Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point.


 Morris Briggs
 3 years ago
 Views:
Transcription
1 6.1 Vectors in the Plane PreCalculus 6.1 VECTORS IN THE PLANE Learning Targets: 1. Find the component form and the magnitude of a vector.. Perform addition and scalar multiplication of two vectors. 3. Sketch vectors and resultant vectors. 4. Use vectors to solve problems. 5. Write a vector in terms of the standard unit vectors i and j. Definition: A vector is a directed line segment that has and. Each vector has an initial point and a terminal point. Two vectors are if they have the same magnitude and direction. The location of the vector does not matter. A vector in standard position has its initial point at. If vector v is in standard form and has a terminal point (v 1, v ), then the component form can be written as. The magnitude of a vector v is denoted. You can use the distance formula to find the magnitude. When the vector is in component form ab,, the magnitude is simply. Example 1: Let P (4, 1) and Q (10, 6). a) Sketch vector PQ and find its magnitude. b) Draw the vector in standard position and write its component form. c) Show algebraically why vector PQ is equivalent to the standard position vector. A more precise way to specify the direction of a vector is to give the direction as an angle measurement. Example : Consider the vector below with magnitude r and direction θ. If the endpoint of the vector is (x, y) what is the component form of the vector in terms of r and θ? r θ 61
2 6.1 Vectors in the Plane PreCalculus Example 3: Sketch vector v in standard position with magnitude 41 and direction 0. Example 4: Find the component form of the vector in the previous example. Vector Operations The two basic vector operations are vector addition and scalar multiplication. Scalar multiplication is multiplying a vector by a real number (aka, a scalar ). When two vectors are added together the answer is called the resultant vector. In the paper toss game, we wanted the resultant vector to have a magnitude and a direction that would land the paper in the trash can. We had to add the velocity vector for the paper toss to the velocity vector of the wind for that to happen. Example 5: Given u =,  3 and v = 5,. Find the component form of each resultant vector. a) u + v b) u v Example 6: Find the component form of the resultant vectors from the previous examples algebraically. Example 7: Forces with magnitudes of 000 Newton and 900 Newton act on a machine part at angles of 30 and 45 respectively. Find the magnitude of the resultant vector of these two forces. 6 
3 6.1 Vectors in the Plane PreCalculus Unit Vectors A unit vector is a vector in the same direction but with magnitude =. How do you make something with a length of 10 become a length of 1? If the magnitude of a vector is m and the component form of the vector is ab,, then the unit vector is. : Officially, the unit vector u of a nonzero vector v is found using = v u v in case you were wondering. Example 8: Find the unit vector of 5,1. Standard Unit Vectors The two unit vectors i = 1, 0 and j = 0,1 are called standard unit vectors. Any vector can be written as linear combination of these unit vectors. In other words, if v = cd,, then v = ci + dj. Example 9: Let u be the vector with initial point (, 5) and terminal point ( 1, 3). a) Find the component form of vector u. b) Write u as a linear combination of the unit vectors i and j. Example 10: Find the unit vector for i 3j. To summarize vector notation Vectors can be written in the following ways: 1. When typed, we use a bold font u. When written by hand, we use a half arrow above the vector u or AB 3. We can use component form (which implies the vector began at the origin) cd, 4. We can use standard unit vectors ci + dj 63
4 6. Dot Product of Vectors PreCalculus 6. DOT PRODUCT OF VECTORS Learning Targets: 1. Find the dot product between two vectors.. Use the dot product to find the length of a vector. 3. Find the angle between two vectors. 4. Show vectors are orthogonal. 5. Determine whether vectors are parallel, perpendicular, or neither. 6. Find work done by a force moving on an object. Dot Product: The dot product of u = u, u and v = v, v is uv = uv + uv Notice the dot product of two vectors produces a. The dot product is also called the inner product. Also gives us another way to find the length, or magnitude, of a vector because of the property Orthogonal Vectors are two vectors whose product is. uu = u. Example 1: Given vectors: a =, 5, b = 4,1 and c = 10, 4. a) Find ab and ac. b) Which two vectors are orthogonal? Sketch the two orthogonal vectors what do you notice? Example : Use the dot product to find the length of the vector u = 8,15. Angle between two vectors: The angle, θ, between any two nonzero vectors is the corresponding angle between their respective vectors in standard position. The cosine of this angle, θ, equals the dot product of the two vectors divided by the product of the magnitudes of these two vectors. 6 4
5 6. Dot Product of Vectors PreCalculus Example 3: Sketch each vector. Find the angle between the vectors. a) u = 5,3, v = 4,7 b) a = i 5j, c = 10i+ 4j Besides helping us find the angle between two vectors, the dot product is useful in physics to calculate the amount of work needed to move an object from an initial point to a final (terminal) point. Work: In general, work is defined as force multiplied by a distance. When F is a force whose direction is the as the distance an object is moving, we find work by When F is a force in direction, we find work by Example 4: Find the work done when lifting a 87pound weight 35 feet into the air. Example 5: Suppose AB = i + 3j while the angle between AB and a 170pound force F is 30. Sketch a picture for this situation and find the work done by F in moving the object from A to B. 6 5
