# Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Save this PDF as:

Size: px
Start display at page:

Download "Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi"

## Transcription

1 Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the geometry of cross product and triple product. All these concepts are often introduced algebraically in textbooks, but understanding their geometry is particularly useful for computer vision. 1 Cartesian Coordinates The law of cosines 1 states that if a, b, c are the sides of a triangle and the angle between a and b is θ, then c 2 = a 2 + b 2 2ab cos θ. The special case for θ = π/2 radians is known as Pythagoras theorem. The definitions that follow focus on three-dimensional space. Two-dimensional geometry can be derived as a special case when the third coordinate of every point is set to zero. A Cartesian reference system for three-dimensional space is a point in space called the origin and three mutually perpendicular, directed lines though the origin called the axes. The order in which the axes are listed is fixed, and is part of the definition of the reference system. The plane that contains the second and third axis is the first reference plane. The plane that contains the third and firs axis is the second reference plane. The plane that contains the first and second axis is the third reference plane. It is customary to mark the axis directions by specifying a point on each axis and at unit distance from the origin. These points are called the unit points of the system, and the positive direction of an axis is from the origin towards the axis unit point. A Cartesian reference system is right-handed if the smallest rotation that brings the first unit point to the second is counterclockwise when viewed from the third unit point. The system is left-handed otherwise. The Cartesian coordinates of a point in three-dimensional space are the signed distances of the point from the first, second, and third reference plane, in this order, and collected into a vector. The sign for coordinate i is positive if the point is in the half-space (delimited by the i-th reference plane) that contains the positive half of the i-th reference axis. It follows that the Cartesian coordinates of the origin are o = (0, 0, 0), those of the unit points are the vectors e 1 = (1, 0, 0), e 2 = (0, 1, 0), and e 3 = (0, 0, 1), and the vector p = (x, y, z) of coordinates of an arbitrary point in space can also be written as follows: p = xe 1 + ye 2 + ze 3. The point p can be reached from the origin by the following polygonal path: o, xe 1, xe 1 + ye 2, p. 1 A proof of this law based on trigonometry is straightforward but tedious, and a useful exercise. 1

2 2 2 INNER PRODUCT AND ORTHOGONALITY Each segment of the path is followed by a right-angle turn, so Pythagoras theorem can be applied twice to yield the distance of p from the origin: From the definition of norm of a vector we see that d(o, p) = x 2 + y 2 + z 2. d(o, p) = p. So the norm of the vector of coordinates of a point is the distance of the point from the origin. A vector is often drawn as an arrow pointing from the origin to the point whose coordinates are the components of the vector. Then, the result above shows that the length of that arrow is the norm of the vector. Because of this, the words length and norm are often used interchangeably. 2 Inner Product and Orthogonality The law of cosines yields a geometric interpretation of the inner product of two vectors a and b: a T b = a b cos θ (1) where θ is the acute angle between the two arrows that represent a and b geometrically. So the inner product of two vectors is the product of the lengths of the two arrows that represent them and of the cosine of the angle between them. To prove this result, consider a triangle with sides a = a, b = b, c = b a and with an angle θ between a and b. Then the law of cosines yields From the definition of norm we then obtain b a 2 = a 2 + b 2 2 a b cos θ. a 2 + b 2 2a T b = a 2 + b 2 2 a b cos θ. Canceling equal terms and dividing by 2 yields the desired result. Setting θ = π/2 in the result above yields another important corollary: The arrows that represent two vectors a and b are mutually perpendicular if an only if the two vectors are orthogonal: a T b = 0. Because of this result, the words perpendicular and orthogonal are often used interchangeably.

3 3 3 Vector Projection Given two vectors a and b, the projection 2 of a onto b is the vector p that represents the point p on the line through b that is nearest to the endpoint of a. See figure 1. a b p Figure 1: The vector from the origin to point p is the projection of a onto b. The line from the endpoint of a to p is orthogonal to b. The projection of a onto b is the vector p = P b a where P b is the following square, symmetric matrix: The magnitude of the projection is P b = bbt b T b. p = bt a b. (2) To prove this, observe that since by definition point p is on the line through b, the projection vector p has the form p = xb, where x is some real number. From elementary geometry, the line between p and the endpoint of a is shortest when it is perpendicular to b: which yields so that b T (a xb) = 0 x = bt a b T b p = xb = b x = bbt b T b a 2 The term vector projection may be used to avoid confusion with the very different notion of camera projection.

