5. Orthogonal matrices


 Tamsyn Greer
 1 years ago
 Views:
Transcription
1 L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 51
2 Orthonormal vectors a set of real mvectors {a 1, a 2,, a n } is orthonormal if the vectors have unit norm: a i = 1 they are mutually orthogonal: a T i a j = 0 if i j Example 0 0 1, , Orthogonal matrices 52
3 Matrix with orthonormal columns A R m n has orthonormal columns if its Gram matrix is the identity A T A = [ a 1 a 2 a n ] T [ a1 a 2 a n ] = = a T 1 a 1 a T 1 a 2 a T 1 a n a T 2 a 1 a T 2 a 2 a T 2 a n a T na 1 a T na 2 a T na n there is no standard short name for matrix with orthonormal columns Orthogonal matrices 53
4 Matrixvector product if A R m n has orthonormal columns, then the linear function f(x) = Ax preserves inner products: (Ax) T (Ay) = x T A T Ay = x T y preserves norms: Ax = ( (Ax) T (Ax) ) 1/2 = (x T x) 1/2 = x preserves distances: Ax Ay = x y preserves angles: (Ax, Ay) = arccos ( (Ax) T ) (Ay) Ax Ay = arccos ( x T y ) x y = (x, y) Orthogonal matrices 54
5 Left invertibility if A R m n has orthonormal columns, then A is left invertible with left inverse A T : by definition A T A = I A has linearly independent columns (from p 424 or p 52): Ax = 0 = A T Ax = x = 0 A is tall or square: m n (see page 413) Orthogonal matrices 55
6 Outline matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns
7 Orthogonal matrix Orthogonal matrix: a square real matrix with orthonormal columns Nonsingularity (from equivalences on page 414): if A is orthogonal, then A is invertible, with inverse A T : A T A = I A is square } = AA T = I A T is also an orthogonal matrix rows of A are orthonormal (have norm one and are mutually orthogonal) Note: if A R m n has orthonormal columns and m > n, then AA T I Orthogonal matrices 56
8 Permutation matrix let π = (π 1, π 2,, π n ) be a permutation (reordering) of (1, 2,, n) we associate with π the n n permutation matrix A A iπi = 1, A ij = 0 if j π i Ax is a permutation of the elements of x: Ax = (x π1, x π2,, x πn ) A has exactly one element equal to 1 in each row and each column Orthogonality: permutation matrices are orthogonal A T A = I because A has exactly one element equal to one in each row (A T A) ij = n A ki A kj = k=1 { 1 i = j 0 otherwise A T = A 1 is the inverse permutation matrix Orthogonal matrices 57
9 Example permutation on {1, 2, 3, 4} (π 1, π 2, π 3, π 4 ) = (2, 4, 1, 3) corresponding permutation matrix and its inverse A = , A 1 = A T = A T is permutation matrix associated with the permutation ( π 1, π 2, π 3, π 4 ) = (3, 1, 4, 2) Orthogonal matrices 58
10 Plane rotation Rotation in a plane Ax A = [ cos θ sin θ sin θ cos θ ] θ x Rotation in a coordinate plane in R n : for example, A = cos θ 0 sin θ sin θ 0 cos θ describes a rotation in the (x 1, x 3 ) plane in R 3 Orthogonal matrices 59
11 Reflector A = I 2aa T with a a unitnorm vector ( a = 1) a reflector matrix is symmetric and orthogonal A T A = (I 2aa T )(I 2aa T ) = I 4aa T + 4aa T aa T = I Ax is reflection of x through the hyperplane H = {u a T u = 0} H line through a and origin x y z = Ax y = x (a T x)a = (I aa T )x z = y + (y x) = (I 2aa T )x (see page 235) Orthogonal matrices 510
12 Product of orthogonal matrices if A 1,, A k are orthogonal matrices and of equal size, then the product A = A 1 A 2 A k is orthogonal: A T A = (A 1 A 2 A k ) T (A 1 A 2 A k ) = A T k A T 2 A T 1 A 1 A 2 A k = I Orthogonal matrices 511
13 Linear equation with orthogonal matrix linear equation with orthogonal coefficient matrix A of size n n Ax = b solution is x = A 1 b = A T b can be computed in 2n 2 flops by matrixvector multiplication cost is less than order n 2 if A has special properties; for example, permutation matrix: reflector (given a): plane rotation: 0 flops order n flops order 1 flops Orthogonal matrices 512
14 Outline matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns
