2D Geometrical Transformations. Foley & Van Dam, Chapter 5
|
|
|
- Brian Morton
- 9 years ago
- Views:
Transcription
1 2D Geometrical Transformations Fole & Van Dam, Chapter 5
2 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates
3 2D Geometrical Transformations Assumption: Objects consist of points and lines. A point is represented b its Cartesian coordinates: P (, ) Geometrical Transformation: Let (A, B) be a straight line segment between the points A and B. Let T be a general 2D transformation. T transforms (A, B) into another straight line segment (A, B ), where: A TA and B TB
4 Translation Translate(a, b): (, ) (+a, +b) Translate(2, 4)
5 Scale Scale (a, b): (, ) (a, b) Scale (2, 3) Scale (2, 3)
6 Scale How can we scale an object without moving its origin (lower left corner)? Translate(-,-) Translate(,) Scale(2,3)
7 Reflection Special case of scale Scale(-,) Scale(,-)
8 Rotation Rotate(): (, ) ( cos()+ sin(), - sin()+ cos()) Rotate(9) Rotate(9)
9 Rotation How can we rotate an object without moving its origin (lower left corner)? Translate(-,-) Translate(,) Rotate(9)
10 Shear Shear (a, b): (, ) (+a, +b) Shear(,) Shear(,2)
11 Classes of Transformations Rigid transformation (distance preserving): Translation + Rotation Similarit transformation (angle preserving): Translation + Rotation + Uniform Scale Affine transformation (parallelism preserving): Translation + Rotation + Scale + Shear All above transformations are groups where Rigid Similarit Affine Affine Similarit Rigid
12 Matri Notation Let s treat a point (, ) as a 2 matri (column vector): What happens when this vector is multiplied b a 22 matri? a c b d a c + + b d
13 2D Transformations 2D object is represented b points and lines that join them Transformations can be applied onl to the the points defining the lines A point (, ) is represented b a 2 column vector, so we can represent 2D transformations b using 22 matrices: ' ' a c b d
14 Scale Scale (a, b): (, ) (a, b) a b a b If a or b are negative, we get reflection Inverse: S - (a,b) S(/a, /b)
15 Reflection Reflection through the ais: Reflection through the ais: Reflection through : Reflection through -:
16 Shear Shear (a, b): (, ) (+a, +b) b a + + a b
17 Rotation Rotate(): (, ) ( cos()+ sin(), - sin()+ cos()) cos sin sin cos cos + sin + sin cos Inverse: R - (q) R T (q) R(-q)
18 Composition of Transformations A sequence of transformations can be collapsed into a single matri: A B C D [ ][ ][ ] [ ] Note: Order of transformations is important! translate rotate rotate translate
19 Translation (a, b): Translation Problem: Cannot represent translation using 22 matrices Solution: Homogeneous Coordinates + a + b
20 Homogeneous Coordinates Is a mapping from R n to R n+ : (, ) ( X, Y, W ) ( t, t, t ) Note: All triples (t, t, t) correspond to the same non-homogeneous point (, ) Eample (2, 3, ) (6, 9, 3). Inverse mapping: X ( X, Y, W ), W Y W
21 Translation Translate(a, b): Inverse: T - (a, b) T(-a, -b) Affine transformations now have the following form: + + b a b a f d c e b a
22 Geometric Interpretation A 2D point is mapped to a line (ra) in 3D The non-homogeneous points are obtained b projecting the ras onto the plane Z W (X,Y,) Y (X,Y,W) X
23 Eample Rotation about an arbitrar point. Translate the coordinates so that the origin is at (, ) 2. Rotate b 3. Translate back (, ) + sin ) cos ( cos sin sin ) cos ( sin cos cos sin sin cos
24 Eample Reflection about an arbitrar line p 2 L p + t (p 2 -p ) t p 2 + (-t) p p. Translate the coordinates so that P is at the origin 2. Rotate so that L aligns with the -ais 3. Reflect about the -ais 4. Rotate back 5. Translate back
25 Change of Coordinates It is often required to transform the description of an object from one coordinate sstem to another Rule: Transform one coordinate frame towards the other in the opposite direction of the representation change Representation Transformation
26 Eample Change of coordinates: Represent P ( p, p, ) in the (, ) coordinate sstem P ' MP Where: M cos sin sin cos ( p, p ) (, )
27 Eample Change of coordinates: Alternative method: assume (u, u) and (v, v) in the (, ) coordinate sstem where MP P ' v v u u M (, ) (u, u ) (v, v )
28 Eample Reflection about an arbitrar line Define a coordinate sstems (u, v) parallel to P P 2 : p p 2 L p + t (p 2 -p ) t p 2 + (-t) p u u p p p p 2 2 u v v u u v p p v v u u v u v u p p M
29 3D Viewing Transformation Pipeline Viewing coordinates World Coordinates Object in World 3D:2D mapping 2D:2D mapping Viewport Device Coordinates
30 World to Viewing Coordinates In order to define the viewing window we have to specif: Windowing-coordinate origin P (, ) View vector up v (v,v ) Using v, we can find u: u v (,,) Transformation from world to viewing coordinates : M world wc vc view (, ) u v view u v (v,v ). world (u,u ).