4 4 4 CROSS PRODUCT AND TRIPLE PRODUCT as advertised. The magnitude of p can be computed as follows. First, observe that so that the projection matrix P b is idempotent: Pb 2 = bbt bb T b T b b T b = bbt bb T (b T b) 2 = bbt b T b = P b P 2 b = P b. This means that applying the matrix once or multiple times has the same effect. Then, p 2 = p T p = a T Pb T P ba = a T P b P b a = a T P b a = a T bbt b T b a = (bt a) 2 b T b which yields equation (2). The scalar projection is defined as b T a b and is positive if and only if the angle between a and b has a magnitude smaller than π/2. From the definition of projection we also see the following fact. The coordinates of a point in space are the projections of the vector of coordinates of the point onto the three unit vectors that define the coordinate axes. This result is trivial in the basic Cartesian reference frame with unit points e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1). If p = (x, y, z), then obviously e 1 p = x, e 2 p = y, e 3 p = z. The result becomes less trivial in Cartesian reference systems where the axes have different orientations, as we will see soon. 4 Cross Product and Triple Product The cross product of two 3-dimensional vectors a = (a 1, a 2, a 3 ) and b = (b 1, b 2, b 3 ) is the 3-dimensional vector c = a b = (a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1 ). The cross product c of a and b is orthogonal to both a and b: c T a = (a 2 b 3 a 3 b 2 )a 1 + (a 3 b 1 a 1 b 3 )a 2 + (a 1 b 2 a 2 b 1 )a 3 = 0 c T b = (a 2 b 3 a 3 b 2 )b 1 + (a 3 b 1 a 1 b 3 )b 2 + (a 1 b 2 a 2 b 1 )b 3 = 0 (check that all terms do indeed cancel). The vector c is oriented so that the triple a, b, c is right-handed. This fact is not proven here. If θ is the acute angle between a and b, then (a T b) 2 + a b 2 = a 2 b 2

5 5 as can be shown by straightforward manipulation: (a T b) 2 = (a 1 b 1 + a 2 b 2 + a 3 b 3 ) (a 1 b 1 + a 2 b 2 + a 3 b 3 ) = a 2 1b a 1 b 1 a 2 b 2 + a 1 b 1 a 3 b 3 +a 2 2b a 1 b 1 a 2 b 2 + a 2 b 2 a 3 b 3 +a 2 3b a 1 b 1 a 3 b 3 + a 2 b 2 a 3 b 3 = a 2 1b a 2 2b a 2 3b a 1 b 1 a 2 b 2 + 2a 2 b 2 a 3 b 3 + 2a 1 b 1 a 3 b 3 and a b 2 = (a 2 b 3 a 3 b 2 ) 2 + (a 3 b 1 a 1 b 3 ) 2 + (a 1 b 2 a 2 b 1 ) 2 = a 2 2b a 2 3b 2 2 2a 2 b 2 a 3 b 3 +a 2 1b a 2 3b 2 1 2a 1 b 1 a 3 b 3 +a 2 1b a 2 2b 2 1 2a 1 b 1 a 2 b 2 = a 2 1b a 2 2b a 2 2b a 2 3b a 2 1b a 2 3b 2 1 2a 1 b 1 a 2 b 2 2a 2 b 3 a 2 b 2 2a 1 b 1 a 3 b 3 so that but also so that (a T b) 2 + a b 2 = a 2 1b a 2 1b a 2 1b a 2 2b a 2 2b a 2 2b a 2 3b a 2 3b a 2 3b 2 3 a 2 b 2 = a 2 1b a 2 1b a 2 1b a 2 2b a 2 2b a 2 2b a 2 3b a 2 3b a 2 3b 2 3 (a T b) 2 + a b 2 = a 2 b 2 (3) as desired. The following geometric interpretation of the cross product then follows: The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both a and b, oriented so that the triple a, b, c is right-handed, and with magnitude where θ is the acute angle between a and b. c = a b = a b sin θ (4) The orthogonality of c to both a and b and right-handedness of a, b, c has already been shown. The result on the magnitude is a consequence of equation (3). From this equation we obtain or a b 2 = a 2 b 2 (a T b) 2 = a 2 b 2 a 2 b 2 cos 2 θ = a 2 b 2 sin 2 θ a b = ± a b sin θ. Since the angle θ is acute (from equation (1)), all quantities in the last equation are nonnegative, so that the sign yields an impossible equation. This results in equation (4).

