# Inner Product Spaces and Orthogonality

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b a n b n for u a, a 2,, a n T, v b, b 2,, b n T R n The inner product, satisfies the following properties: () Linearity: au + bv, w a u, w + b v, w (2) Symmetric Property: u, v v, u (3) Positive Definite Property: For any u V, u, u 0; and u, u 0 if and only if u 0 With the dot product we have geometric concepts such as the length of a vector, the angle between two vectors, orthogonality, etc We shall push these concepts to abstract vector spaces so that geometric concepts can be applied to describe abstract vectors 2 Inner product spaces Definition 2 An inner product of a real vector space V is an assignment that for any two vectors u, v V, there is a real number u, v, satisfying the following properties: () Linearity: au + bv, w a u, w + b v, w (2) Symmetric Property: u, v v, u (3) Positive Definite Property: For any u V, u, u 0; and u, u 0 if and only if u 0 The vector space V with an inner product is called a (real) inner product space Example 2 For x x x 2, y y y 2 R 2, define x, y 2x y x y 2 x 2 y + 5x 2 y 2 Then, is an inner product on R 2 It is easy to see the linearity and the symmetric property As for the positive definite property, note that Moreover, x, x 0 if and only if x, x 2x 2 2x x 2 + 5x 2 2 (x + x 2 ) 2 + (x 2x 2 ) 2 0 x + x 2 0, x 2x 2 0, which implies x x 2 0, ie, x 0 This inner product on R 2 is different from the dot product of R 2

2 For each vector u V, the norm (also called the length) of u is defined as the number u : u, u If u, we call u a unit vector and u is said to be normalized For any nonzero vector v V, we have the unit vector ˆv v v This process is called normalizing v Let B { u, u 2,, u n be a basis of an n-dimensional inner product space V For vectors u, v V, write u x u + x 2 u x n u n, The linearity implies We call the n n matrix v y u + y 2 u y n u n u, v n n x i u i, y j u j i n i j j n x i y j u i, u j u, u u, u 2 u, u n u 2, u u 2, u 2 u 2, u n A u n, u u n, u 2 u n, u n the matrix of the inner product, relative to the basis B Thus, using coordinate vectors u B x, x 2,, x n T, v B y, y 2,, y n T, we have u, v u T BAv B 3 Examples of inner product spaces Example 3 The vector space R n with the dot product u v a b + a 2 b a n b n, where u a, a 2,, a n T, v b, b 2,, b n T R n, is an inner product space The vector space R n with this special inner product (dot product) is called the Euclidean n-space, and the dot product is called the standard inner product on R n Example 32 The vector space Ca, b of all real-valued continuous functions on a closed interval a, b is an inner product space, whose inner product is defined by b f, g f(t)g(t)dt, a f, g Ca, b Example 33 The vector space M m,n of all m n real matrices can be made into an inner product space under the inner product A, B tr(b T A), where A, B M m,n 2

3 For instance, when m 3, n 2, and for we have Thus A a a 2 a 2 a 22 a 3 a 32, B b b 2 b 2 b 22 b 3 b 32 B T b a A + b 2 a 2 + b 3 a 3 b a 2 + b 2 a 22 + b 3 a 32 b 2 a + b 22 a 2 + b 32 a 3 b 2 a 2 + b 22 a 22 + b 32 a 32, A, B b a + b 2 a 2 + b 3 a 3 +b 2 a 2 + b 22 a 22 + b 32 a a ij b ij i j This means that the inner product space ( M 3,2,, ) is isomorphic to the Euclidean space ( R 3 2, ) 4 Representation of inner product Theorem 4 Let V be an n-dimensional vector space with an inner product,, and let A be the matrix of, relative to a basis B Then for any vectors u, v V, u, v x T Ay where x and y are the coordinate vectors of u and v, respectively, ie, x u B and y v B Example 4 For the inner product of R 3 defined by x, y 2x y x y 2 x 2 y + 5x 2 y 2, where x x x 2, y y y 2 R 2, its matrix relative to the standard basis E { e, e 2 is e, e A e, e 2 2 e 2, e e 2, e 2 5 The inner product can be written as x, y x T Ay x, x y y 2 We may change variables so the the inner product takes a simple form For instance, let { x (2/3)x + (/3)x 2 x 2 (/3)x (/3)x, 2 We have { y (2/3)y + (/3)y 2 y 2 (/3)y (/3)y 2 ( 2 x, y 2 3 x + )( 2 3 x 2 3 y + ) 3 y 2 ( 2 3 x + )( 3 x 2 3 y ) 3 y 2 ( 3 x )( 3 x 2 3 y ) 3 y 2 ( +5 3 x )( 3 x 2 3 y ) 3 y 2 x y + x 2y 2 x T y 3

