Systems of Linear Equations Introduction


 Emmeline Gregory
 11 months ago
 Views:
Transcription
1 Systems of Linear Equations Introduction Linear Equation a x = b Solution: Case a 0, then x = b (one solution) a Case 2 a = 0, b 0, then x (no solutions) Case 3 a = 0, b = 0, then x R (infinitely many solutions, moreover, any x R is a solution) Geometrical Interpretation Solution is the xintercept of the graph of the function y = a x b Case Slope = a 0  one intersection Case 2 Slope = a = 0, b 0  the graph is parallel to x axes  no intersection Case 3 Slope = a = 0, b = 0  the graph coincides with x axes  infinitely many intersections 2 System of Linear Equations 2 Substitution Method a x + y = c a 2 x + y = c 2 Suppose 0, then from the first equation y = c a x Substituting to the second we obtain one variable equation a 2 x + c a x = c 2
2 Assign to a system a x + y = c 22 Elimination Method Multiply the first equation by a 2 a and add to the second a x + y = c a x + y = c a 2 x + y = c 2 (a 2 a 2 a a ) x + ( a 2 a )y = c 2 a 2 a c, a x + y = c ( a 2 a )y = c 2 a 2 a c Thus y = c 2 a 2c a a 2 = a c 2 a 2 c a a a 2 and the back substitution gives 23 Determinant Method x = c c 2 a a 2 three DETERMINANTS = x = c c 2 a 2 x + y = c 2 a a 2 = a a 2, = c c 2, y = a c a 2 c 2 = a c 2 a 2 c 23 Cramer s Rule Case If 0 then x = x, y = y Case 2 If = 0 and either x 0 or y 0 then the system has NO SOLUTIONS Case 3 If = 0 and x = 0, y = 0 then the system has INFINITELY MANY SOLUTIONS Example Try to solve the system x + 0 y = c for various c and c 2 x + 0 y = c 2 2
3 24 Geometrical Interpretation Each equation of the system defines linear function y = a x + c, y = a 2 x + c 2 A solution of the system is the intersection point of their graphs Case These two graphs have different slopes thus they have one intersection point: = a a 2 0 a a 2 a a 2 Case 2 These two graphs have equal slopes but different yintercepts thus they are parallel: but = a a 2 = 0 a = a 2 a = a 2, x = c c 2 0 c c 2 c c 2 Case 3 These two graphs have equal slopes and the same yintercepts thus they coincide: = a a 2 = 0 a = a 2 a = a 2, but x = c c 2 = 0 c = c 2 c = c 2 25 More About the Case 3 In this case the system has infinitely many solution but not all the couples (x, y) form a solution! = a a 2 = 0, means that a = a 2 thus a a 2 = Similarly x = c c 2 = 0 c = c 2 c c 2 = So in this case a a 2 = b2 = c c 2 b2 b2 ie the equations are proportional a x + y = c ka x + k y = kc and any solution of the first equation satisfies the second one The couples (x, y = c a x ) form all the solutions 3
4 3 General form of m linear equations with n variables Three ingredients of the system A = a x + a 2 x a n x n = c a 2 x + a 22 x a 2n x n = c 2 a m x + a m2 x a mn x n = c m a a 2 a n a 2 a 22 a 2n a m a m2 a mn x = x x 2 x n c = A coefficient matrix of the system of order m n, x vector of variables of order n, c vector of constants of order m A and C together form so called augmented matrix A = a a 2 a n c a 2 a 22 a 2n c 2 a m a m2 a mn c m c c 2 c m The method of elimination of variables described bellow uses the following elementary equation operations: Adding a multiple of one equation to another 2 Multiplying both sides of an equation by nonzero scalar 3 Interchanging of two equations If a system is obtained from another one by these operations, they are equivalent, that is they have same solutions To these three elementary equation operations correspond three elementary row operations on the augmented matrix: Adding a multiple of one row to another 2 Multiplying each element of a row by the same nonzero scalar 3 Interchanging of two rows Definition A row of a matrix is said to have k leading zeros if first k elements of the row are all zeros 4