31 Window to Viewport Coordinates ( ma, ma ) ( min, min ) Window is Viewing Coordinates Window translated to origin (u man,v man ) (u min,v min ) Window scaled and translated to Viewport location in device coordinates Window scaled to Normalized Viewport size M vc dc u v min min u ma u min v ma v min ma min ma min min min Normalized Device Coordinates
32 Efficienc Considerations A 2D point transformation requires 9 multiplies and 6 adds a b c a + b + cz d e f d e fz + + g h i z g + h + iz But since affine transformations have alwas the form: a b c a + b + c d e f d e f + + The number of operations can be reduced to 4 multiplies and 4 adds
33 Efficienc Considerations The rotation matri is: cos sin sin cos cos + sin + sin cos When rotating of small angles, we can use the fact that cos() and simplif sin + sin sin sin +
34 Determinant of a Matri a b ad c d bc a b c d e f aei + bfg + cdh ceg afh bdi g h i e f d f d e a b + c h i g i g h If P is a polgon of area A P, transformed b a matri M, the area of the transformed polgon is A P M
2D Geometric Transformations
2D Geometric Transformations (Chapter 5 in FVD) 2D Geometric Transformations Question: How do we represent a geometric object in the plane? Answer: For now, assume that objects consist of points and lines.
Complex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
Connecting Transformational Geometry and Transformations of Functions
Connecting Transformational Geometr and Transformations of Functions Introductor Statements and Assumptions Isometries are rigid transformations that preserve distance and angles and therefore shapes.
w = COI EYE view direction vector u = w ( 010,, ) cross product with y-axis v = w u up vector
. w COI EYE view direction vector u w ( 00,, ) cross product with -ais v w u up vector (EQ ) Computer Animation: Algorithms and Techniques 29 up vector view vector observer center of interest 30 Computer
Affine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
CS 4204 Computer Graphics
CS 4204 Computer Graphics 2D and 3D Transformations Doug Bowman Adapted from notes by Yong Cao Virginia Tech 1 Transformations What are they? changing something to something else via rules mathematics:
Math, Trigonometry and Vectors. Geometry. Trig Definitions. sin(θ) = opp hyp. cos(θ) = adj hyp. tan(θ) = opp adj. Here's a familiar image.
Math, Trigonometr and Vectors Geometr Trig Definitions Here's a familiar image. To make predictive models of the phsical world, we'll need to make visualizations, which we can then turn into analtical
Realtime 3D Computer Graphics Virtual Reality
Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device
B4 Computational Geometry
3CG 2006 / B4 Computational Geometry David Murray [email protected] www.robots.o.ac.uk/ dwm/courses/3cg Michaelmas 2006 3CG 2006 2 / Overview Computational geometry is concerned with the derivation
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes:
3 3.1 2D Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several purposes: 1. Change coordinate frames (world, window, viewport, device, etc). 2. Compose objects
sin(θ) = opp hyp cos(θ) = adj hyp tan(θ) = opp adj
Math, Trigonometr and Vectors Geometr 33º What is the angle equal to? a) α = 7 b) α = 57 c) α = 33 d) α = 90 e) α cannot be determined α Trig Definitions Here's a familiar image. To make predictive models
Advanced Computer Graphics (2IV40) ~ 3D Transformations. Types (geometric) Types (algebraic) 3D Transformations. y + c 1. x = a 1.
Advanced Computer Graphics (2IV40) ~ 3D Transformations Kees Huiing Huub van de Wetering Winter 2005/6 Tpes (geometric) maintain distances & orientation (LH/RH): rigid bod transforms (rotations, translations)
SECTION 7-4 Algebraic Vectors
7-4 lgebraic Vectors 531 SECTIN 7-4 lgebraic Vectors From Geometric Vectors to lgebraic Vectors Vector ddition and Scalar Multiplication Unit Vectors lgebraic Properties Static Equilibrium Geometric vectors
A vector is a directed line segment used to represent a vector quantity.
Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector
Addition and Subtraction of Vectors
ddition and Subtraction of Vectors 1 ppendi ddition and Subtraction of Vectors In this appendi the basic elements of vector algebra are eplored. Vectors are treated as geometric entities represented b
x y The matrix form, the vector form, and the augmented matrix form, respectively, for the system of equations are
Solving Sstems of Linear Equations in Matri Form with rref Learning Goals Determine the solution of a sstem of equations from the augmented matri Determine the reduced row echelon form of the augmented
4BA6 - Topic 4 Dr. Steven Collins. Chap. 5 3D Viewing and Projections
4BA6 - Topic 4 Dr. Steven Collins Chap. 5 3D Viewing and Projections References Computer graphics: principles & practice, Fole, vandam, Feiner, Hughes, S-LEN 5.644 M23*;-6 (has a good appendix on linear
Section 1.4. Lines, Planes, and Hyperplanes. The Calculus of Functions of Several Variables
The Calculus of Functions of Several Variables Section 1.4 Lines, Planes, Hyperplanes In this section we will add to our basic geometric understing of R n by studying lines planes. If we do this carefully,
Figure 1.1 Vector A and Vector F
CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have
Geometric Camera Parameters
Geometric Camera Parameters What assumptions have we made so far? -All equations we have derived for far are written in the camera reference frames. -These equations are valid only when: () all distances
Teacher Page. 1. Reflect a figure with vertices across the x-axis. Find the coordinates of the new image.
Teacher Page Geometr / Da # 10 oordinate Geometr (5 min.) 9-.G.3.1 9-.G.3.2 9-.G.3.3 9-.G.3. Use rigid motions (compositions of reflections, translations and rotations) to determine whether two geometric
Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
Essential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
TWO-DIMENSIONAL TRANSFORMATION
CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization
Lines and Planes 1. x(t) = at + b y(t) = ct + d
1 Lines in the Plane Lines and Planes 1 Ever line of points L in R 2 can be epressed as the solution set for an equation of the form A + B = C. The equation is not unique for if we multipl both sides b
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
Lecture 3: Coordinate Systems and Transformations
Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an
Equations Involving Lines and Planes Standard equations for lines in space
Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity
Section 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
JUST THE MATHS UNIT NUMBER 8.5. VECTORS 5 (Vector equations of straight lines) A.J.Hobson
JUST THE MATHS UNIT NUMBER 8.5 VECTORS 5 (Vector equations of straight lines) by A.J.Hobson 8.5.1 Introduction 8.5. The straight line passing through a given point and parallel to a given vector 8.5.3
Geometry for Computer Graphics
Computer Graphics and Visualisation Geometry for Computer Graphics Student Notes Developed by F Lin K Wyrwas J Irwin C Lilley W T Hewitt T L J Howard Computer Graphics Unit Manchester Computing Centre
Computer Graphics Labs
Computer Graphics Labs Abel J. P. Gomes LAB. 2 Department of Computer Science and Engineering University of Beira Interior Portugal 2011 Copyright 2009-2011 All rights reserved. LAB. 2 1. Learning goals
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain
Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal
MAT188H1S Lec0101 Burbulla
Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u
Geometric Transformations
Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted
Identifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
Orthogonal Projections
Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors
Section 9.5: Equations of Lines and Planes
Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that
THREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
Exponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
Rotation Matrices and Homogeneous Transformations
Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n
COMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
9 MATRICES AND TRANSFORMATIONS
9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the
Geometric description of the cross product of the vectors u and v. The cross product of two vectors is a vector! u x v is perpendicular to u and v
12.4 Cross Product Geometric description of the cross product of the vectors u and v The cross product of two vectors is a vector! u x v is perpendicular to u and v The length of u x v is uv u v sin The
Lecture L3 - Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between
Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.
