Identifying second degree equations

Size: px
Start display at page:

Download "Identifying second degree equations"

Transcription

1 Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g + 2f + c = 0, (7.1) where not all of a, h, b are zero. a h Let A = be the matri of the quadratic form a h b 2 +2h +b 2. We saw in section 6.1, equation 6.2 that A has real eigenvalues λ 1 and λ 2, given b λ 1 = a + b (a b) 2 + 4h 2 2, λ 2 = a + b + (a b) 2 + 4h 2. 2 We show that it is alwas possible to rotate the, aes to 1, 1 aes whose positive directions are determined b eigenvectors X 1 and X 2 corresponding to λ 1 and λ 2 in such a wa that relative to the 1, 1 aes, equation 7.1 takes the form a 2 + b 2 + 2g + 2f + c = 0. (7.2) Then b completing the square and suitabl translating the 1, 1 aes, to new 2, 2 aes, equation 7.2 can be reduced to one of several standard forms, each of which is eas to sketch. We need some preliminar definitions. 129

2 0 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS DEFINITION (Orthogonal matri) An n n real matri P is called orthogonal if P t P = I n. It follows that if P is orthogonal, then detp = ±1. For det (P t P) = detp t det P = ( detp) 2, so (det P) 2 = det I n = 1. Hence det P = ±1. If P is an orthogonal matri with detp = 1, then P is called a proper orthogonal matri. THEOREM If P is a 2 2 orthogonal matri with detp = 1, then cos θ sinθ P = sinθ cos θ for some θ. REMARK Hence, b the discusssion at the beginning of Chapter 6, if P is a proper orthogonal matri, the coordinate transformation 1 = P represents a rotation of the aes, with new 1 and 1 aes given b the repective columns of P. Proof. Suppose that P t P = I 2, where =det P = 1. Let a b P =. c d Then the equation gives Hence a = d, b = c and so 1 P t = P 1 = 1 adjp a c b d = a c P = c a d b c a where a 2 + c 2 = 1. But then the point (a, c) lies on the unit circle, so a = cos θ and c = sinθ, where θ is uniquel determined up to multiples of 2π.,

3 7.1. THE EIGENVALUE METHOD 1 a DEFINITION (Dot product). If X = b X Y, the dot product of X and Y, is defined b and Y = c d, then X Y = ac + bd. The dot product has the following properties: (i) X (Y + Z) = X Y + X Z; (ii) X Y = Y X; (iii) (tx) Y = t(x Y ); (iv) X X = a 2 + b 2 if X = (v) X Y = X t Y. The length of X is defined b a b ; X = a 2 + b 2 = (X X) 1/2. We see that X is the distance between the origin O = (0, 0) and the point (a, b). THEOREM (Geometrical meaning of the dot product) Let A = ( 1, 1 ) and B = ( 2, 2 ) be points, each distinct from the origin 1 2 O = (0, 0). Then if X = and Y =, we have 1 2 X Y = OA OB cos θ, where θ is the angle between the ras OA and OB. Proof. B the cosine law applied to triangle OAB, we have AB 2 = OA 2 + OB 2 2OA OB cos θ. (7.3) Now AB 2 = ( 2 1 ) 2 + ( 2 1 ) 2, OA 2 = , OB2 = Substituting in equation 7.3 then gives ( 2 1 ) 2 + ( 2 1 ) 2 = ( ) + ( ) 2OA OB cos θ,