6 6 4 CROSS PRODUCT AND TRIPLE PRODUCT From its expression, we see that the magnitude of a b is the area of a rectangle with sides a and b. Suppose that we need to compute cross products of the form a p where a is a fixed vector but p changes. It is then convenient to write the cross product as the product of a matrix a that depends on a and of p. Spelling out the definition of the cross product yields the following anti-symmetric matrix: a = 0 a 3 a 2 a 3 0 a 1 a 2 a 1 0 The triple product of three-dimensional vectors a, b, c is defined as follows: It is immediate to verify that a T (b c) = a 1 (b 2 c 3 b 3 c 2 ) + a 2 (b 1 c 3 b 3 c 1 ) + a 3 (b 1 c 2 b 2 c 1 ). a T (b c) = b T (c a) = c T (a b) = a T (c b) = c T (b a) = b T (a c). Again, from its expression, we see that the triple product of vectors a, b, c is the volume of a parallelepiped with edges a, b, c: the cross product p = b c is a vector orthogonal to the plane of b and c, and with magnitude equal to the base of the parallelepiped. The inner product of p and a is the magnitude of p times that of a times the cosine of the angle between them, that is, the base area of the parallelepiped times its height. This gives the volume of the solid. See Figure 2.. a θ c b Figure 2: The triple product of the vectors a, b, c is the volume of the parallelepiped with edges a, b, c.

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### 28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. v x. u y v z u z v y u y u z. v y v z

28 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.4 Cross Product 1.4.1 Definitions The cross product is the second multiplication operation between vectors we will study. The goal behind the definition

### MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

### Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product

Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.

### Dot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product

Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### 5.3 The Cross Product in R 3

53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

### One advantage of this algebraic approach is that we can write down

. Vectors and the dot product A vector v in R 3 is an arrow. It has a direction and a length (aka the magnitude), but the position is not important. Given a coordinate axis, where the x-axis points out

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Lecture L3 - Vectors, Matrices and Coordinate Transformations

S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

### 11.1. Objectives. Component Form of a Vector. Component Form of a Vector. Component Form of a Vector. Vectors and the Geometry of Space

11 Vectors and the Geometry of Space 11.1 Vectors in the Plane Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. 2 Objectives! Write the component form of

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Matrix Algebra LECTURE 1. Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 = a 11 x 1 + a 12 x 2 + +a 1n x n,

LECTURE 1 Matrix Algebra Simultaneous Equations Consider a system of m linear equations in n unknowns: y 1 a 11 x 1 + a 12 x 2 + +a 1n x n, (1) y 2 a 21 x 1 + a 22 x 2 + +a 2n x n, y m a m1 x 1 +a m2 x

### Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

### v w is orthogonal to both v and w. the three vectors v, w and v w form a right-handed set of vectors.

3. Cross product Definition 3.1. Let v and w be two vectors in R 3. The cross product of v and w, denoted v w, is the vector defined as follows: the length of v w is the area of the parallelogram with

### Lecture 14: Section 3.3

Lecture 14: Section 3.3 Shuanglin Shao October 23, 2013 Definition. Two nonzero vectors u and v in R n are said to be orthogonal (or perpendicular) if u v = 0. We will also agree that the zero vector in

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### Determinants, Areas and Volumes

Determinants, Areas and Volumes Theodore Voronov Part 2 Areas and Volumes The area of a two-dimensional object such as a region of the plane and the volume of a three-dimensional object such as a solid

### 6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

### discuss how to describe points, lines and planes in 3 space.

Chapter 2 3 Space: lines and planes In this chapter we discuss how to describe points, lines and planes in 3 space. introduce the language of vectors. discuss various matters concerning the relative position

### Vector Algebra II: Scalar and Vector Products

Chapter 2 Vector Algebra II: Scalar and Vector Products We saw in the previous chapter how vector quantities may be added and subtracted. In this chapter we consider the products of vectors and define

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### Math 215 HW #6 Solutions

