3.1 Solving Systems Using Tables and Graphs


 Bernice Tyler
 1 years ago
 Views:
Transcription
1 Algebra 2 Chapter Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system of equations by graphing: 1. each line very carefully. 2. for where the lines intersect. 3. the solution in both equations. Example: Solve each system by graphing 1. y 2x1 1 y x x4y12 3x4y4 1
2 Algebra 2 Chapter Solve Systems Using Tables & Graphs 3. 8x4 y12 2x y xy6 7x y 6 So what words do we use to describe these systems? Consistent: has at least solution Inconsistent: has solution Independent: has solution Dependent: has solutions. 2
3 Algebra 2 Chapter Systems of Inequalities 3.2 Solving Systems Algebraically Sometimes, it is difficult to graph equations accurately by hand. Sometimes, the points of intersection are not integer values and are difficult to see. Sometime, we need a different way to find the solution to a system of equations. A: Solving Systems by Substitution Make a Plan: Example: Solve by substitution This method works well when One equation is already solved for one variable in terms of another like y= or x = 1. x 2y 5 x 2 3y One equation has a term with a coefficient of 1 or 1. Make it Happen: If necessary, solve one equation for one of the variables. Get x = or y = Substitute the expression for the variable in the other equation. 2. 2x y 6 7x 6y 1 Solve the equation. You will almost always have to distribute first. Substitute your solution into either original equation. Solve for the remaining variable. Write your answer as an ordered pair. CHECK YOUR ANSWER IN BOTH EQUATIONS! 3
4 Algebra 2 Chapter Systems of Inequalities (Solve by Substitution, Continued) 4x3y10 3. x 2y x y12 3x7 y1 Make a Plan: This method works well when No variable is already solved for No coefficient is 1 or 1 B: Solving by Elimination 3x2y x2y6 Make it Happen: GOAL to create additive opposites Ex. 4x, 4x or 7y, 7y If necessary, multiply one or both equations by a constant to create additive opposites. Add the two equations. This should eliminate one of the variables. Solve for the variable. Substitute into either original equations and solve for the remaining variable. Write your answer as an ordered pair. CHECK YOUR ANSWER IN BOTH EQUATIONS! 4
5 Algebra 2 Chapter Systems of Inequalities (Solve by Elimination) 6. x2y10 3xy9 7. 2x7y4 3x 5y 5 8. x y 2 2x2y0 9. 4xy6 12 x3y18 5
6 Algebra 2 Chapter Systems of Inequalities 3.3 Systems of Inequalities A: Graphing a Linear Inequality: (REVIEW) Graph the Inequality like an equation If < or > use a line. If or use a line. Test a point on one side of your boundary line. If the point satisfies the inequality, shade that side of the line. If the point does not, shade the opposite side of the line. In general: If line is y = mx + b < or means shade Graph: y > 3x 4 > or means shade B: Solving a System of Linear Inequalities The solution to a system of equations is the that makes both equations true. The solution to a system of inequalities is the of the two regions that make each inequality true. Examples: What is the solution of the system of inequalities x 3 1. y 4 2. y 2 y 3 x 4 6
7 Algebra 2 Chapter Systems of Inequalities (Solve the systems of inequalities) 1 y x y 2x 4. x 3y 3 x 2y 4 5. y 3 y x4 7
8 Algebra 2 Chapter Systems With Three Variables 3.4 Linear Programming A: Terminology Graph the following system of inequalities x 2 3 y 6 x y 10 Some realworld problems involve multiple linear relationships. We call the inequalities the. The overlapping region (the solution to the system) is called the. The corners of the region are called the. In real world problems, you will be trying to MAXIMIZE or MINIMIZE a quantity that depends upon the constraints. Most often this is or. The equation that models what you are trying to maximize or minimize is called the. For the feasible region above, find the maximum and minimum value of the objective function: C = 2x + y 8
9 Algebra 2 Chapter Systems With Three Variables B: Linear Programming Procedure Example 1: Find the values of x and y that maximize the objective function for the graph. Example 2: Find the values of x and y that minimize the objective function for the graph. P = 4x y C = x + 9y Example 3: Graph each system of constraints. Name all vertices. Then find the values of x and y that maximize or minimize the objective function. Make it Happen 1. Graph the Inequalities (the constraints) 2. Form the feasible region. 3. Find the coordinates of each vertex. x y 8 2x y 10 x 0 y 0 Maximum for N = 100x + 40y 4. Evaluate the objective function at each vertex. 5. State the Max/Min and where it occurs. 9