4 2 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS which simplifies to give OA OB cos θ = = X Y. It follows from theorem that if A = ( 1, 1 ) and B = ( 2, 2 ) are 1 2 points distinct from O = (0, 0) and X = and Y =, then X Y = 0 means that the ras OA and OB are perpendicular. This is the reason for the following definition: DEFINITION (Orthogonal vectors) Vectors X and Y are called orthogonal if X Y = 0. There is also a connection with orthogonal matrices: THEOREM Let P be a 2 2 real matri. Then P is an orthogonal matri if and onl if the columns of P are orthogonal and have unit length. Proof. P is orthogonal if and onl if P t P = I 2. Now if P = X 1 X 2, the matri P t P is an important matri called the Gram matri of the column vectors X 1 and X 2. It is eas to prove that 1 P t X1 X P = X i X j = 1 X 1 X 2 X 2 X 1 X 2 X 2 Hence the equation P t P = I 2 is equivalent to X1 X 1 X 1 X 2 X 2 X 1 X 2 X 2 = or, equating corresponding elements of both sides:, X 1 X 1 = 1, X 1 X 2 = 0, X 2 X 2 = 1, which sas that the columns of P are orthogonal and of unit length. The net theorem describes a fundamental propert of real smmetric matrices and the proof generalizes to smmetric matrices of an size. THEOREM If X 1 and X 2 are eigenvectors corresponding to distinct eigenvalues λ 1 and λ 2 of a real smmetric matri A, then X 1 and X 2 are orthogonal vectors.. 2

5 7.1. THE EIGENVALUE METHOD 3 Proof. Suppose AX 1 = λ 1 X 1, AX 2 = λ 2 X 2, (7.4) where X 1 and X 2 are non zero column vectors, A t = A and λ 1 λ 2. We have to prove that X t 1 X 2 = 0. From equation 7.4, X t 2AX 1 = λ 1 X t 2X 1 (7.) and X t 1AX 2 = λ 2 X t 1X 2. (7.6) From equation 7., taking transposes, (X t 2AX 1 ) t = (λ 1 X t 2X 1 ) t so Hence X t 1A t X 2 = λ 1 X t 1X 2. X t 1AX 2 = λ 1 X t 1X 2. (7.7) Finall, subtracting equation 7.6 from equation 7.7, we have (λ 1 λ 2 )X t 1X 2 = 0 and hence, since λ 1 λ 2, X t 1X 2 = 0. THEOREM 7.1. Let A be a real 2 2 smmetric matri with distinct eigenvalues λ 1 and λ 2. Then a proper orthogonal 2 2 matri P eists such that P t AP = diag (λ 1, λ 2 ). Also the rotation of aes = P 1 1 diagonalizes the quadratic form corresponding to A: X t AX = λ λ

6 4 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS Proof. Let X 1 and X 2 be eigenvectors corresponding to λ 1 and λ 2. Then b theorem 7.1.4, X 1 and X 2 are orthogonal. B dividing X 1 and X 2 b their lengths (i.e. normalizing X 1 and X 2 ) if necessar, we can assume that X 1 and X 2 have unit length. Then b theorem 7.1.1, P = X 1 X 2 is an orthogonal matri. B replacing X 1 b X 1, if necessar, we can assume that detp = 1. Then b theorem 6.2.1, we have Also under the rotation X = PY, P t AP = P 1 λ1 0 AP = 0 λ 2 X t AX = (PY ) t A(PY ) = Y t (P t AP)Y = Y t diag (λ 1, λ 2 )Y = λ λ EXAMPLE Let A be the smmetric matri A = Find a proper orthogonal matri P such that P t AP is diagonal. Solution. The characteristic equation of A is λ 2 19λ + 48 = 0, or. (λ 16)(λ 3) = 0. Hence A has distinct eigenvalues λ 1 = 16 and λ 2 = 3. We find corresponding eigenvectors 3 2 X 1 = and X 2 2 =. 3 Now X 1 = X 2 =. So we take X 1 = and X 2 = Then if P = X 1 X 2, the proof of theorem 7.1. shows that P t AP = However det P = 1, so replacing X 1 b X 1 will give det P = 1..