5 Definition A matrix is in row echelon form if each row has more leading zeros that the row preceding it The first nonzero entry in each row is called a pivot Definition A row echelon matrix is in reduced row echelon form if each pivot is and each column containing a pivot has no other nonzero entries Example The matrix A is in row echelon form, and B is in reduced row echelon form A = , B = Every nonzero matrix can be reduced to an infinite number of row echelon forms (they can all be multiples of each other, for example) via elementary matrix transformations 3 Gaussian Elimination Step Forward elimination: Choose a pivot element on the main diagonal (start at top left corner) Eliminate (set to zero) all elements below the main diagonal Move to the next column Repeat until matrix is in row echelon form Step 2 Solve the unknowns using backward substitution If necessary introduce free variables and solve basic variables 32 GaussianJordan Elimination This method reduces the matrix even further to reduced row echelon form For this: Choose a pivot element on the main diagonal (start at top left corner) Eliminate (set to zero) all elements above and below the main diagonal Move to the next column 5
6 Another way: suppose we have a matrix already in row echelon form Then first convert each pivot a to multiplying its row by, then use these a pivots (starting with the in the last row) to kill all the entries above it 32 Example of a system with one solution Consider the system 2x + y z = 8 3x y + 2z = 2x + y + 2z = 3 The augmented matrix of this system is The Gauss elimination algorithm gives I + II I + III II + III This is the row echelon form So our system is equivalent to the following system 2x + y z = 8 2 y + 2 z = z = 6
7 and x, y, z can be found by back substitution: x = 2, y = 3, z = The GaussJordan elimination algorithm gives the reduced row echelon form So the solution is the last column x = 2, y = 3, z = 322 Example of a system with many solutions Consider the system x + 2y + 0 z + 3t = 5 2x + 3y + 2z + 5t = 4 0 x + 2y + z + 5t = 2 The augmented matrix of this system is The Gauss elimination algorithm gives the following row echelon form Corresponding system looks as x + 2y + 0 z + 3t = 5 y + 2z t = 6 5z + 3t = 0 Take free variable t Then the back substitution gives z = 3 5 t 2, y = 5 t + 2, x = 7 5 t + 7
8 323 Example of a system with no solutions Consider the system 2x + 3y + z = x + y + 2z = 2 3x + 4y + 3z = 4 The augmented matrix of this system is The Gauss elimination algorithm gives the following row echelon form Corresponding system looks as x + 3y + z = 0 x y + 23z = 3 0 x + 0 y + 0 z = 4 so the system has no solutions, that is it is non consistent 4 Economical Examples 4 Onecommodity market equilibrium Q d  demand of commodity, Q s  supply of commodity, P  price per unit Linear model Q d (P ) = kp + b (decreasing function), Q s (P ) = lp + c (increasing function) Equilibrium condition Q d (P ) = Q s (P ) Equilibrium price k P + b = l P + c, (l + k) P = b c, P = b c l + k 8
9 42 Twocommodity market equilibrium Q d demand of commodity ; Q s supply of commodity ; Q d2 demand of commodity 2, Q s2 supply of commodity 2; P price per unit of commodity ; P 2 price per unit of commodity 2 Demand function for commodity : Demand function for commodity 2: Supply function for commodity : Supply function for commodity 2: Q d (P, P 2 ) = a 0 + a P + a 2 P 2 Q d2 (P, P 2 ) = α 0 + α P + α 2 P 2 Q s (P, P 2 ) = b 0 + P + P 2 Q s2 (P, P 2 ) = β 0 + β P + β 2 P 2 Equilibrium conditions Q d = Q s, Q d2 = Q s2 : a0 + a P + a 2 P 2 = b 0 + P + P 2 α 0 + α P + α 2 P 2 = β 0 + β P + β 2 P 2 (a ) P + (a 2 ) P 2 = b 0 a 0 (α β ) P + (α 2 β 2 ) P 2 = β 0 α 0 Equilibrium prices P and P 2 can be solved from this system 43 Equilibrium in National Income I investment, G spending by government, a autonomous consumption, b marginal propensity to consumption, Y National Income, C consumption Equilibrium condition Y = C + I + G C = a + by Y C = I + G by C = a Y = I+G+a b C = a+b (I+G) b 9
10 Exercises Solve these systems using all 3 methods (Gauss, GaussJordan, determinant), and give the suitable graphical interpretation for 2x y = 5 x + y = 4 2 2x y = 5 4x 2y = 4 3 2x y = 5 4x 2y = 0 2 Give examples of systems 2 2 and 3 3 with (a) one solution, (b) no solutions, (c) infinitely many solutions 2x + ky = 8 3 Find the values of k and c for which the system is (a) 4x + 8y = c consistent (ie it has solutions), (b) inconsistent (ie it has no solutions) Exercises 773, from SB 0
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationSystems of Linear Equations
Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = x y = 0. ( This system can be solved easily: Multiply the nd equation by 4, and add the two resulting
More informationLecture 12: Solving Systems of Linear Equations by Gaussian Elimination
Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.