Math 5 HW #6 Solutions Problem 34 Show that x y is orthogonal to x + y if and only if x = y Proof First, suppose x y is orthogonal to x + y Then since x, y = y, x In other words, = x y, x + y = (x y) T

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### Vector Representation of Rotations

Vector Representation of Rotations Carlo Tomasi The vector representation of rotation introduced below is based on Euler s theorem, and has three parameters. The conversion from a rotation vector to a

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

### 9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

### Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

### Vector Algebra CHAPTER 13. Ü13.1. Basic Concepts

CHAPTER 13 ector Algebra Ü13.1. Basic Concepts A vector in the plane or in space is an arrow: it is determined by its length, denoted and its direction. Two arrows represent the same vector if they have

### Geometry - Chapter 2 Review

Name: Class: Date: Geometry - Chapter 2 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine if the conjecture is valid by the Law of Syllogism.

### A vector is a directed line segment used to represent a vector quantity.

Chapters and 6 Introduction to Vectors A vector quantity has direction and magnitude. There are many examples of vector quantities in the natural world, such as force, velocity, and acceleration. A vector

### MATH 304 Linear Algebra Lecture 24: Scalar product.

MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent

### 1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

### The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

### ELEMENTS OF VECTOR ALGEBRA

ELEMENTS OF VECTOR ALGEBRA A.1. VECTORS AND SCALAR QUANTITIES We have now proposed sets of basic dimensions and secondary dimensions to describe certain aspects of nature, but more than just dimensions

### Recall that two vectors in are perpendicular or orthogonal provided that their dot

Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Announcements. 2-D Vector Addition

Announcements 2-D Vector Addition Today s Objectives Understand the difference between scalars and vectors Resolve a 2-D vector into components Perform vector operations Class Activities Applications Scalar

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### 1 Scalars, Vectors and Tensors

DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS PH350 Classical Physics Handout 1 8.8.2009 1 Scalars, Vectors and Tensors In physics, we are interested in obtaining laws (in the form of mathematical

### Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

### Section V.3: Dot Product

Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,

### We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

### GCE Mathematics (6360) Further Pure unit 4 (MFP4) Textbook

Version 36 klm GCE Mathematics (636) Further Pure unit 4 (MFP4) Textbook The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 364473 and a

### Linear Algebra: Vectors

A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

### Solution: 2. Sketch the graph of 2 given the vectors and shown below.

7.4 Vectors, Operations, and the Dot Product Quantities such as area, volume, length, temperature, and speed have magnitude only and can be completely characterized by a single real number with a unit

### LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by author at Imperial College, University of London, between 1981 and 1990. It is available free to all individuals,

### Essential Mathematics for Computer Graphics fast

John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

### Modern Geometry Homework.

Modern Geometry Homework. 1. Rigid motions of the line. Let R be the real numbers. We define the distance between x, y R by where is the usual absolute value. distance between x and y = x y z = { z, z

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### Notice that v v w (4)( 15) ( 3)( 20) (0)(2) ( 2)( 15) (2)( 20) (5)(2)

The Cross Product When discussing the dot product, we showed how two vectors can be combined to get a number. Here, we shall see another way of combining vectors, this time resulting in a vector. This

### Applications of Trigonometry

chapter 6 Tides on a Florida beach follow a periodic pattern modeled by trigonometric functions. Applications of Trigonometry This chapter focuses on applications of the trigonometry that was introduced

### Vectors 2. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Vectors 2 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

### Vector algebra Christian Miller CS Fall 2011

Vector algebra Christian Miller CS 354 - Fall 2011 Vector algebra A system commonly used to describe space Vectors, linear operators, tensors, etc. Used to build classical physics and the vast majority

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### x R 2 x = (x 1, x 2 ) or p = (x, y) R 3

Euclidean space 1 Chapter 1 Euclidean space A. The basic vector space We shall denote by R the field of real numbers. Then we shall use the Cartesian product R n = R R... R of ordered n-tuples of real

### Vectors, Gradient, Divergence and Curl.

Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### Mechanics 1: Vectors

Mechanics 1: Vectors roadly speaking, mechanical systems will be described by a combination of scalar and vector quantities. scalar is just a (real) number. For example, mass or weight is characterized

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations

### Overview Mathematical Practices Congruence

Overview Mathematical Practices Congruence 1. Make sense of problems and persevere in Experiment with transformations in the plane. solving them. Understand congruence in terms of rigid motions. 2. Reason

### Vectors What are Vectors? which measures how far the vector reaches in each direction, i.e. (x, y, z).

1 1. What are Vectors? A vector is a directed line segment. A vector can be described in two ways: Component form Magnitude and Direction which measures how far the vector reaches in each direction, i.e.