4 This is equivalent to choosing a new basis so that the matrix of the inner product relative to the new basis is the identity matrix In fact, the matrix of the inner product relative to the basis B { u 2/3 /3 is the identity matrix, ie, u, u u 2, u u, u 2 u 2, u 2, u 2 /3 /3 0 0 Let P be the transition matrix from the standard basis {e, e 2 to the basis {u, u 2, ie, 2/3 /3 u, u 2 e, e 2 P e, e 2 /3 /3 Let x be the coordinate vector of the vector x relative the basis B (The coordinate vector of x relative to the standard basis is itself x) Then It follows that x e, e 2 x u, u 2 x e, e 2 P x x P x Similarly, let y be the coordinate vector of y relative to B Then y P y Note that x T x T P T Thus, on the one hand by Theorem, On the other hand, x, y x T I n y x T y x, y x T Ay x T P T AP y Theorem 42 Let V be a finite-dimensional inner product space Let A, B be matrices of the inner product relative to bases B, B of V, respectively If P is the transition matrix from B to B Then 5 Cauchy-Schwarz inequality B P T AP Theorem 5 (Cauchy-Schwarz Inequality) For any vectors u, v in an inner product space V, u, v 2 u, u v, v Equivalently, u, v u v Proof Consider the function y y(t) : u + tv, u + tv, t R Then y(t) 0 by the third property of inner product Note that y(t) is a quadratic function of t In fact, Thus the quadratic equation y(t) u, u + tv + tv, u + tv u, u + 2 u, v t + v, v t 2 u, u + 2 u, v t + v, v t 2 0 has at most one solution as y(t) 0 This implies that its discriminant must be less or equal to zero, ie, ( 2 u, v ) 2 4 u, u v, v 0 The Cauchy-Schwarz inequality follows 4

5 Theorem 52 The norm in an inner product space V satisfies the following properties: (N) v 0; and v 0 if and only if v 0 (N2) cv c v (N3) u + v u + v For nonzero vectors u, v V, the Cauchy-Schwarz inequality implies The angle θ between u and v is defined by The angle exists and is unique 6 Orthogonality cos θ u, v u v u, v u v Let V be an inner product space Two vectors u, v V are said to be orthogonal if u, v 0 Example 6 For inner product space C π, π, the functions sin t and cos t are orthogonal as sin t, cos t π π sin t cos t dt 2 sin2 t π π Example 62 Let u a, a 2,, a n T R n The set of all vector of the Euclidean n-space R n that are orthogonal to u is a subspace of R n In fact, it is the solution space of the single linear equation u, x a x + a 2 x a n x n 0 Example 63 Let u, 2, 3, 4, 5 T, v 2, 3, 4, 5, 6 T, and w, 2, 3, 3, 2 T R 5 The set of all vectors of R 5 that are orthogonal to u, v, w is a subspace of R 5 In fact, it is the solution space of the linear system x + 2x 2 + 3x 3 + 4x 4 + 5x 5 0 2x + 3x 2 + 4x 3 + 5x 4 + 6x 5 0 x + 2x 2 + 3x 3 + 3x 4 + 2x 5 0 Let S be a nonempty subset of an inner product space V We denote by S the set of all vectors of V that are orthogonal to every vector of S, called the orthogonal complement of S in V In notation, { S : v V v, u 0 for all u S If S contains only one vector u, we write u {v V v, u 0 Proposition 6 Let S be a nonempty subset of an inner product space V Then the orthogonal complement S is a subspace of V 5

6 Proof To show that S is a subspace We need to show that S is closed under addition and scalar multiplication Let u, v S and c R Since u, w 0 and v, w 0 for all w S, then u + v, w u, w + v, w 0, cu, w c u, w 0 for all w S So u + v, cu S Hence S is a subspace of R n Proposition 62 Let S be a subset of an inner product space V Then every vector of S is orthogonal to every vector of Span (S), ie, u, v 0, for all u Span (S), v S Proof For any u Span (S), the vector u must be a linear combination of some vectors in S, say, u a u + a 2 u a k u k Then for any v S, u, v a u, v + a 2 u 2, v + + a n u n, v 0 Example 64 Let A be an m n real matrix Then Nul A and Row A are orthogonal complements of each other in R n, ie, Nul A ( Row A ), ( Nul A ) Row A 7 Orthogonal sets and bases Let V be an inner product space A subset S { u, u 2,, u k of nonzero vectors of V is called an orthogonal set if every pair of vectors are orthogonal, ie, u i, u j 0, i < j k An orthogonal set S { u, u 2,, u k is called an orthonormal set if we further have u i, i k An orthonormal basis of V is a basis which is also an orthonormal set Theorem 7 (Pythagoras) Let v, v 2,, v k be mutually orthogonal vectors Then v + v v k 2 v 2 + v v k 2 Proof For simplicity, we assume k 2 If u and v are orthogonal, ie, u, v 0, then u + v 2 u + v, u + v u, u + v, v u 2 + v 2 Example 7 The three vectors v, 2, T, v 2 2,, 4 T, v 3 3, 2, T are mutually orthogonal Express the the vector v 7,, 9 T as a linear combination of v, v 2, v 3 Set x v + x 2 v 2 + x 3 v 3 v 6