More informationChapter 4: Systems of Equations and Ineq. Lecture notes Math 1010
Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an
More information10.1 Systems of Linear Equations: Substitution and Elimination
10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations?  It is the set of all ordered pairs (x, y) that satisfy the two equations. You
More informationIntermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables
Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables A system of equations involves more than one variable and more than one equation. In this section we will focus on systems
More information2 Matrices and systems of linear equations
Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = 5 x y = 0. () This system can easily be solved: just multiply the nd equation by 4, and add the
More informationSystems of Linear Equations
Systems of Linear Equations DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n and b are constants, x
More information4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination
4.2: Systems of Linear Equations and Augmented Matrices 4.3: GaussJordan Elimination 4.2/3.1 We have discussed using the substitution and elimination methods of solving a system of linear equations in
More information1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form
1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and
More informationSolving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
More information1 Systems Of Linear Equations and Matrices
1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a
More informationCramer s Rule and Gauss Elimination
Outlines September 28, 2004 Outlines Part I: Review of Previous Lecture Part II: Review of Previous Lecture Outlines Part I: Review of Previous Lecture Part II: Cramer s Rule Introduction Matrix Version
More informationReduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More informationSection 1.2: Row Reduction and Echelon Forms
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
More informationMath 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices
Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying
More informationMAT Solving Linear Systems Using Matrices and Row Operations
MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented
More information4 Solving Systems of Equations by Reducing Matrices
Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example
More informationIf we apply Gaussian elimination then we get to a matrix U in echelon form
5. Gauss Jordan Elimination Gauss Jordan elimination is very similar to Gaussian elimination, except that one keeps going. To apply Gauss Jordan elimination, first apply Gaussian elimination until A is
More informationChapter 2 Review. Solution of Linear Systems by the Echelon Method
Chapter 2 Review Solution of Linear Systems by the Echelon Method A firstdegree equation in n unknowns is any equation of the form a 1 x 1 + a 2 x 2 + + a n x n = k, where a 1, a 2,..., a n and k are
More informationLinear Equations in Linear Algebra
1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero
More informationSolving System of Two equations
Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) Solving System of Two equations Graphical Method y = x + 1 (1) y = x + 5 (2) are the same equations as: x y = 1 (3) x + y =
More informationMATH 304 Linear Algebra Lecture 4: Row echelon form. GaussJordan reduction.
MATH 304 Linear Algebra Lecture 4: Row echelon form GaussJordan reduction System of linear equations: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2
More informationChapter 1 Matrices and Systems of Linear Equations
Chapter 1 Matrices and Systems of Linear Equations 1.1: Introduction to Matrices and Systems of Linear Equations 1.2: Echelon Form and GaussJordan Elimination Lecture Linear Algebra  Math 2568M on Friday,
More information2. Systems of Linear Equations.
2. Systems of Linear Equations 2.1. Introduction to Systems of Linear Equations Linear Systems In general, we define a linear equation in the n variables x 1, x 2,, x n to be one that can be expressed
More information1 Review of two equations in two unknowns
Contents 1 Review of two equations in two unknowns 1.1 The "standard" method for finding the solution 1.2 The geometric method of finding the solution 2 Some equations for which the "standard" method doesn't
More informationOverview. Matrix Solutions to Linear Systems. Threevariable systems. Matrices. Solving a threevariable system
Overview Matrix Solutions to Linear Systems Section 8.1 When solving systems of linear equations in two variables, we utilized the following techniques: 1.Substitution 2.Elimination 3.Graphing In this
More informationMathematics for Economists. Cramer s Rule = A j
Mathematics for Economists Cramer s Rule Introduction When there is a system of equations and the number of unknown variables equals the number of equations the system has a solution. Let us consider a
More information2. Perform elementary row operations to get zeros below the diagonal.