15 Tall matrix with orthonormal columns suppose A R m n is tall (m > n) and has orthonormal columns A T is a left inverse of A: A T A = I A has no right inverse; in particular AA T I on the next pages, we give a geometric interpretation to the matrix AA T Orthogonal matrices 513
16 Range the span of a set of vectors is the set of all their linear combinations: span(a 1, a 2,, a n ) = {x 1 a 1 + x 2 a x n a n x R n } the range of a matrix A R m n is the span of its column vectors: range(a) = {Ax x R n } Example range( ) = x 1 + x 3 x 1 + x 2 + 2x 3 x 2 x 3 x 1, x 2, x 3 R = {(u, u + v, v) u, v R} Orthogonal matrices 514
17 Projection on range of matrix with orthonormal columns suppose A R m n has orthonormal columns; we ll show that the vector AA T b is the orthogonal projection of an mvector b on range(a) b range(a) = {Ax x R n } Aˆx = AA T b ˆx = A T b satisfies Aˆx b < Ax b for all x ˆx this extends the result on page 211 (where A = (1/ a )a) Orthogonal matrices 515
18 Proof the squared distance of b to an arbitrary point Ax in range(a) is Ax b 2 = A(x ˆx) + Aˆx b 2 (where ˆx = A T b) = A(x ˆx) 2 + Aˆx b 2 + 2(x ˆx) T A T (Aˆx b) = A(x ˆx) 2 + Aˆx b 2 = x ˆx 2 + Aˆx b 2 Aˆx b 2 with equality only if x = ˆx line 3 follows because A T (Aˆx b) = ˆx A T b = 0 line 4 follows from A T A = I Orthogonal matrices 516
19 Orthogonal decomposition the vector b is decomposed as a sum b = z + y with z range(a), y range(a) y = b AA T b b range(a) z = AA T b such a decomposition exists and is unique for every b b = Ax + y, A T y = 0 A T b = x, y = b AA T b Orthogonal matrices 517
20 Outline matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns
21 Gram matrix A C m n has orthonormal columns if its Gram matrix is the identity: A H A = [ a 1 a 2 a n ] H [ a1 a 2 a n ] = = a H 1 a 1 a H 1 a 2 a H 1 a n a H 2 a 1 a H 2 a 2 a H 2 a n a H n a 1 a H n a 2 a H n a n columns have unit norm: a i 2 = a H i a i = 1 columns are mutually orthogonal: a H i a j = 0 for i j Orthogonal matrices 518
22 Unitary matrix Unitary matrix a square complex matrix with orthonormal columns is called unitary Inverse A H A = I A is square } = AA H = I a unitary matrix is nonsingular with inverse A H if A is unitary, then A H is unitary Orthogonal matrices 519
23 Discrete Fourier transform matrix recall definition from page 333 (with ω = e 2πj/n and j = 1) W = ω 1 ω 2 ω (n 1) 1 ω 2 ω 4 ω 2(n 1) 1 ω (n 1) ω 2(n 1) ω (n 1)(n 1) the matrix (1/ n)w is unitary (proof on next page): inverse of W is W 1 = (1/n)W H 1 n W H W = 1 n W W H = I inverse discrete Fourier transform of nvector x is W 1 x = (1/n)W H x Orthogonal matrices 520
24 we show that W H W = ni Gram matrix of DFT matrix conjugate transpose of W is ω ω 2 ω n 1 W H = 1 ω 2 ω 4 ω 2(n 1) 1 ω n 1 ω 2(n 1) ω (n 1)(n 1) i, j element of Gram matrix is (W H W ) ij = 1 + ω i j + ω 2(i j) + + ω (n 1)(i j) (W H W ) ii = n, (W H W ) ij = ωn(i j) 1 ω i j 1 = 0 if i j (last step follows from ω n = 1) Orthogonal matrices 521
4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns
L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More information1 Introduction to Matrices
1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns
More information6. Cholesky factorization
6. Cholesky factorization EE103 (Fall 201112) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix
More informationLectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222  Linear Algebra II  Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n realvalued matrix A is said to be an orthogonal
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationLinear Algebra Notes for Marsden and Tromba Vector Calculus
Linear Algebra Notes for Marsden and Tromba Vector Calculus ndimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationMAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationRecall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.
ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the ndimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?
More informationCS3220 Lecture Notes: QR factorization and orthogonal transformations
CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss
More information3 Orthogonal Vectors and Matrices
3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first
More informationLecture 2 Matrix Operations
Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrixvector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or
More informationChapter 17. Orthogonal Matrices and Symmetries of Space
Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length
More informationInverses. Stephen Boyd. EE103 Stanford University. October 27, 2015
Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudoinverse Left and right inverses 2 Left inverses a number
More informationSummary of week 8 (Lectures 22, 23 and 24)
WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry
More informationOrthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
More informationScientific Computing: An Introductory Survey
Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at UrbanaChampaign Copyright c 2002. Reproduction
More informationLecture Notes 1: Matrix Algebra Part B: Determinants and Inverses
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 57 Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses Peter J. Hammond email: p.j.hammond@warwick.ac.uk Autumn 2012,
More informationSection 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj
Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationMATH36001 Background Material 2015
MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More information5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES
5.3 ORTHOGONAL TRANSFORMATIONS AND ORTHOGONAL MATRICES Definition 5.3. Orthogonal transformations and orthogonal matrices A linear transformation T from R n to R n is called orthogonal if it preserves
More information2. Norm, distance, angle
L. Vandenberghe EE133A (Spring 2016) 2. Norm, distance, angle norm distance angle hyperplanes complex vectors 21 Euclidean norm (Euclidean) norm of vector a R n : a = a 2 1 + a2 2 + + a2 n = a T a if
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More information13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.
3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in threespace, we write a vector in terms
More informationMATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all ndimensional column
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationOctober 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix
Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,
More information2D Geometric Transformations. COMP 770 Fall 2011
2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrixvector multiplication Matrixmatrix multiplication
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More informationLecture 1: Schur s Unitary Triangularization Theorem
Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections
More informationLinear Least Squares
Linear Least Squares Suppose we are given a set of data points {(x i,f i )}, i = 1,...,n. These could be measurements from an experiment or obtained simply by evaluating a function at some points. One
More informationMath 215 HW #6 Solutions
Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T
More informationNUMERICALLY EFFICIENT METHODS FOR SOLVING LEAST SQUARES PROBLEMS
NUMERICALLY EFFICIENT METHODS FOR SOLVING LEAST SQUARES PROBLEMS DO Q LEE Abstract. Computing the solution to Least Squares Problems is of great importance in a wide range of fields ranging from numerical
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationMAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationNumerical Methods I Eigenvalue Problems
Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationMATH 240 Fall, Chapter 1: Linear Equations and Matrices
MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS
More informationWe call this set an ndimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.
Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to
More informationDiagonal, Symmetric and Triangular Matrices
Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by
More informationMATH 551  APPLIED MATRIX THEORY
MATH 55  APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points
More informationISOMETRIES OF R n KEITH CONRAD
ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x
More informationWHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE?
WHICH LINEARFRACTIONAL TRANSFORMATIONS INDUCE ROTATIONS OF THE SPHERE? JOEL H. SHAPIRO Abstract. These notes supplement the discussion of linear fractional mappings presented in a beginning graduate course
More informationINTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL
SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics
More informationLinear Algebra Notes
Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note
More informationLinear Algebra: Vectors
A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector
More informationA matrix over a field F is a rectangular array of elements from F. The symbol
Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F) denotes the collection of all m n matrices over F Matrices will usually be denoted
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More informationB such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix
Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.
More informationMATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.
MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α
More informationInner products on R n, and more
Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +
More information0.1 Linear Transformations
.1 Linear Transformations A function is a rule that assigns a value from a set B for each element in a set A. Notation: f : A B If the value b B is assigned to value a A, then write f(a) = b, b is called
More informationx1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationMATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.
MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted
More informationLecture 14: Section 3.3
Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in
More informationAdvanced Techniques for Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz
Advanced Techniques for Mobile Robotics Compact Course on Linear Algebra Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Vectors Arrays of numbers Vectors represent a point in a n dimensional
More information1 VECTOR SPACES AND SUBSPACES
1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such
More information1.5 Elementary Matrices and a Method for Finding the Inverse
.5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:
More informationUsing determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:
Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible
More informationLecture 23: The Inverse of a Matrix
Lecture 23: The Inverse of a Matrix Winfried Just, Ohio University March 9, 2016 The definition of the matrix inverse Let A be an n n square matrix. The inverse of A is an n n matrix A 1 such that A 1
More informationgeometric transforms
geometric transforms 1 linear algebra review 2 matrices matrix and vector notation use column for vectors m 11 =[ ] M = [ m ij ] m 21 m 12 m 22 =[ ] v v 1 v = [ ] T v 1 v 2 2 3 matrix operations addition
More informationReview Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 03 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
More informationVector algebra Christian Miller CS Fall 2011
Vector algebra Christian Miller CS 354  Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority
More informationQuestion 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
More informationMATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationElectrical Engineering 103 Applied Numerical Computing
UCLA Fall Quarter 201112 Electrical Engineering 103 Applied Numerical Computing Professor L Vandenberghe Notes written in collaboration with S Boyd (Stanford Univ) Contents I Matrix theory 1 1 Vectors
More informationThe Inverse of a Matrix
The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square
More informationDefinition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that
0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c
More informationMatrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo
Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationMatrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.
2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Theorem 8: Let A be a square matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true
More informationLecture 21: The Inverse of a Matrix
Lecture 21: The Inverse of a Matrix Winfried Just, Ohio University October 16, 2015 Review: Our chemical reaction system Recall our chemical reaction system A + 2B 2C A + B D A + 2C 2D B + D 2C If we write
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationMatrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,
LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x
More informationCofactor Expansion: Cramer s Rule
Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating
More information2.1: MATRIX OPERATIONS
.: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and
More informationMath 312 Homework 1 Solutions
Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please
More informationElementary Linear Algebra
Elementary Linear Algebra Kuttler January, Saylor URL: http://wwwsaylororg/courses/ma/ Saylor URL: http://wwwsaylororg/courses/ma/ Contents Some Prerequisite Topics Sets And Set Notation Functions Graphs
More informationPhysics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
More informationLinear Algebra Test 2 Review by JC McNamara
Linear Algebra Test 2 Review by JC McNamara 2.3 Properties of determinants: det(a T ) = det(a) det(ka) = k n det(a) det(a + B) det(a) + det(b) (In some cases this is true but not always) A is invertible
More informationAlgebraic and Combinatorial Circuits
C H A P T E R Algebraic and Combinatorial Circuits Algebraic circuits combine operations drawn from an algebraic system. In this chapter we develop algebraic and combinatorial circuits for a variety of
More informationDETERMINANTS. b 2. x 2
DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in
More informationThe MoorePenrose Inverse and Least Squares
University of Puget Sound MATH 420: Advanced Topics in Linear Algebra The MoorePenrose Inverse and Least Squares April 16, 2014 Creative Commons License c 2014 Permission is granted to others to copy,
More informationLinear Transformations
a Calculus III Summer 2013, Session II Tuesday, July 23, 2013 Agenda a 1. Linear transformations 2. 3. a linear transformation linear transformations a In the m n linear system Ax = 0, Motivation we can
More informationSTUDY GUIDE LINEAR ALGEBRA. David C. Lay University of Maryland College Park AND ITS APPLICATIONS THIRD EDITION UPDATE
STUDY GUIDE LINEAR ALGEBRA AND ITS APPLICATIONS THIRD EDITION UPDATE David C. Lay University of Maryland College Park Copyright 2006 Pearson AddisonWesley. All rights reserved. Reproduced by Pearson AddisonWesley
More informationLecture 5  Triangular Factorizations & Operation Counts
LU Factorization Lecture 5  Triangular Factorizations & Operation Counts We have seen that the process of GE essentially factors a matrix A into LU Now we want to see how this factorization allows us
More informationWe seek a factorization of a square matrix A into the product of two matrices which yields an
LU Decompositions We seek a factorization of a square matrix A into the product of two matrices which yields an efficient method for solving the system where A is the coefficient matrix, x is our variable
More informationLecture 6. Inverse of Matrix
Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that
More information