7 There are two ways to find x, x 2, x 3 Method : Solving the linear system by performing row operations to its augmented matrix v, v 2, v 3 v, we obtain x 3, x 2, x 3 2 So v 3v v 2 + 2v 3 Method 2: Since v i v j for i j, we have where i, 2, 3 Then We then have v, v i x v + x 2 v 2 + x 3 v 3, v i x i v i, v i, x i v, v i, i, 2, 3 v i, v i x , x , x Theorem 72 Let v, v 2,, v k be an orthogonal basis of a subspace W Then for any w W, Proof Trivial 8 Orthogonal projection w v, w v, v v + v 2, w v 2, v 2 v v k, w v k, v k v k Let V be an inner product space Let v be a nonzero vector of V We want to decompose an arbitrary vector y into the form y αv + z, where z v Since z v, we have This implies that We define the vector v, y αv, v α v, v α Proj v (y) v, y v, v v, y v, v v, called the orthogonal projection of y along v The linear transformation Proj u : V V is called the orthogonal projection of V onto the direction v Proposition 8 Let v be a nonzero vector of the Euclidean n-space R n Then the orthogonal projection Proj u : R n R n is given by Proj v (y) v v vvt y; and the orthogonal projection Proj v : R n R n is given by ( Proj v (y) I ) v v vvt y 7

8 Write the vector v as v a, a 2,, a n T The for any scalar c, ca a c ca 2 cv a 2 c vc, ca n a n c where c is the matrix with the only entry c Note that v y v T y Then the orthogonal projection Proj v can be written as ( ) Proj v (y) (v y)v v v ( ) vv y v v ( ) vv T y v v This means that the standard matrix of Proj v is ( ) vv T v v Indeed, v is an n matrix and v T is a n matrix, the product vv T is an n n matrix The orthogonal projection Proj v : R n R n is given by ( Proj v (y) y Proj v (y) I ) v v vvt y This means that the standard matrix of Proj v is ( ) I vv T v v Example 8 Find the linear mapping from R 3 to R 3 that is a the orthogonal projection of R 3 ont the plane x + x 2 + x 3 0 To find the orthogonal projection of R 3 onto the subspace v, where v,, T, we find the following orthogonal projection Proj v (y) 3 ( v y v v ) v y + y 2 + y 3 3 Then the orthogonal projection of y onto v is given by Proj v y y Proj v (y) y y 2 y 3 ( I v v vvt y y 2 y 3 ) y 8

9 Let W be a subspace of V, and let v, v 2,, v k be an orthogonal basis of W We want to decompose an arbitrary vector y V into the form y w + z with w W and z W Then there exist scalars α, α 2,, α k such that Since z v, z v 2,, z v k, we have Then We thus define ŷ α v + α 2 v α k v k v i, y v i, α v + + α r v k + z α i v i, v i α i v i, y v i, v i, i k Proj W (y) v, y v, v v + v 2, y v 2, v 2 v v k, y v k, v k v k, called the orthogonal projection of v along W The linear transformation is called the orthogonal projection of V onto W Proj W : V V Theorem 82 Let V be an n-dimensional inner product space Let W be a subspace with an orthogonal basis B { v, v 2,, v k Then for any v V, Proj W (y) v, y v, v v + v 2, y v 2, v 2 v v k, y v k, v k v k, Proj W (y) y Proj W (y) In particular, if B is an orthonormal basis of W, then Proj W (y) v, y v + v 2, y v v k, y v k Proposition 83 Let W be a subspace of R n Let U u, u 2,, u k be an n k matrix, whose columns form an orthonormal basis of W Then the orthogonal projection Proj W : R n R n is given by Proof For any y R n, we have Proj W (y) UU T y Proj W (y) (u y)u + (u 2 y)u (u k y)u k Note that Then U T y u T u T 2 u T k y u T y u T 2 y u T k y UU T y u, u 2,, u k Proj W (y) u y u 2 y u k y u y u 2 y u k y 9

10 Example 82 Find the orthogonal projection where W is the plane x + x 2 + x 3 0 By inspection, the following two vectors form an orthogonal basis of W Then v Proj W (y) Proj W : R 3 R 3, 0 and v 2 ( ) v y v v y y ( v2 y v + v 2 v2 0 + y + y 2 2y Example 83 Find the matrix of the orthogonal projection where The following two vectors Proj W : R 3 R 3, W Span, 0 u / 3 / 3 / 3, u 2 / 2 / 2 0 ) v 2 form an orthonormal basis of W Then the standard matrix of Proj W is the product / 3 / 2 / 3 / 2 / / 3 / 3 / 3 / 2 /, which results the matrix 5/6 /6 /3 /6 5/6 /3 /3 /3 /3 Alternatively, the matrix can be found by computing the orthogonal projection: 0 Proj W (y) y + y 2 + y y y 2 + 2y 3 y + 5y 2 + 2y 3 2y + 2y 2 + 2y 3 5/6 /6 /3 /6 5/6 /3 /3 /3 /3 y y 2 y 3 + y y 2 2 y y 2 y 3 0