7 7.1. THE EIGENVALUE METHOD Figure 7.1: = 0. REMARK (A shortcut) Once we have determined one eigenvector X 1 =, the other can be taken to be, as these vectors are a b b a alwas orthogonal. Also P = X 1 X 2 will have detp = a 2 + b 2 > 0. We now appl the above ideas to determine the geometric nature of second degree equations in and. EXAMPLE Sketch the curve determined b the equation = 0. Solution. With P taken to be the proper orthogonal matri defined in the previous eample b P = 3/ 2/ 2/ 3/ then as theorem predicts, P is a rotation matri and the transformation 1 X = = PY = P 1,

8 6 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS or more eplicitl = , = , (7.8) will rotate the, aes to positions given b the respective columns of P. (More generall, we can alwas arrange for the 1 ais to point either into the first or fourth quadrant.) 12 6 Now A = is the matri of the quadratic form 6 7 so we have, b Theorem , = Then under the rotation X = PY, our original quadratic equation becomes ( ) 38 ( ) + 31 = 0, or = 0. Now complete the square in 1 and 1 : ( ) ( ) = 0, ( ) 2 ( ) 2 ( ) 8 2 ( ) 1 2 = = 48. (7.9) Then if we perform a translation of aes to the new origin ( 1, 1 ) = ( 8, 1 ): 2 = 1 + 8, 2 = 1 + 1, equation 7.9 reduces to or = 48, = 1.

9 7.1. THE EIGENVALUE METHOD 7 Figure 7.2: 2 a = 1, 0 < b < a: an ellipse. b2 This equation is now in one of the standard forms listed below as Figure 7.2 and is that of a whose centre is at ( 2, 2 ) = (0, 0) and whose aes of smmetr lie along the 2, 2 aes. In terms of the original, coordinates, we find that the centre is (, ) = ( 2, 1). Also Y = P t X, so equations 7.8 can be solved to give 1 = , 1 =. Hence the 2 ais is given b 0 = 2 = = , or = 0. Similarl the 2 ais is given b = 0. This ellipse is sketched in Figure 7.1. Figures 7.2, 7.3, 7.4 and 7. are a collection of standard second degree equations: Figure 7.2 is an ellipse; Figures 7.3 are hperbolas (in both these eamples, the asmptotes are the lines = ± b ); Figures 7.4 and 7. a represent parabolas. EXAMPLE Sketch = 0.

10 8 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS Figure 7.3: (i) 2 a 2 2 b 2 = 1; 2 (ii) a 2 2 = 1, 0 < b, 0 < a. b2 Figure 7.4: (i) 2 = 4a, a > 0; (ii) 2 = 4a, a < 0.

11 7.1. THE EIGENVALUE METHOD 9 Figure 7.: (iii) 2 = 4a, a > 0; (iv) 2 = 4a, a < 0. Solution. Complete the square: = 0 ( ) 2 = = 4( + 8), or 2 1 = 4 1, under the translation of aes 1 = + 8, 1 =. Hence we get a parabola with verte at the new origin ( 1, 1 ) = (0, 0), i.e. (, ) = ( 8, ). The parabola is sketched in Figure 7.6. EXAMPLE Sketch the curve = 0. Solution. We have = X t AX, where 1 2 A =. 2 4 The characteristic equation of A is λ 2 λ = 0, so A has distinct eigenvalues λ 1 = and λ 2 = 0. We find corresponding unit length eigenvectors X 1 = 1 1, X 2 2 = Then P = X 1 X 2 is a proper orthogonal matri and under the rotation of aes X = PY, or = = ,

12 140 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS Figure 7.6: = 0. we have = λ λ = 2 1. The original quadratic equation becomes ( ) 9 = 0 ( ) = 0 ( 1 1 ) 2 = 10 1 = ( 1 2 ), or 2 2 = 1 2, where the 1, 1 aes have been translated to 2, 2 aes using the transformation 2 = 1 1, 2 = 1 2. Hence the verte of the parabola is at ( 2, 2 ) = (0, 0), i.e. ( 1, 1 ) = ( 1, 2 ), or (, ) = ( 21, 8 ). The ais of smmetr of the parabola is the line 2 = 0, i.e. 1 = 1/. Using the rotation equations in the form 1 = 2

