go Θ Ρ Figure 8: Clindrical coordinates (ρ, θ, φ). from rectangular to clindrical coordinates directl, we can use the relations ρ = +, tan θ =, =. () Spherical coordinates: In terms of spherical coordinates the rectangular coordinates are written = ρ sin φ cos θ, = ρ sin φ sin θ, = ρ cos φ, () where ρ <, θ < π and φ π. Figure 9 shows spherical coordinates. If we wish to go from rectangular to spherical coordinates directl,

13 Ρ Φ.5 Θ Figure 9: Spherical coordinates. we can use the relations ρ = + +, tan θ =, cos φ = + +. (3) Eample: Change + + = 9 to spherical polar coordinates. Solution: The coordinates for this surface (a sphere) are for ρ = 3 and so = 3 sin φ cos θ, = 3 sin φ sin θ, = 3 cos φ, (4) where θ and φ are the parameters. 3

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

Parametric Surfaces. Solution. There are several ways to parameterize this. Here are a few.

Parametric Surfaces. Solution. There are several ways to parameterize this. Here are a few. Parametric Surfaces 1. (a) Parameterie the elliptic paraboloid = 2 + 2 + 1. Sketch the grid curves defined b our parameteriation. Solution. There are several was to parameterie this. Here are a few. i.

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections

42 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2. 1.6.1 Brief review of Conic Sections 2 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = 2 1.6 Quadric Surfaces 1.6.1 Brief review of Conic Sections You may need to review conic sections for this to make more sense. You

More information

1. x = 2 t, y = 1 3t, z = 3 2t. 4. x = 2+t, y = 1 3t, z = 3+2t. 5. x = 1 2t, y = 3 t, z = 2 3t. x = 1+2t, y = 3 t, z = 2+3t

1. x = 2 t, y = 1 3t, z = 3 2t. 4. x = 2+t, y = 1 3t, z = 3+2t. 5. x = 1 2t, y = 3 t, z = 2 3t. x = 1+2t, y = 3 t, z = 2+3t Version 1 Homework 4 gri (11111) 1 This print-out should have 1 questions. Multiple-choice questions ma continue on the net column or page find all choices before answering. CalC13e11b 1 1. points A line

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

More information

Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes Standard equations for lines in space Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

More information

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11.

SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651. 1 x 2 y 2 z 2 4. 1 sx 2 y 2 z 2 2. xy-plane. It is sketched in Figure 11. SECTION 9.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 651 SOLUTION The inequalities 1 2 2 2 4 can be rewritten as 2 FIGURE 11 1 0 1 s 2 2 2 2 so the represent the points,, whose distance from the origin is

More information

Section 9.5: Equations of Lines and Planes

Section 9.5: Equations of Lines and Planes Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw

More information

1.7 Cylindrical and Spherical Coordinates

1.7 Cylindrical and Spherical Coordinates 56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50 Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates

Section 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates Section.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables

Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,

More information

Triple Integrals in Cylindrical or Spherical Coordinates

Triple Integrals in Cylindrical or Spherical Coordinates Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given

More information

9.5 CALCULUS AND POLAR COORDINATES

9.5 CALCULUS AND POLAR COORDINATES smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet

More information

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

Section 2.4: Equations of Lines and Planes

Section 2.4: Equations of Lines and Planes Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y

More information

Review Sheet for Test 1

Review Sheet for Test 1 Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

More information

Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1.

10.5. Click here for answers. Click here for solutions. EQUATIONS OF LINES AND PLANES. 3x 4y 6z 9 4, 2, 5. x y z. z 2. x 2. y 1. SECTION EQUATIONS OF LINES AND PLANES 1 EQUATIONS OF LINES AND PLANES A Click here for answers. S Click here for solutions. 1 Find a vector equation and parametric equations for the line passing through

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM

Dr. Fritz Wilhelm, DVC,8/30/2004;4:25 PM E:\Excel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM E:\Ecel files\ch 03 Vector calculations.doc Last printed 8/30/2004 4:25:00 PM Vector calculations 1 of 6 Vectors are ordered sequences of numbers. In three dimensions we write vectors in an of the following

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

Practice Problems for Midterm 2

Practice Problems for Midterm 2 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

More information

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson

JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3

More information

Triple integrals in Cartesian coordinates (Sect. 15.4) Review: Triple integrals in arbitrary domains.

Triple integrals in Cartesian coordinates (Sect. 15.4) Review: Triple integrals in arbitrary domains. Triple integrals in Cartesian coordinates (Sect. 5.4 Review: Triple integrals in arbitrar domains. s: Changing the order of integration. The average value of a function in a region in space. Triple integrals

More information

Notes on the representational possibilities of projective quadrics in four dimensions

Notes on the representational possibilities of projective quadrics in four dimensions bacso 2006/6/22 18:13 page 167 #1 4/1 (2006), 167 177 tmcs@inf.unideb.hu http://tmcs.math.klte.hu Notes on the representational possibilities of projective quadrics in four dimensions Sándor Bácsó and

More information

Click here for answers.