11 9 Gram-Schmidt process Let W be a subspace of an inner product space V Let B { v, v 2,, v k be a basis of W, not necessarily orthogonal An orthogonal basis B { w, w 2,, w k may be constructed from B as follows: More precisely, w v, W Span { w, w 2 v 2 Proj W (v 2 ), W 2 Span {w, w 2, w 3 v 3 Proj W2 (v 3 ), W 3 Span {w, w 2, w 3, w k v k Proj Wk (v k ), W k Span {w,, w k, w k v k Proj Wk (v k ) w v, w 2 v 2 w, v 2 w, w w, w 3 v 3 w, v 3 w, w w w 2, v 3 w 2, w 2 w 2, w k v k w, v k w, w w w 2, v k w 2, w 2 w 2 w k, v k w k, w k w k The method of constructing the orthogonal vector w, w 2,, w k is known as the Gram-Schmidt process Clearly, the vector w, w 2,, w k are linear combinations of v, v 2,, v k Conversely, the vectors v, v 2,, v k are also linear combinations of w, w 2,, w k : Hence v w, v 2 w, v 2 w, w w + w 2, v 3 w, v 3 w, w w + w 2, v 3 w 2, w 2 w 2 + w 3, v k w, v k w, w w + w 2, v k w 2, w 2 w w k, v k w k, w k w k + w k Span { v, v 2,, v k Span { w, w 2,, w k Since B {v, v 2,, v k is a basis for W, so is the set B { w, w 2,, w k Theorem 9 The basis { w, w 2,, w k constructed by the Gram-Schmidt process is an orthogonal basis of W Moreover, v, v 2, v 3,, v k w, w 2, w 3,, w k R, where R is the k k upper triangular matrix w,v 2 w,v 3 w,w w,w w 0 2,v 3 w 2,w w,v k w,w w 2,v k w 2,w 2 w 3,v k w 3,w 3

12 Example 9 Let W be the subspace of R 4 spanned by v, v 2 0 Construct an orthogonal basis for W, v 2 Set w v Let W Span {w To find a vector w 2 in W that is orthogonal to W, set 0 0 w 2 v 2 Proj W v 2 v 2 w, v 2 w, w w Let W 2 Span {w, w 2 To find a vector w 3 in W that is orthogonal to W 2, set w 3 v 3 Proj W2 v 3 v 3 w, v 3 w, w w w 2, v 3 w 2, w 2 w /3 /3 2/3 0 Then the set {w, w 2, w 3 is an orthogonal basis for W Theorem 92 Any m n real matrix A can be written as A QR, called a QR-decomposition, where Q is an m n matrix whose columns are mutually orthogonal, and R is an n n upper triangular matrix whose diagonal entries are Example 92 Find a QR-decomposition of the matrix A Let v, v 2, v 3, v 4 be the column vectors of A Set w v 0 2

13 Then v w Set w 2 v 2 w, v 2 w, w w /2 /2 Then v 2 (/2)w + w 2 Set w 3 v 3 w, v 3 w, w w w 2, v 3 w 2, w 2 w /2 /2 0 Then v 3 (3/2)w + w 2 + w 3 Set w 4 v 4 w, v 4 w, w w w 2, v 4 w 2, w 2 w /3 2/3 2/3 /2 /2 Then v 4 (/2)w + (/3)w 2 + w 4 Thus matrixes Q and R for QR-decomposition of A are as follows: /2 0 2/3 Q 0 0 2/3, /2 0 2/3 /2 3/2 /2 R 0 / Orthogonal matrix Let V be an n-dimensional inner product space A linear transformation T : V V is called an isometry if for any v V, T (v) v Example 0 For the Euclidean n-space R n with the dot product, rotations and reflections are isometries Theorem 0 A linear transformation T : V V is an isometry if and only if T preserving inner product, ie, for u, v V, T (u), T (v) u, v Proof Note that for vectors u, v V, T (u + v) 2 T (u + v), T (u + v) T (u), T (u) + T (v), T (v) + 2 T (u), T (v) T (u) 2 + T (v) T (u), T (v), u + v 2 u + v, u + v u, u + v, v + 2 u, v u 2 + v u, v It is clear that the length preserving is equivalent to the inner product preserving 3