6 6.3 Parametric Equations and Motion PreCalculus 6.3 PARAMETRIC EQUATIONS AND MOTION Learning Targets: 1. Graph parametric equations by hand and with calculator.. Eliminate the parameter to write Cartesian function. 3. Write parametric equations. 4. Solve problems involving parametric equations. Day 1 Try this Exploration: 1. Press mode and make sure that the calculator is set to Degree and Par (for parametric mode). Press y= and enter cos(t) for X 1T and sin(t) for Y 1T. To get the variable T press the variable x,t,θ,n button. 3. Press window and set Tmin = 0 Tmax = 360 Tstep = Xmin = Xmax = Xscl = 1 Ymin = Ymax = Yscl = 1 4. Press trace. Use the arrow keys to move the cursor left and right. What did we find? What functions made this picture? How do these functions relate to the Pythagorean identity? Can we write this function any other way? Definition: Parametric Curve A parametric curve is the graph of ordered pairs (x, y) where x= f() t, y = f() t are functions defined on an interval of t values. Parametric equations are a set of equations where the horizontal component and the vertical component are defined according the same variable or parameter. 66
7 6.3 Parametric Equations and Motion PreCalculus Example 1: Create a table of values and the graph the pair of parametric equations: x= t+ 4, y = t 10 y x Example : Eliminate the parameter to write a Cartesian equation to identify the graph of the curve. a) x = t + 4, y = t² b) x = 3cos t, y = 3sin t Day On the homework for 6.3 day 1, we found parametric equations for a line (or line segment) when given two ordered pairs. When given a Cartesian equation, the easiest way to create parametric equations is to simply let x = t and substitute t in for every x so that y is a function of t. Example 3: Find a parameterization for the curve y = x + 1x
8 6.3 Parametric Equations and Motion PreCalculus Parametric Equations and Projectile Motion Earlier this year, we used ht ( ) 16t vt h 0 0 = + + to model the height of an object at a given time. The graph generated by this equation is no different for an object thrown straight up than for an object thrown across the room. x = t We need to redefine using a velocity vector in component form y = 16t + vt+ h 0 0 A more accurate projectile motion equation is Example 4: A baseball is hit 19 feet per second at angle of 30 relative to level ground from an initial height of 3 feet. a. Write the two parametric equations that model the path of the ball as a function of time. b. After 0.5 seconds, how far has the ball traveled horizontally and vertically? c. Determine whether the ball will clear a 10foot wall 400 feet away. 68
Example SECTION 131. XAXIS  the horizontal number line. YAXIS  the vertical number line ORIGIN  the point where the xaxis and yaxis cross
CHAPTER 13 SECTION 131 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants XAXIS  the horizontal
More informationSection 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More informationLesson 3 Using the Sine Function to Model Periodic Graphs
Lesson 3 Using the Sine Function to Model Periodic Graphs Objectives After completing this lesson you should 1. Know that the sine function is one of a family of functions which is used to model periodic
More informationA vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
More informationModule 8 Lesson 4: Applications of Vectors
Module 8 Lesson 4: Applications of Vectors So now that you have learned the basic skills necessary to understand and operate with vectors, in this lesson, we will look at how to solve real world problems
More informationFigure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
More informationSection 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 35 odd, 237 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
More informationSection 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
More informationEquations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
More informationJUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
More informationVector Algebra CHAPTER 13. Ü13.1. Basic Concepts
CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have
More informationOne advantage of this algebraic approach is that we can write down
. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the xaxis points out
More information1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two nonzero vectors u and v,
1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It
More information6. Vectors. 1 20092016 Scott Surgent (surgent@asu.edu)
6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,
More informationUnit 11 Additional Topics in Trigonometry  Classwork
Unit 11 Additional Topics in Trigonometry  Classwork In geometry and physics, concepts such as temperature, mass, time, length, area, and volume can be quantified with a single real number. These are
More information9 Multiplication of Vectors: The Scalar or Dot Product
Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation
More information9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is socalled because when the scalar product of
More information83 Dot Products and Vector Projections
83 Dot Products and Vector Projections Find the dot product of u and v Then determine if u and v are orthogonal 1u =, u and v are not orthogonal 2u = 3u =, u and v are not orthogonal 6u = 11i + 7j; v
More information5.3 The Cross Product in R 3
53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationName Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
More informationMAT 1341: REVIEW II SANGHOON BAEK
MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and
More informationIn order to describe motion you need to describe the following properties.
Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1D path speeding up and slowing down In order to describe motion you need to describe the following properties.
More informationVector has a magnitude and a direction. Scalar has a magnitude
Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude
More informationSection 2.4: Equations of Lines and Planes
Section.4: Equations of Lines and Planes An equation of three variable F (x, y, z) 0 is called an equation of a surface S if For instance, (x 1, y 1, z 1 ) S if and only if F (x 1, y 1, z 1 ) 0. x + y
More informationReadings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.12.2. Professor Christopher Hoffman Math 124
Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.12.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/
More informationThe Dot and Cross Products
The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and
More informationVectors VECTOR PRODUCT. Graham S McDonald. A Tutorial Module for learning about the vector product of two vectors. Table of contents Begin Tutorial
Vectors VECTOR PRODUCT Graham S McDonald A Tutorial Module for learning about the vector product of two vectors Table of contents Begin Tutorial c 2004 g.s.mcdonald@salford.ac.uk 1. Theory 2. Exercises
More information11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space
11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of
More informationSolutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationFURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level  MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: 97 Mathematics
More informationLecture L6  Intrinsic Coordinates
S. Widnall, J. Peraire 16.07 Dynamics Fall 2009 Version 2.0 Lecture L6  Intrinsic Coordinates In lecture L4, we introduced the position, velocity and acceleration vectors and referred them to a fixed
More informationSection 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines  specifically, tangent lines.
More informationdiscuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
More informationProject: OUTFIELD FENCES
1 Project: OUTFIELD FENCES DESCRIPTION: In this project you will work with the equations of projectile motion and use mathematical models to analyze a design problem. Two softball fields in Rolla, Missouri
More information3. KINEMATICS IN TWO DIMENSIONS; VECTORS.
3. KINEMATICS IN TWO DIMENSIONS; VECTORS. Key words: Motion in Two Dimensions, Scalars, Vectors, Addition of Vectors by Graphical Methods, Tail to Tip Method, Parallelogram Method, Negative Vector, Vector
More informationRELEASED. Student Booklet. Precalculus. Fall 2014 NC Final Exam. Released Items
Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 276996314 Fall 2014 N Final Exam Precalculus Student ooklet opyright 2014
More informationAcademic Support Center. Using the TI83/84+ Graphing Calculator PART II
Academic Support Center Using the TI83/84+ Graphing Calculator PART II Designed and Prepared by The Academic Support Center Revised June 2012 1 Using the Graphing Calculator (TI83+ or TI84+) Table of
More information28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z
28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition
More information1 of 7 9/5/2009 6:12 PM
1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationThnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More informationUniformly Accelerated Motion
Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations
More informationMechanics 1: Vectors
Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized
More informationSection 10.4 Vectors
Section 10.4 Vectors A vector is represented by using a ray, or arrow, that starts at an initial point and ends at a terminal point. Your textbook will always use a bold letter to indicate a vector (such
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationMechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
More informationMANNING S AMPLE CHAPTER
MANNING S AMPLE CHAPTER Using the TI83 Plus/TI84 Plus by Christopher R. Mitchell Chapter 5 Copyright 2013 Manning Publications PART 1 brief contents BASICS AND ALGEBRA ON THE TI83 PLUS/TI84 PLUS...1
More informationPhysics 590 Homework, Week 6 Week 6, Homework 1
Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal
More informationExam 1 Review Questions PHY 2425  Exam 1
Exam 1 Review Questions PHY 2425  Exam 1 Exam 1H Rev Ques.doc  1  Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that
More informationSection 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
More informationDetermine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s
Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,
More informationCalculator Notes for the TI89, TI92 Plus, and Voyage 200
CHAPTER 8 Note 8A Changing Mode Calculator Notes for the TI89, TI92 Plus, and Voyage 200 For your work in this chapter, check and change, if necessary, three settings. a. Press MODE. In the first line,
More informationReview Sheet for Test 1
Review Sheet for Test 1 Math 26100 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
More informationGetting to know your TI83
Calculator Activity Intro Getting to know your TI83 Press ON to begin using calculator.to stop, press 2 nd ON. To darken the screen, press 2 nd alternately. To lighten the screen, press nd 2 alternately.