### 1 Symmetries of regular polyhedra

1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

### Linear Algebra Test 2 Review by JC McNamara

Linear Algebra Test 2 Review by JC McNamara 2.3 Properties of determinants: det(a T ) = det(a) det(ka) = k n det(a) det(a + B) det(a) + det(b) (In some cases this is true but not always) A is invertible

### The Dot and Cross Products

The Dot and Cross Products Two common operations involving vectors are the dot product and the cross product. Let two vectors =,, and =,, be given. The Dot Product The dot product of and is written and

### Higher Geometry Problems

Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### Section 1.2. Angles and the Dot Product. The Calculus of Functions of Several Variables

The Calculus of Functions of Several Variables Section 1.2 Angles and the Dot Product Suppose x = (x 1, x 2 ) and y = (y 1, y 2 ) are two vectors in R 2, neither of which is the zero vector 0. Let α and

### 13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

### Vector has a magnitude and a direction. Scalar has a magnitude

Vector has a magnitude and a direction Scalar has a magnitude Vector has a magnitude and a direction Scalar has a magnitude a brick on a table Vector has a magnitude and a direction Scalar has a magnitude

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Straight Line motion with rigid sets

Straight ine motion with rigid sets arxiv:40.4743v [math.mg] 9 Jan 04 Robert Connelly and uis Montejano January, 04 Abstract If one is given a rigid triangle in the plane or space, we show that the only

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

### ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

### Theorem 5. The composition of any two symmetries in a point is a translation. More precisely, S B S A = T 2

Isometries. Congruence mappings as isometries. The notion of isometry is a general notion commonly accepted in mathematics. It means a mapping which preserves distances. The word metric is a synonym to

### FURTHER VECTORS (MEI)

Mathematics Revision Guides Further Vectors (MEI) (column notation) Page of MK HOME TUITION Mathematics Revision Guides Level: AS / A Level - MEI OCR MEI: C FURTHER VECTORS (MEI) Version : Date: -9-7 Mathematics

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Introduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test

Introduction The career world is competitive. The competition and the opportunities in the career world become a serious problem for students if they do not do well in Mathematics, because then they are

### Session 6 The Pythagorean Theorem

Session 6 The Pythagorean Theorem Key Terms for This Session Previously Introduced altitude perpendicular bisector right triangle side-angle-side (SAS) congruence New in This Session converse coordinates

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### Conic Sections in Cartesian and Polar Coordinates

Conic Sections in Cartesian and Polar Coordinates The conic sections are a family of curves in the plane which have the property in common that they represent all of the possible intersections of a plane

### Vectors-Algebra and Geometry

Chapter Two Vectors-Algebra and Geometry 21 Vectors A directed line segment in space is a line segment together with a direction Thus the directed line segment from the point P to the point Q is different

### Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.

Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve

### Some Comments on the Derivative of a Vector with applications to angular momentum and curvature. E. L. Lady (October 18, 2000)

Some Comments on the Derivative of a Vector with applications to angular momentum and curvature E. L. Lady (October 18, 2000) Finding the formula in polar coordinates for the angular momentum of a moving

### CARTESIAN VECTORS AND THEIR ADDITION & SUBTRACTION

CARTESIAN VECTORS AND THEIR ADDITION & SUBTRACTION Today s Objectives: Students will be able to: a) Represent a 3-D vector in a Cartesian coordinate system. b) Find the magnitude and coordinate angles

### 3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

### How is a vector rotated?

How is a vector rotated? V. Balakrishnan Department of Physics, Indian Institute of Technology, Madras 600 036 Appeared in Resonance, Vol. 4, No. 10, pp. 61-68 (1999) Introduction In an earlier series

### Geometry. Higher Mathematics Courses 69. Geometry

The fundamental purpose of the course is to formalize and extend students geometric experiences from the middle grades. This course includes standards from the conceptual categories of and Statistics and