14 An n n matrix Q is called orthogonal if QQ T I, ie, Q Q T Theorem 02 Let Q be an n n matrix The following are equivalent (a) Q is orthogonal (b) Q T is orthogonal (c) The column vectors of Q are orthonormal (d) The row vectors of Q are orthonormal Proof (a) (b) : If QQ T I, then Q Q T So Q T (Q T ) T Q T Q I This means that Q T is orthogonal (a) (c) : Let Q u, u 2,, u n Note that Q T Q u T u T 2 u T n u T u u T u 2 u T u n u u T 2 u u T 2 u 2 u T 2 u n, u 2,, u n u T n u u T n u 2 u T n u n Thus Q T Q I is equivalent to u T i u j for i j and u T i u j 0 for i j This means that Q is orthogonal if and only if {u, u 2,, u n is an orthonormal basis of V Theorem 03 Let V be an n-dimensional inner product space with an orthonormal basis B { u, u 2,, u n Let P be an n n real matrix, and v, v 2,, v n u, u 2,, u n P Then B { v, v 2,, v n is an orthonormal basis if and only if P is an orthogonal matrix Proof For simplicity, we assume n 3 Since v, v 2, v 3 u, u 2, u 3 P, ie, We then have v p u + p 2 u 2 + p 3 u 3, v 2 p 2 u + p 22 u 2 + p 32 u 3, v 3 p 3 u + p 23 u 2 + p 33 u 3 v i, v j p i u + p 2i u 2 + p 3i u 3, p j u + p 2j u 2 + p 3j u 3 p i p j + p 2i p 2j + p 3i p 3j Note that B is an orthonormal basis is equivalent to and P is an orthogonal matrix if and only if The proof is finished v i, v j δ ij, p i p j + p 2i p 2j + p 3i p 3j δ ij Theorem 04 Let V be an n-dimensional inner product space with an orthonormal basis B { u, u 2,, u n Let T : V V be a linear transformation Then T is an isometry if and only if the matrix of T relative to B is an orthogonal matrix 4

15 Proof Let A be the matrix of T relative to the basis B Then T (u ), T (u 2 ),, T (u n ) u, u 2,, u n A Note that T is an isometry if and only if {T (u ), T (u 2 ),, T (u n ) is an orthonormal basis of V, and that {T (u ), T (u 2 ),, T (u n ) is an orthonormal basis if and only the transition matrix A is an orthogonal matrix Example 02 The matrix A is not an orthogonal matrix The set 0 2 B,, 0 2 of the column vectors of A is an orthogonal basis of R 3 However, the set of the row vectors of A is not an orthogonal set The matrix / 3 / 2 / 6 U / 3 / 2 / 6 / 3 0 2/ 6 is an orthogonal matrix For the vector v 3, 0, 4 T, we have / 3 / 2 / 6 Uv / 3 / 2 / 6 / 3 0 2/ / / 6 3 8/ 6 The length of v is and the length of Uv is v ) 2 ( ) 2 Uv 2( 3 + 4/ / 6 5 Diagonalizing real symmetric matrices Let V be an n-dimensional real inner product space A linear mapping T : V V is said to be symmetric if T (u), v u, T (v) for all u, v V Example Let A be a real symmetric n n matrix Let T : R n R n be defined by T (x) Ax Then T is symmetric for the Euclidean n-space In fact, for u, v R n, we have T (u) v (Au) v (Au) T v u T A T v u T Av u Av u T (v) Proposition Let V be an n-dimensional real inner product space with an orthonormal basis B {u, u 2,, u n Let T : V V be a linear mapping whose matrix relative to B is A Then T is symmetric if and only the matrix A is symmetric Proof Note that T (u ), T (u 2 ),, T (u n ) u, u 2,, u n a a 2 a n a 2 a 22 a 2n a n a n2 a nn 5

16 Alternatively, If T is symmetric, then T (u j ) n a ij u i, j n i a ij u i, T (u j ) T (u i ), u j a ji So A is symmetric Conversely, if A is symmetric, then for vectors u n i a iu i, v n i b iu i, we have n n T (u), v a i b j T (u i ), u j a i b j a ji So T is symmetric i,j n a i b j a ij i,j u, T (v) i,j n a i b j u i, T (u j ) Theorem 2 The roots of characteristic polynomial of a real symmetric matrix A are all real numbers Proof Let λ be a (possible complex) root of the characteristic polynomial of A, and let v be a (possible complex) eigenvector for the eigenvalue λ Then Note that Thus Av λv i,j λ v 2 λv v (Av) v (Av) T v v T A T v v T A v v T Ā v v T Av v T λv v T ( λ v) λv T v λv v λ v 2 (λ λ) v 2 0 Since v 0, it follows that λ λ So λ is a real number Theorem 3 Let λ and µ be distinct eigenvalues of a symmetric linear transformation T : V V Then eigenvectors for λ are orthogonal to eigenvectors for µ Proof Let u be an eigenvector for λ, and let v be an eigenvectors for µ, ie, T (u) λu, T (v) µv Then Thus Since λ µ 0, it follows that u, v 0 λ u, v λu, v T (u), v u, T (v) u, µv µ u, v (λ µ) u, v 0 Theorem 4 Let V be an n-dimensional real inner product space Let T : V V be a symmetric linear mapping Then V has an orthonormal basis of eigenvectors of T Proof We proceed by induction on n For n, it is obviously true Let λ be an eigenvalue of T, and let u be a unit eigenvector of T for the eigenvalue λ Let W : u For any w W, T (w), u w, T (u ) w, λ u λ w, u 0 This means that T (w) W Thus the restriction T W : W W is a symmetric linear transformation Since dim W n, by induction hypothesis, W has an orthonormal basis {u 2,, u n of eigenvectors of T W Clearly, B {u, u 2,, u n is an orthonormal basis of V, and u, u 2,, u n are eigenvectors of T 6