More informationUnit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
More informationVECTOR ALGEBRA. 10.1.1 A quantity that has magnitude as well as direction is called a vector. is given by a and is represented by a.
VECTOR ALGEBRA Chapter 10 101 Overview 1011 A quantity that has magnitude as well as direction is called a vector 101 The unit vector in the direction of a a is given y a and is represented y a 101 Position
More informationSection V.3: Dot Product
Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationVector Math Computer Graphics Scott D. Anderson
Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More information12.5 Equations of Lines and Planes
Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P
More informationFunctions. MATH 160, Precalculus. J. Robert Buchanan. Fall 2011. Department of Mathematics. J. Robert Buchanan Functions
Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: determine whether relations between variables are functions, use function
More informationWork and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa
Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road
More information2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
More informationPhysics Midterm Review Packet January 2010
Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:1510:15 Room:
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More information(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its
(1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:
More informationFRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
More informationGeometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi
Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in threedimensional space, we also examine the
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationLINEAR ALGEBRA W W L CHEN
LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationTwo vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
More informationGeometry 1. Unit 3: Perpendicular and Parallel Lines
Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples
More informationVector Algebra II: Scalar and Vector Products
Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationSlopeIntercept Equation. Example
1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the yintercept. Determine
More informationCoordinate Geometry THE EQUATION OF STRAIGHT LINES
Coordinate Geometry THE EQUATION OF STRAIGHT LINES This section refers to the properties of straight lines and curves using rules found by the use of cartesian coordinates. The Gradient of a Line. As
More informationi=(1,0), j=(0,1) in R 2 i=(1,0,0), j=(0,1,0), k=(0,0,1) in R 3 e 1 =(1,0,..,0), e 2 =(0,1,,0),,e n =(0,0,,1) in R n.
Length, norm, magnitude of a vector v=(v 1,,v n ) is v = (v 12 +v 22 + +v n2 ) 1/2. Examples v=(1,1,,1) v =n 1/2. Unit vectors u=v/ v corresponds to directions. Standard unit vectors i=(1,0), j=(0,1) in
More informationLINES AND PLANES IN R 3
LINES AND PLANES IN R 3 In this handout we will summarize the properties of the dot product and cross product and use them to present arious descriptions of lines and planes in three dimensional space.
More informationMath 259 Winter 2009. Recitation Handout 1: Finding Formulas for Parametric Curves
Math 259 Winter 2009 Recitation Handout 1: Finding Formulas for Parametric Curves 1. The diagram given below shows an ellipse in the plane. 51 13 (a) Find equations for (t) and (t) that will describe
More informationSolving Equations Involving Parallel and Perpendicular Lines Examples
Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines
More information1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.
Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1.
More informationVectors Math 122 Calculus III D Joyce, Fall 2012
Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be
More informationSpeed A B C. Time. Chapter 3: Falling Objects and Projectile Motion
Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationGeometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v
12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationThe Force Table Introduction: Theory:
1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is
More informationLecture 9: Lines. m = y 2 y 1 x 2 x 1
Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending
More informationSolutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
More informationAP Physics  Vector Algrebra Tutorial
AP Physics  Vector Algrebra Tutorial Thomas Jefferson High School for Science and Technology AP Physics Team Summer 2013 1 CONTENTS CONTENTS Contents 1 Scalars and Vectors 3 2 Rectangular and Polar Form
More informationExam 1 Sample Question SOLUTIONS. y = 2x
Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can
More informationSTRAND: ALGEBRA Unit 3 Solving Equations
CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic
More information