1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called
SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT
. Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
THEORETICAL MECHANICS
PROF. DR. ING. VASILE SZOLGA THEORETICAL MECHANICS LECTURE NOTES AND SAMPLE PROBLEMS PART ONE STATICS OF THE PARTICLE, OF THE RIGID BODY AND OF THE SYSTEMS OF BODIES KINEMATICS OF THE PARTICLE 2010 0 Contents
Linear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A 0, where A
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
Introduction to Matrices for Engineers
Introduction to Matrices for Engineers C.T.J. Dodson, School of Mathematics, Manchester Universit 1 What is a Matrix? A matrix is a rectangular arra of elements, usuall numbers, e.g. 1 0-8 4 0-1 1 0 11
Section 7.2 Linear Programming: The Graphical Method
Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function
GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook
Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a
3D Tranformations. CS 4620 Lecture 6. Cornell CS4620 Fall 2013 Lecture 6. 2013 Steve Marschner (with previous instructors James/Bala)
3D Tranformations CS 4620 Lecture 6 1 Translation 2 Translation 2 Translation 2 Translation 2 Scaling 3 Scaling 3 Scaling 3 Scaling 3 Rotation about z axis 4 Rotation about z axis 4 Rotation about x axis
LINEAR FUNCTIONS OF 2 VARIABLES
CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for
Solving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
Vectors Math 122 Calculus III D Joyce, Fall 2012
Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be
FURTHER VECTORS (MEI)
Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics
What's the Spin? - Discover Properties of Geometric Rotations
What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations
Chapter 8. Lines and Planes. By the end of this chapter, you will
Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes
Structural Axial, Shear and Bending Moments
Structural Axial, Shear and Bending Moments Positive Internal Forces Acting Recall from mechanics of materials that the internal forces P (generic axial), V (shear) and M (moment) represent resultants
α = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
1.5 SOLUTION SETS OF LINEAR SYSTEMS
1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as
CS 4204 Computer Graphics
CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
LINES AND PLANES CHRIS JOHNSON
LINES AND PLANES CHRIS JOHNSON Abstract. In this lecture we derive the equations for lines and planes living in 3-space, as well as define the angle between two non-parallel planes, and determine the distance
521493S Computer Graphics. Exercise 2 & course schedule change
521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
226-332 Basic CAD/CAM. CHAPTER 5: Geometric Transformation
226-332 Basic CAD/CAM CHAPTER 5: Geometric Transformation 1 Geometric transformation is a change in geometric characteristics such as position, orientation, and size of a geometric entity (point, line,
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
Geometric Transformations
Geometric Transformations Moving objects relative to a stationary coordinate system Common transformations: Translation Rotation Scaling Implemented using vectors and matrices Quick Review of Matrix Algebra
Graphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations
Mechanics lecture 7 Moment of a force, torque, equilibrium of a body
G.1 EE1.el3 (EEE1023): Electronics III Mechanics lecture 7 Moment of a force, torque, equilibrium of a body Dr Philip Jackson http://www.ee.surrey.ac.uk/teaching/courses/ee1.el3/ G.2 Moments, torque and
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Section 1.1. Introduction to R n
The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to
The Essentials of CAGD
The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentials-cagd c 2000 Farin & Hansford
Geometric Transformation CS 211A
Geometric Transformation CS 211A What is transformation? Moving points (x,y) moves to (x+t, y+t) Can be in any dimension 2D Image warps 3D 3D Graphics and Vision Can also be considered as a movement to
Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.
Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
Math 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
Mathematics Notes for Class 12 chapter 10. Vector Algebra
1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative
Unified Lecture # 4 Vectors
Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,
Introduction to polarization of light
Chapter 2 Introduction to polarization of light This Chapter treats the polarization of electromagnetic waves. In Section 2.1 the concept of light polarization is discussed and its Jones formalism is presented.
Projective Geometry. Projective Geometry
Euclidean versus Euclidean geometry describes sapes as tey are Properties of objects tat are uncanged by rigid motions» Lengts» Angles» Parallelism Projective geometry describes objects as tey appear Lengts,
discuss how to describe points, lines and planes in 3 space.
Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
3D Stress Components. From equilibrium principles: τ xy = τ yx, τ xz = τ zx, τ zy = τ yz. Normal Stresses. Shear Stresses
3D Stress Components From equilibrium principles:, z z, z z The most general state of stress at a point ma be represented b 6 components Normal Stresses Shear Stresses Normal stress () : the subscript
x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.
Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability
Transformations in the pipeline
Transformations in the pipeline gltranslatef() Modeling transformation ModelView Matrix OCS WCS glulookat() VCS CCS Viewing transformation Projection transformation DCS Viewport transformation (e.g. pixels)
REVIEW OF ANALYTIC GEOMETRY
REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.
A Correlation of Pearson Texas Geometry Digital, 2015
A Correlation of Pearson Texas Geometry Digital, 2015 To the Texas Essential Knowledge and Skills (TEKS) for Geometry, High School, and the Texas English Language Proficiency Standards (ELPS) Correlations