Gaussian Elimination We list the basic steps of Gaussian Elimination, a method to solve a system of linear equations. Except for certain special cases, Gaussian Elimination is still state of the art. After
More information10/2/2010. Objectives. Solving Systems of Equations and Inequalities. Solving Systems of Equations by Graphing S E C T I O N 4.1
Solving Systems of Equations and Inequalities 4 S E C T I O N 4.1 Solving Systems of Equations by Graphing Objectives 1. Determine whether a given ordered pair is a solution of a system. 2. Solve systems
More informationSolving Systems of Linear Equations; Row Reduction
Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed
More informationSystems of Linear Equations
A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Systems of Linear Equations Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION AttributionNonCommercialShareAlike (CC
More informationSolve a System with More Variables Than Equations
Question 4: Do all systems of linear equations have unique solutions? Earlier we eamined two systems where the numbers of variables was equal to the number of equations. Often there are fewer equations
More information3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.
3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices
More informationMAC Module 1 Systems of Linear Equations and Matrices I. Learning Objectives. Upon completing this module, you should be able to:
MAC 03 Module Systems of Linear Equations and Matrices I Learning Objectives Upon completing this module, you should be able to:. Represent a system of linear equations as an augmented matrix.. Identify
More informationMATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0,
MATH 23: SYSTEMS OF LINEAR EQUATIONS Systems of Linear Equations In the plane R 2 the general form of the equation of a line is ax + by = c and that the general equation of a plane in R 3 will be we call
More information5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems
5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.11 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The
More informationReinserting the variables in the last row of this augmented matrix gives
Math 313 Lecture #2 1.2: Row Echelon Form Not Reaching Strict Triangular Form. The algorithm that reduces the augmented matrix of an n n system to that of an equivalent strictly triangular system fails
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationMatrix Inverses. Since the linear system. can be written as. where. ,, and,
Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant
More informationMATH 2030: ASSIGNMENT 3 SOLUTIONS
MATH : ASSIGNMENT SOLUTIONS Matrix Operations Q.: pg 9, q. Write the system of linear equations as a matrix equation of the form Ax = b. x + x =, x x =, x + x = A.. x x =. x Q.: pg 9, q. Compute AB by
More informationStudy Guide 1 MATH 111
Study Guide 1 MATH 111 The test will cover the material from Chapter 1 and up through Section 2.5 (Section 2.6 will be on the next test). There will be two sections of the test, a no calculator or study
More informationChapter 8 Matrix computations Page 1
Chapter 8 Matrix computations Page 1 Concepts Gauss elimination Downward pass Upper triangular systems Upward pass Square nonsingular systems have unique solutions Efficiency: counting arithmetic operations
More informationLinear algebra. Systems of linear equations
Linear algebra Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 2 / 27 Outline 1 Basic notation Gaussian elimination
More informationUsing Matrix Elimination to Solve Three Equations With Three Unknowns
Using Matrix Elimination to Solve Three Equations With Three Unknowns Here we will be learning how to use Matrix Elimination to solve a linear system with three equation and three unknowns. Matrix Elimination
More informationMath 117 Chapter 2 Systems of Linear Equations and Matrices
Math 117 Chapter 2 Systems of Linear Equations and Matrices Flathead Valley Community College Page 1 of 28 1. Systems of Linear Equations A linear equation in n unknowns is defined by a 1 x 1 + a 2 x 2
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More information2.1 Introduction to Linear Systems
2.1 Introduction to Linear Systems 1 2.1 Introduction to Linear Systems A line in the yplane can be represented by an equation of the form : a 1 + a 2 y = b. This equation is said to be linear in the
More informationMore with Matrices and the Calculator Video Lecture. Sections 11.1 and 11.2
More with Matrices and the Calculator Video Lecture Sections 11.1 and 11.2 Course Learning Objectives: 1)Solve systems of linear equations using technology. 2)Perform the algebra of matrices, find inverses
More informationMATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
More informationSection 1.3 Systems of Linear Equations