13 7.2. A CLASSIFICATION ALGORITHM Figure 7.7: = 0. 1 = 2 +, we have 2 = 1, or 2 = 1. The parabola is sketched in Figure A classification algorithm There are several possible degenerate cases that can arise from the general second degree equation. For eample = 0 represents the point (0, 0); = 1 defines the empt set, as does 2 = 1 or 2 = 1; 2 = 0 defines the line = 0; ( + ) 2 = 0 defines the line + = 0; 2 2 = 0 defines the lines = 0, + = 0; 2 = 1 defines the parallel lines = ±1; ( + ) 2 = 1 likewise defines two parallel lines + = ±1. We state without proof a complete classification 1 of the various cases 1 This classification forms the basis of a computer program which was used to produce the diagrams in this chapter. I am grateful to Peter Adams for his programming assistance.

14 142 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS that can possibl arise for the general second degree equation a 2 + 2h + b 2 + 2g + 2f + c = 0. (7.10) It turns out to be more convenient to first perform a suitable translation of aes, before rotating the aes. Let a h g = h b f g f c, C = ab h2, A = bc f 2, B = ca g 2. If C 0, let CASE 1. = 0. α = g h f b C, β = a g h f C. (7.11) (1.1) C 0. Translate aes to the new origin (α, β), where α and β are given b equations 7.11: Then equation 7.10 reduces to (1.2) C = 0. = 1 + α, = 1 + β. a h b 2 1 = 0. (a) C > 0: Single point (, ) = (α, β). (b) C < 0: Two non parallel lines intersecting in (, ) = (α, β). The lines are β α = h ± C if b 0, b β = α and α = a, if b = 0. 2h (a) h = 0. (i) a = g = 0. (A) A > 0: Empt set. (B) A = 0: Single line = f/b.

15 7.2. A CLASSIFICATION ALGORITHM 143 (C) A < 0: Two parallel lines (ii) b = f = 0. (b) h 0. CASE (A) B > 0: Empt set. = f ± A b (B) B = 0: Single line = g/a. (C) B < 0: Two parallel lines (i) B > 0: Empt set. = g ± B a (ii) B = 0: Single line a + h = g. (iii) B < 0: Two parallel lines a + h = g ± B. (2.1) C 0. Translate aes to the new origin (α, β), where α and β are given b equations 7.11: = 1 + α, = 1 + β. Equation 7.10 becomes a h b 2 1 = C. (7.12) CASE 2.1(i) h = 0. Equation 7.12 becomes a b2 1 = C. (a) C < 0: Hperbola. (b) C > 0 and a > 0: Empt set. (c) C > 0 and a < 0. (i) a = b: Circle, centre (α, β), radius (ii) a b: Ellipse. g 2 +f 2 ac a.

16 144 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS CASE 2.1(ii) h 0. Rotate the ( 1, 1 ) aes with the new positive 2 ais in the direction of (b a + R)/2, h, where R = (a b) 2 + 4h 2. Then equation 7.12 becomes where Here λ 1 λ 2 = C. λ λ = C. (7.) λ 1 = (a + b R)/2, λ 2 = (a + b + R)/2, (a) C < 0: Hperbola. Here λ 2 > 0 > λ 1 and equation 7. becomes 2 2 u v 2 =, where u =, v =. Cλ 1 Cλ 2 (2.1) C = 0. (b) C > 0 and a > 0: Empt set. (c) C > 0 and a < 0: Ellipse. Here λ 1, λ 2, a, b have the same sign and λ 1 λ 2 and equation 7. becomes 2 2 u v 2 = 1, where (a) h = 0. u =, v =. Cλ 1 Cλ 2 (i) a = 0: Then b 0 and g 0. Parabola with verte ( ) A 2gb, f. b