17 Theorem 5 (Real Spectral Theorem) Any real symmetric matrix A can be diagonalized by an orthogonal matrix More specifically, there exists an orthonormal basis B {u, u 2,, u n of R n such that Au i λ i u i, i n, Q AQ Q T AQ Diag λ, λ 2,, λ n, where Q u, u 2,, u n ; and spectral decomposition A λ u u T + λ 2 u 2 u T λ n u n u T n Proof Let T : R n R n be defined by T (x) Ax For vectors u, v R n, T (u) v (Au) v (Au) T v u T A T v u T Av u (Av) u T (v) Then T is symmetric Thus R n has an orthonormal basis B {u, u 2,, u n of eigenvectors of T Let and Q u, u 2,, u n Then Alternatively, T (u i ) λ i u i, i n; Q AQ Q T AQ Diag λ, λ 2,, λ n D A QDQ QDQ T λ 0 0 u T 0 λ 2 0 u T 2 u, u 2,, u n 0 0 λ n u T n u T u T 2 λ u, λu 2,, λ n u n u T n λ u u T + λ 2 u 2 u T λ n u n u T n Note It is clear that if a real square matrix A is orthogonally diagonalizable, then A is symmetric Example 2 Is the matrix A orthogonally diagonalizable? 3 3 The characteristic polynomial of A is (t) (t + 2) 2 (t 7) There are eigenvalues λ 2 and λ 2 7 For λ 2, there are two independent eigenvectors v,, 0 T, v 2, 0, T Set w v, w 2 v 2 v 2 w w w w /2, /2, T 7

18 Then u / 2 / 2 0 form an orthonormal basis of E λ For λ 2 7, there is one independent eigenvector, u 2 v 3,, T / 6 / 6 2/ 6 The orthonormal basis of E λ2 is Then the orthogonal matrix Q diagonalizes the symmetric matrix A u 3 / 3 / 3 / 3 / 2 / 6 / 3 / 2 / 6 / 3 0 2/ 6 / 3 An n n real symmetric matrix A is called positive definite if, for any nonzero vector u R n, u, Au u T Au > 0 Theorem 6 Let A be an n n real symmetric matrix Let, be defined by u, v u T Av, u, v R n Then, is an inner product on R n if and only if the matrix A is positive definite Theorem 7 Let A be the matrix of an n-dimensional inner product space V relative to a basis B Then for u, v V, u, v u T BAv B Moreover, A is positive definite 2 Complex inner product spaces Definition 2 Let V be a complex vector space An inner product of V is a function, : V V C satisfying the following properties: () Linearity: au + bv, w a u, w + b v, w (2) Conjugate Symmetric Property: u, v v, u (3) Positive Definite Property: For any u V, u, u 0; and u, u 0 if and only if u 0 The complex vector space V with an inner product is called a complex inner product space Note that the Conjugate Symmetric Property implies that u, av + bw ā u, v + b u, w For any u V, since u, u is a nonnegative real number, we define the length of u to be the real number u u, u 8

19 Theorem 22 (Cauchy-Schwarz Inequality) Let V be a complex inner product space Then for any u, v V, u, v u v Like real inner product space, one can similarly define orthogonality, the angle between two vectors, orthogonal set, orthonormal basis, orthogonal projection, and Gram-Schmidt process, etc Two vectors u, v in a complex inner product space V are called orthogonal if u, v 0 When both u, v V are nonzero, the angle θ between u and v is defined by cos θ u, v u v A set { v, v 2,, v k of nonzero vectors of V is called an orthogonal set if the vectors v, v 2,, v k are mutually orthogonal A basis of V is called an orthogonal basis if their vectors are mutually orthogonal; a basis Bis called an orthonormal basis if B is an orthogonal basis and every vector of B has unit length Example 2 (Complex Euclidean space C n ) For vectors u z,, z n T,, v w,, w n T C n, define u, v u T v z w + z 2 w z n w n Then, is an inner product of C n, called the standard inner product on C n The vector space C n with the standard inner product is called the complex Euclidean n-space Theorem 23 Let B { v, v 2,, v n be an orthogonal basis of an inner product space V Then for any v V, v v, v v, v v + v, v 2 v 2, v 2 v v, v n v n, v n v n Let W be a subspace of V with an orthogonal basis {u, u 2,, u k Then the orthogonal projection Proj W : V V is given by Proj W (v) v, u u, u u + v, u 2 u 2, u 2 u v, u k u k, u k u k In particular, if V C n and {u, u 2,, u k is an orthonormal basis of W, then the standard matrix of the linear mapping Proj W is UŪT, ie, Proj W (x) UŪT x, where U u, u 2,, u k is an n k complex matrix Theorem 24 Let B { v, v 2,, v n be basis of an inner product space V Let A be the matrix of the inner product of V, ie, A a ij, where a ij v i, v j Then for u, v V, u, v u T A v, where u and v are the B-coordinate vectors of u and v, respectively where A complex square matrix A is called Hermitian if A A, A : ĀT A complex square matrix A is called positive definite if for any x C n, x T Ax 0 9