Section 1.3 Systems of Linear Equations A system of linear equations is a set of two or more linear equations. It is also called a linear system. In this section we will study 2 2 linear systems, which
More informationMath 54. Selected Solutions for Week 1
Math 54. Selected Solutions for Week Section. (Page 2) 7. The augmented matrix of a linear system has been reduced by row operations to the form 7 3 4 0 3. 0 0 0 0 0 Continue the appropriate row operations
More informationChapter 4  Systems of Equations and Inequalities
Math 233  Spring 2009 Chapter 4  Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to
More informationSituation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli
Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli Prompt: A mentor teacher and student teacher are discussing
More informationChapter 6: Solving Linear Equations
134 Systems of Linear Equations Chapter 6: Solving Linear Equations Problem here is to determine values for n variables that simultaneously satisfy a st of linear equations. ( x k, k 1, 2,, n) a 11 x 1
More informationLinear Algebra. Chapter 2: Systems of Linear Equations. University of Seoul School of Computer Science Minho Kim
Linear Algebra Chapter 2: Systems of Linear Equations University of Seoul School of Computer Science Minho Kim Table of contents Introduction: Triviality Introduction to Systems of Linear Equations Direct
More informationTopic 1: Matrices and Systems of Linear Equations.
Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method
More informationGaussian Elimination
Gaussian Elimination Simplest example Gaussian elimination as multiplication by elementary lower triangular and permutation matrices Lower/Upper triangular, Permutation matrices. Invariance properties.
More information1 Gaussian Elimination
Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 GaussJordan reduction and the Reduced
More informationMath 54. Selected Solutions for Week 3
Math 54. Selected Solutions for Week 3 Section 2. (Page 2) 8. How many rows does B have if BC is a 5 4 matrix? The matrix C has to be a 4 p matrix, and then BC will be a 5 p matrix, so it will have 5 rows.
More informationUnit 17 The Theory of Linear Systems
Unit 17 The Theory of Linear Systems In this section, we look at characteristics of systems of linear equations and also of their solution sets. Theorem 17.1. For any system of linear equations A x = b,
More informationChapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants
Chapters 2 & 3: Matrices, Systems of Linear Equations, and Determinants Philip Gressman University of Pennsylvania Philip Gressman Math 240 002 2014C: Chapter 2 1 / 36 Matrices: Definitions, Notation,
More informationLinear Dependence Tests
Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks
More informationRow Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for inclass presentation
More informationLinear Algebra and Geometry
Linear Algebra and Geometry We construct a dictionary between some geometrical notions and some notions from linear algebra Adding, Scalar Multiplication An element of (x, y R2 corresponds to an arrow
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationMATH10212 Linear Algebra B Homework Week 3. Be prepared to answer the following oral questions if asked in the supervision class
MATH10212 Linear Algebra B Homework Week 3 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra its Applications. Pearson, 2006. ISBN 0521287134. Normally, homework
More informationFigure 1. Addition of vectors: parallelogram rule
4. Geometry of the span; homogeneous linear equations It is interesting to think about the geometric meaning of linear combinations and the span. If you want to add two vectors u and v, move the starting
More informationCHAPTER 4. Introduction to Solving. Linear Algebraic Equations
A SERIES OF CLASS NOTES TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS LINEAR CLASS NOTES: A COLLECTION OF HANDOUTS FOR REVIEW AND PREVIEW OF LINEAR THEORY
More informationMatrix generalities. Summary. 1. Particular matrices. Matrix of dimension ; A a. Zero matrix: All its elements a 0
Matrix generalities Summary 1. Particular matrices... 1 2. Matrix operations... 2 Scalar multiplication:... 2 Sum of two matrices of the same dimension () and... 2 Multiplication of two matrices and of
More informationMATH10212 Linear Algebra. Systems of Linear Equations. Definition. An ndimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0534405967. Systems of Linear Equations Definition. An ndimensional vector is a row or a column
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
More information2  Solving Linear Equations
2  Solving Linear Equations Linear algebra developed from studying methods for solving systems of linear equations. We say an equation in the variables x 1, x 2, x 3,..., x n is linear if it consists
More informationMath 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns
Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in