Click here for answers. CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

More information

Section 10-5 Parametric Equations

Section 10-5 Parametric Equations 88 0 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY. A hperbola with the following graph: (2, ) (0, 2) 6. A hperbola with the following graph: (, ) (2, 2) C In Problems 7 2, find the coordinates of an foci relative

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

SECTION 9-1 Conic Sections; Parabola

SECTION 9-1 Conic Sections; Parabola 66 9 Additional Topics in Analtic Geometr Analtic geometr, a union of geometr and algebra, enables us to analze certain geometric concepts algebraicall and to interpret certain algebraic relationships

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates.

More information

that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d.

that satisfies (2). Then (3) ax 0 + by 0 + cz 0 = d. Planes.nb 1 Plotting Planes in Mathematica Copright 199, 1997, 1 b James F. Hurle, Universit of Connecticut, Department of Mathematics, Unit 39, Storrs CT 669-39. All rights reserved. This notebook discusses

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0, Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

1.(6pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. .(6pts Find symmetric equations of the line L passing through the point (, 5, and perpendicular to the plane x + 3y z = 9. (a x = y + 5 3 = z (b x (c (x = ( 5(y 3 = z + (d x (e (x + 3(y 3 (z = 9 = y 3

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 40 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from

More information

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

6.3 Parametric Equations and Motion

6.3 Parametric Equations and Motion SECTION 6.3 Parametric Equations and Motion 475 What ou ll learn about Parametric Equations Parametric Curves Eliminating the Parameter Lines and Line Segments Simulating Motion with a Grapher... and wh

More information

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

More information

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Solving inequalities. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Solving inequalities Jackie Nicholas Jacquie Hargreaves Janet Hunter c 6 Universit of Sdne Mathematics Learning Centre, Universit of Sdne Solving inequalities In these nots

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

More information

Math 259 Winter 2009. Recitation Handout 1: Finding Formulas for Parametric Curves

Math 259 Winter 2009. Recitation Handout 1: Finding Formulas for Parametric Curves Math 259 Winter 2009 Recitation Handout 1: Finding Formulas for Parametric Curves 1. The diagram given below shows an ellipse in the -plane. -5-1 -1-3 (a) Find equations for (t) and (t) that will describe

More information

Lines and Planes in R 3

Lines and Planes in R 3 .3 Lines and Planes in R 3 P. Daniger Lines in R 3 We wish to represent lines in R 3. Note that a line may be described in two different ways: By specifying two points on the line. By specifying one point

More information

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS

CHAPTER 10 SYSTEMS, MATRICES, AND DETERMINANTS CHAPTER 0 SYSTEMS, MATRICES, AND DETERMINANTS PRE-CALCULUS: A TEACHING TEXTBOOK Lesson 64 Solving Sstems In this chapter, we re going to focus on sstems of equations. As ou ma remember from algebra, sstems

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM

M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM 68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)

In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1) Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t

Math 241 Lines and Planes (Solutions) x = 3 3t. z = 1 t. x = 5 + t. z = 7 + 3t Math 241 Lines and Planes (Solutions) The equations for planes P 1, P 2 and P are P 1 : x 2y + z = 7 P 2 : x 4y + 5z = 6 P : (x 5) 2(y 6) + (z 7) = 0 The equations for lines L 1, L 2, L, L 4 and L 5 are

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

Complex Numbers. w = f(z) z. Examples

Complex Numbers. w = f(z) z. Examples omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If

More information

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and

More information

Vector Fields and Line Integrals

Vector Fields and Line Integrals Vector Fields and Line Integrals 1. Match the following vector fields on R 2 with their plots. (a) F (, ), 1. Solution. An vector, 1 points up, and the onl plot that matches this is (III). (b) F (, ) 1,.

More information

Algebra II: Strand 7. Conic Sections; Topic 1. Intersection of a Plane and a Cone; Task 7.1.2

Algebra II: Strand 7. Conic Sections; Topic 1. Intersection of a Plane and a Cone; Task 7.1.2 1 TASK 7.1.2: THE CONE AND THE INTERSECTING PLANE Solutions 1. What is the equation of a cone in the 3-dimensional coordinate system? x 2 + y 2 = z 2 2. Describe the different ways that a plane could intersect

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

Applications of Trigonometry

Applications of Trigonometry 5144_Demana_Ch06pp501-566 01/11/06 9:31 PM Page 501 CHAPTER 6 Applications of Trigonometr 6.1 Vectors in the Plane 6. Dot Product of Vectors 6.3 Parametric Equations and Motion 6.4 Polar Coordinates 6.5

More information

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exams in Single Variable Calculus (MA 165, 166)

June 2011 PURDUE UNIVERSITY Study Guide for the Credit Exams in Single Variable Calculus (MA 165, 166) June PURDUE UNIVERSITY Stud Guide for the Credit Eams in Single Variable Calculus (MA 65, 66) Eam and Eam cover respectivel the material in Purdue s courses MA 65 (MA 6) and MA 66 (MA 6). These are two

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes

Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 25 Notes Jim Lambers MAT 169 Fall Semester 009-10 Lecture 5 Notes These notes correspond to Section 10.5 in the text. Equations of Lines A line can be viewed, conceptually, as the set of all points in space that

More information