20 Theorem 25 Let A be an n n complex matrix Then A is the matrix of an n-dimensional inner product complex vector space relative to a basis if and only if A is Hermitian and positive definite A complex square matrix A is called unitary if A A, or equivalently, AA A A I Let A a ij Then A is unitary means that a i ā j + a 2i ā 2j + + a ni ā nj { if i j 0 if i j Theorem 26 Let A be a complex square matrix Then the following statements are equivalent: (a) A is unitary (b) The rows of A form an orthonormal set (c) The columns of A form an orthonormal set Theorem 27 Let V be an n-dimensional complex inner product space with an orthonormal basis B { u, u 2,, u n Let U be an n n real matrix, and v, v 2,, v n u, u 2,, u n A Then B { v, v 2,, v n is an orthonormal basis if and only if A is a unitary matrix Proof For simplicity, we assume n 3 Since v, v 2, v 3 u, u 2, u 3 A, ie, v a u + a 2 u 2 + a 3 u 3, v 2 a 2 u + a 22 u 2 + a 32 u 3, v 3 a 3 u + a 23 u 2 + a 33 u 3 We then have v i, v j a i u + a 2i u 2 + a 3i u 3, Note that B is an orthonormal basis is equivalent to and A is an unitary matrix if and only if The proof is finished a j u + a 2j u 2 + a 3j u 3 a i ā j + a 2i ā 2j + a 3i ā 3j v i, v j δ ij, a i ā j + a 2i ā 2j + a 3i ā 3j δ ij Let V be an n-dimensional complex inner product space A linear mapping T : V V is a called an isometry of V if T preserves length of vector, ie, for any v V, T (v) v 20

21 Theorem 28 Let V be an n-dimensional inner product space, and let T : V V be a linear transformation The following statements are equivalent: (a) T preserves length, ie, for any v V, (b) T preserves inner product, ie, for u, v V, (c) T preserves orthogonality, ie, for u, v V, T (v) v T (u), T (v) v, v T (u), T (v) 0 u, v 0 Proof note that if T preserves inner product, of course it preserves length Now for vectors u, v V, we have T (u + v) 2 T (u + v), T (u + v) T (u), T (u) + T (v), T (v) + T (u), T (v) + T (v), T (u) T (u) 2 + T (v) 2 + 2R T (u), T (v) ; T ( u + v ) 2 T (u) 2 + T (v) 2 + 2I T (u), T (v) On the other hand, If T preserves length, then It follows that Equivalently, u + v 2 u 2 + v 2 + 2R u, v ; u + v 2 u 2 + v 2 + 2I u, v T (u) 2 u 2, T (v) 2 v 2, T (u + v) 2 u + v 2, T ( u + v ) 2 u + v 2 R T (u), T (v) R u, v, T (u), T (v) u, v I T (u), T (v) I u, v 2

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Chapter 6. Orthogonality

6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

### Summary of week 8 (Lectures 22, 23 and 24)

WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

### Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

### Orthogonal Diagonalization of Symmetric Matrices

MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

### Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

### 9.3 Advanced Topics in Linear Algebra

548 93 Advanced Topics in Linear Algebra Diagonalization and Jordan s Theorem A system of differential equations x = Ax can be transformed to an uncoupled system y = diag(λ,, λ n y by a change of variables

### α = u v. In other words, Orthogonal Projection

Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

### Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

### MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

### Inner product. Definition of inner product

Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

### 3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Linear Algebra Review. Vectors

Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### Notes on Symmetric Matrices

CPSC 536N: Randomized Algorithms 2011-12 Term 2 Notes on Symmetric Matrices Prof. Nick Harvey University of British Columbia 1 Symmetric Matrices We review some basic results concerning symmetric matrices.

### Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

### Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Orthogonal Bases and the QR Algorithm

Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### (January 14, 2009) End k (V ) End k (V/W )

(January 14, 29) [16.1] Let p be the smallest prime dividing the order of a finite group G. Show that a subgroup H of G of index p is necessarily normal. Let G act on cosets gh of H by left multiplication.