More informationLecture Notes: Solving Linear Systems with Gauss Elimination
Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary
More informationPOL502: Linear Algebra
POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with
More informationChapter 3 Linear Algebra Supplement
Chapter 3 Linear Algebra Supplement Properties of the Dot Product Note: this and the following two sections should logically appear at the end of these notes, but I have moved them to the front because
More informationSolving Linear Systems Using Gaussian Elimination. How can we solve
Solving Linear Systems Using Gaussian Elimination How can we solve!!? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = x 1 +x x = The variables x 1, x, and x only appear as
More informationMath 2331 Linear Algebra
1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University
More informationCHAPTER 9: Systems of Equations and Matrices
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables
More informationPhysics 116A Solving linear equations by Gaussian Elimination (Row Reduction)
Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In
More informationUsing the three elementary row operations we may rewrite A in an echelon form as
Rank, RowReduced Form, and Solutions to Example 1 Consider the matrix A given by Using the three elementary row operations we may rewrite A in an echelon form as or, continuing with additional row operations,
More informationLinear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
More informationMath1300:MainPage/threespace
Contents 1 Planes in 3space 2 The Equation of a plane through Three Points 2.1 Synopsis (Computation of the Equation of a Plane through Three Points) 3 Lines in 3space 4 The Line as the Intersection
More informationRow Reduction and Echelon Forms
MA 2071 A 12 Bill Farr August 22, 2012 1 2 3 4 5 Definition of Pivot Postion An Algorithm for Putting a Matrix in RREF An Linear Systems and Matrices A linear system has two associated matrices, the coefficient
More information( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&
Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important
More informationSECTION 1.1: SYSTEMS OF LINEAR EQUATIONS
SECTION.: SYSTEMS OF LINEAR EQUATIONS THE BASICS What is a linear equation? What is a system of linear equations? What is a solution of a system? What is a solution set? When are two systems equivalent?
More information6.1 Matrix Solutions to Linear Systems
6 Matrix Solutions to Linear Systems Section 6 Notes Page In this section we will talk about matrices Matrices help to organize data They can also be used to solve equations, which is what we will mainly
More informationLINEAR ALGEBRA LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
64:244:7 9 SPRING 2 Notes on LINEAR ALGEBRA with a few remarks on LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS Systems of linear equations Suppose we are given a system of m linear equations in n unknowns
More informationDecember 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in twodimensional space (1) 2x y = 3 describes a line in twodimensional space The coefficients of x and y in the equation
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationMath 215 HW #4 Solutions
Math 5 HW #4 Solutions. Problem..6. Let P be the plane in 3space with equation x + y + z = 6. What is the equation of the plane P through the origin parallel to P? Are P and P subspaces of R 3? Answer:
More informationAPPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the cofactor matrix [A ij ] of A.
APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the cofactor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj
More information2.1 Solving Systems of Equations in Two Variables. Objectives Solve systems of equations graphically Solve systems of equations algebraically Page 67
2.1 Solving Systems of Equations in Two Variables Objectives Solve systems of equations graphically Solve systems of equations algebraically Page 67 System of Equation A system of equations is a collection
More information1. Linear systems of equations. Chapters 78: Linear Algebra. Solution(s) of a linear system of equations. Row operations.
A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x
More informationSection 6.2 Larger Systems of Linear Equations
Section 6.2 Larger Systems of Linear Equations EXAMPLE: Solve the system of linear equations. Solution: From Equation 3, you know the value z. To solve for y, substitute z = 2 into Equation 2 to obtain
More information2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
More informationMatrices Gaussian elimination Determinants. Graphics 2011/2012, 4th quarter. Lecture 4: matrices, determinants
Lecture 4 Matrices, determinants m n matrices Matrices Definitions Addition and subtraction Multiplication Transpose and inverse a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn is called an m n
More information