17 7.2. A CLASSIFICATION ALGORITHM 14 Translate aes to ( 1, 1 ) aes: 2 1 = 2g b 1. (ii) b = 0: Then a 0 and f 0. Parabola with verte ( g a, B ). 2fa Translate aes to ( 1, 1 ) aes: (b) h 0: Parabola. Let 2 1 = 2f a 1. k = ga + hf a + b. The verte of the parabola is ( (2akf hk 2 hac) d ), a(k2 + ac 2kg), d where d = 2a(gh af). Now translate to the verte as the new origin, then rotate to ( 2, 2 ) aes with the positive 2 ais along sa, sh, where s = sign(a). (The positive 2 ais points into the first or fourth quadrant.) Then the parabola has equation 2 2 = 2st a 2 + h 2 2, where t = (af gh)/(a + b). REMARK If = 0, it is not necessar to rotate the aes. Instead it is alwas possible to translate the aes suitabl so that the coefficients of the terms of the first degree vanish. EXAMPLE Identif the curve = 0. (7.14)

18 146 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS Solution. Here = = 0. Let = 1 + α, = 1 + β and substitute in equation 7.14 to get 2( 1 + α) 2 + ( 1 + α)( 1 + β) ( 1 + β) 2 + 4( 1 + β) 8 = 0. (7.1) Then equating the coefficients of 1 and 1 to 0 gives 4α + β = 0 α + 2β + 4 = 0, which has the unique solution α = 2 3, β = 8 3. Then equation 7.1 simplifies to = 0 = (2 1 1 )( ), so relative to the 1, 1 coordinates, equation 7.14 describes two lines: = 0 or = 0. In terms of the original, coordinates, these lines become 2( ) ( 8 3 ) = 0 and ( ) + ( 8 3 ) = 0, i.e = 0 and + 2 = 0, which intersect in the point (, ) = (α, β) = ( 2 3, 8 3 ). EXAMPLE Identif the curve Solution. Here = 0. (7.16) = = 0. Let = 1 + α, = 1 + β and substitute in equation 7.16 to get ( 1 +α) 2 +2( 1 +α)( 1 +β)+( 1 +β) 2 +2( 1 +α)+2( 1 +β)+1 = 0. (7.17) Then equating the coefficients of 1 and 1 to 0 gives the same equation 2α + 2β + 2 = 0. Take α = 0, β = 1. Then equation 7.17 simplifies to = 0 = ( ) 2, and in terms of, coordinates, equation 7.16 becomes ( + + 1) 2 = 0, or = 0.

19 7.3. PROBLEMS PROBLEMS 1. Sketch the curves (i) = 0; (ii) = Sketch the hperbola = 8 and find the equations of the asmptotes. Answer: = 0 and = Sketch the ellipse = 36 and find the equations of the aes of smmetr. Answer: = 2 and = Sketch the conics defined b the following equations. Find the centre when the conic is an ellipse or hperbola, asmptotes if an hperbola, the verte and ais of smmetr if a parabola: (i) = 0; (ii) = 0; (iii) = 0; (iv) = 0. Answers: (i) hperbola, centre (3, 2), asmptotes = 0, = 0; (ii) ellipse, centre (0, ); (iii) parabola, verte ( 7, 9 ), ais of smmetr = 0; (iv) hperbola, centre ( 1 10, 7 10 ), asmptotes = 0 and = 0.. Identif the lines determined b the equations: (i) = 0;

20 148 CHAPTER 7. IDENTIFYING SECOND DEGREE EQUATIONS (ii) = 0; (iii) = 0. Answers: (i) = 0 and + 1 = 0; (ii) = 0; (iii) = 0 and = 0.

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

2.1 Three Dimensional Curves and Surfaces

2.1 Three Dimensional Curves and Surfaces . Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

Click here for answers.

Click here for answers. CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Section 11.4: Equations of Lines and Planes

Section 11.4: Equations of Lines and Planes Section 11.4: Equations of Lines and Planes Definition: The line containing the point ( 0, 0, 0 ) and parallel to the vector v = A, B, C has parametric equations = 0 + At, = 0 + Bt, = 0 + Ct, where t R

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 2. Coordinate geometry 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 1 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometr: Module Coordinate geometr Coordinate geometr A guide for teachers (Years

More information

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...

Lecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length... CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

FURTHER VECTORS (MEI)

FURTHER VECTORS (MEI) Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

More information

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

More information

REVIEW OF CONIC SECTIONS

REVIEW OF CONIC SECTIONS REVIEW OF CONIC SECTIONS In this section we give geometric definitions of parabolas, ellipses, and hperbolas and derive their standard equations. The are called conic sections, or conics, because the result

More information

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v, 1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

More information

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form

Rotation of Axes 1. Rotation of Axes. At the beginning of Chapter 5 we stated that all equations of the form Rotation of Axes 1 Rotation of Axes At the beginning of Chapter we stated that all equations of the form Ax + Bx + C + Dx + E + F =0 represented a conic section, which might possibl be degenerate. We saw

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

9 Multiplication of Vectors: The Scalar or Dot Product

9 Multiplication of Vectors: The Scalar or Dot Product Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

More information

Connecting Transformational Geometry and Transformations of Functions

Connecting Transformational Geometry and Transformations of Functions Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.

More information

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors 1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

More information

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1

5 VECTOR GEOMETRY. 5.0 Introduction. Objectives. Activity 1 5 VECTOR GEOMETRY Chapter 5 Vector Geometry Objectives After studying this chapter you should be able to find and use the vector equation of a straight line; be able to find the equation of a plane in

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

SAMPLE. Polynomial functions

SAMPLE. Polynomial functions Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

Introduction to Matrices for Engineers

Introduction to Matrices for Engineers Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11

More information

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D.

Warm-Up y. What type of triangle is formed by the points A(4,2), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. CST/CAHSEE: Warm-Up Review: Grade What tpe of triangle is formed b the points A(4,), B(6, 1), and C( 1, 3)? A. right B. equilateral C. isosceles D. scalene Find the distance between the points (, 5) and

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Lecture 14: Section 3.3

Lecture 14: Section 3.3 Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Two vectors are equal if they have the same length and direction. They do not

Two vectors are equal if they have the same length and direction. They do not Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

More information

COMPONENTS OF VECTORS

COMPONENTS OF VECTORS COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

More information

A vector is a directed line segment used to represent a vector quantity.

A vector is a directed line segment used to represent a vector quantity. Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector

w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector . w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29 up vector view vector observer center of interest 30 Computer

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1 Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space 11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information

13.4 THE CROSS PRODUCT

13.4 THE CROSS PRODUCT 710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

More information

Lines and Planes 1. x(t) = at + b y(t) = ct + d

Lines and Planes 1. x(t) = at + b y(t) = ct + d 1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b

More information

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155 Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.

Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image. Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

More information

POINT OF INTERSECTION OF TWO STRAIGHT LINES

POINT OF INTERSECTION OF TWO STRAIGHT LINES POINT OF INTERSECTION OF TWO STRAIGHT LINES THEOREM The point of intersection of the two non parallel lines bc bc ca ca a x + b y + c = 0, a x + b y + c = 0 is,. ab ab ab ab Proof: The lines are not parallel

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM

MA261-A Calculus III 2006 Fall Homework 3 Solutions Due 9/22/2006 8:00AM MA6-A Calculus III 6 Fall Homework Solutions Due 9//6 :AM 9. # Find the parametric euation and smmetric euation for the line of intersection of the planes + + z = and + z =. To write down a line euation,

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

y intercept Gradient Facts Lines that have the same gradient are PARALLEL CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a Bellwork a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a c.) Find the slope of the line perpendicular to part b or a May 8 7:30 AM 1 Day 1 I.

More information

FACTORING QUADRATICS 8.1.1 through 8.1.4

FACTORING QUADRATICS 8.1.1 through 8.1.4 Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products

Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products Matrix Calculations: Applications of Eigenvalues and Eigenvectors; Inner Products H. Geuvers Institute for Computing and Information Sciences Intelligent Systems Version: spring 2015 H. Geuvers Version:

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

Section V.2: Magnitudes, Directions, and Components of Vectors

Section V.2: Magnitudes, Directions, and Components of Vectors Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions

More information