### Applied Linear Algebra I Review page 1

Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

### Math 312 Homework 1 Solutions

Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

### Factorization Theorems

Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

### MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

### The determinant of a skew-symmetric matrix is a square. This can be seen in small cases by direct calculation: 0 a. 12 a. a 13 a 24 a 14 a 23 a 14

4 Symplectic groups In this and the next two sections, we begin the study of the groups preserving reflexive sesquilinear forms or quadratic forms. We begin with the symplectic groups, associated with

### 5. Orthogonal matrices

L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

### 1 Eigenvalues and Eigenvectors

Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

### Diagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions

Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential

### CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

### Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### Inner products on R n, and more

Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

### The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

### 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

### MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

### Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

### 1 Orthogonal projections and the approximation

Math 1512 Fall 2010 Notes on least squares approximation Given n data points (x 1, y 1 ),..., (x n, y n ), we would like to find the line L, with an equation of the form y = mx + b, which is the best fit

### by the matrix A results in a vector which is a reflection of the given

Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

### INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL

SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### 17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function

17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):

### Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

### MATH36001 Background Material 2015

MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be

### Math 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010

Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 Self-Adjoint and Normal Operators

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### Section 4.4 Inner Product Spaces

Section 4.4 Inner Product Spaces In our discussion of vector spaces the specific nature of F as a field, other than the fact that it is a field, has played virtually no role. In this section we no longer

### Inner Product Spaces. 7.1 Inner Products

7 Inner Product Spaces 71 Inner Products Recall that if z is a complex number, then z denotes the conjugate of z, Re(z) denotes the real part of z, and Im(z) denotes the imaginary part of z By definition,

### 13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

### WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?

WHICH LINEAR-FRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course

### 1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

### 3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

### MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

### 7 - Linear Transformations

7 - Linear Transformations Mathematics has as its objects of study sets with various structures. These sets include sets of numbers (such as the integers, rationals, reals, and complexes) whose structure

### Solution based on matrix technique Rewrite. ) = 8x 2 1 4x 1x 2 + 5x x1 2x 2 2x 1 + 5x 2

8.2 Quadratic Forms Example 1 Consider the function q(x 1, x 2 ) = 8x 2 1 4x 1x 2 + 5x 2 2 Determine whether q(0, 0) is the global minimum. Solution based on matrix technique Rewrite q( x1 x 2 = x1 ) =

### MATH 551 - APPLIED MATRIX THEORY

MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### Definition 12 An alternating bilinear form on a vector space V is a map B : V V F such that

4 Exterior algebra 4.1 Lines and 2-vectors The time has come now to develop some new linear algebra in order to handle the space of lines in a projective space P (V ). In the projective plane we have seen

Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Linear Least Squares

Linear Least Squares Suppose we are given a set of data points {(x i,f i )}, i = 1,...,n. These could be measurements from an experiment or obtained simply by evaluating a function at some points. One

### Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

### Orthogonal Projections and Orthonormal Bases

CS 3, HANDOUT -A, 3 November 04 (adjusted on 7 November 04) Orthogonal Projections and Orthonormal Bases (continuation of Handout 07 of 6 September 04) Definition (Orthogonality, length, unit vectors).

### MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

### MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006

MATH 511 ADVANCED LINEAR ALGEBRA SPRING 26 Sherod Eubanks HOMEWORK 1 1.1 : 3, 5 1.2 : 4 1.3 : 4, 6, 12, 13, 16 1.4 : 1, 5, 8 Section 1.1: The Eigenvalue-Eigenvector Equation Problem 3 Let A M n (R). If

### On the general equation of the second degree

On the general equation of the second degree S Kesavan The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai - 600 113 e-mail:kesh@imscresin Abstract We give a unified treatment of the

### Orthogonal Projections

Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

### NOTES on LINEAR ALGEBRA 1

School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

### NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

### 4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

4: EIGENVALUES, EIGENVECTORS, DIAGONALIZATION STEVEN HEILMAN Contents 1. Review 1 2. Diagonal Matrices 1 3. Eigenvectors and Eigenvalues 2 4. Characteristic Polynomial 4 5. Diagonalizability 6 6. Appendix:

### 5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES

5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves

### MAT188H1S Lec0101 Burbulla

Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

### Chapter 20. Vector Spaces and Bases

Chapter 20. Vector Spaces and Bases In this course, we have proceeded step-by-step through low-dimensional Linear Algebra. We have looked at lines, planes, hyperplanes, and have seen that there is no limit

### Quick Reference Guide to Linear Algebra in Quantum Mechanics

Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................

### MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

### EC9A0: Pre-sessional Advanced Mathematics Course

University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Pre-sessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond

Advanced linear algebra M. Anthony, M. Harvey MT8, 798 Undergraduate study in Economics, Management, Finance and the Social Sciences This is an extract from a subject guide for an undergraduate course

### Lecture 2: Essential quantum mechanics

Department of Physical Sciences, University of Helsinki http://theory.physics.helsinki.fi/ kvanttilaskenta/ p. 1/46 Quantum information and computing Lecture 2: Essential quantum mechanics Jani-Petri Martikainen

### Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

### Problems for Advanced Linear Algebra Fall 2012

Problems for Advanced Linear Algebra Fall 2012 Class will be structured around students presenting complete solutions to the problems in this handout. Please only agree to come to the board when you are

### Section 7.4 Matrix Representations of Linear Operators

Section 7.4 Matrix Representations of Linear Operators Definition. Φ B : V à R n defined as Φ B (c 1 v 1 +c v + + c n v n ) = [c 1 c c n ] T. Property: [u + v] B = [u] B + [v] B and [cu] B = c[u] B for

### October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix

Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### T ( a i x i ) = a i T (x i ).

Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)