10 Algebra 2 Chapter Systems With Three Variables Example 4: x2y 6 2x y 7 x 2 y 3 Find the Maximum and Minimum for A = x y 3.5 Systems with Three Variables In lesson 3.1 & 3.2, we learned about systems of 2 equations with 2 variables, that may have a solution (x, y) that makes both equations true. In this lesson, we will learn about systems of 3 equations and 3 variables that may have a solution (x, y, z) that makes all three equations true. 10
11 Algebra 2 Chapter Systems With Three Variables Example: Solve each system of equations. Check your answers. Make a Plan GOAL: Use elimination (lesson 3.2) to change your 3 x 3 system to a 2 x 2 system. 1. x y z 1 x y 3z 3 2x y 2z 0 Look for a variable that can easily be eliminated from all three equations. Make it Happen Choose a variable to eliminate. Choose 2 equations & eliminate the variable. Choose a different pair of equations & eliminate the SAME VARIABLE again. You now have TWO new equations each with TWO variables. Use substitution or elimination to solve (Like 3.2) Substitute your solutions into one of the ORIGINAL 3 variable equations and solve for the missing term. Write your answer as an alphabetical ordered triplet. (x, y, z) 11
12 Algebra 2 2. x y 2 z 7 3 x y 2 z 7 x 3 y z 9 3. x 2 y 3 z 12 2 x y 2 z 5 2 x 2 y z 4 Chapter Systems With Three Variables 12
Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.
Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:
More informationAlgebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations:
Algebra Chapter 6 Notes Systems of Equations and Inequalities Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Solution of a system of linear equations: Consistent independent system:
More information5 Systems of Equations
Systems of Equations Concepts: Solutions to Systems of EquationsGraphically and Algebraically Solving Systems  Substitution Method Solving Systems  Elimination Method Using Dimensional Graphs to Approximate
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More information5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems
5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.11 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The
More informationAlgebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students notetaking, problemsolving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
More informationStudy Resources For Algebra I. Unit 1D Systems of Equations and Inequalities
Study Resources For Algebra I Unit 1D Systems of Equations and Inequalities This unit explores systems of linear functions and the various methods used to determine the solution for the system. Information
More informationSolving Systems of Equations with Absolute Value, Polynomials, and Inequalities
Solving Systems of Equations with Absolute Value, Polynomials, and Inequalities Solving systems of equations with inequalities When solving systems of linear equations, we are looking for the ordered pair
More information1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
More informationThe slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationLines and Linear Equations. Slopes
Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means
More informationEdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
More information10.9 Systems Of Inequalities. Copyright Cengage Learning. All rights reserved.
10.9 Systems Of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems of Inequalities Systems of Linear Inequalities Application: Feasible Regions 2 Graphing
More informationChapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach
Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we
More information05 Systems of Linear Equations and Inequalities
21. Solve each system of equations. Eliminate one variable in two pairs of the system. Add the first equation and second equations to eliminate x. Multiply the first equation by 3 and add it to the second
More information( ) # 0. SOLVING INEQUALITIES and Example 1. Example 2
SOLVING INEQUALITIES 9.1.1 and 9.1.2 To solve an inequality in one variable, first change it to an equation and solve. Place the solution, called a boundary point, on a number line. This point separates
More informationPreAP Algebra 2 Lesson 25 Graphing linear inequalities & systems of inequalities
Lesson 25 Graphing linear inequalities & systems of inequalities Objectives: The students will be able to  graph linear functions in slopeintercept and standard form, as well as vertical and horizontal
More informationMake sure you look at the reminders or examples before each set of problems to jog your memory! Solve
Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by
More informationWhat does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.
PRIMARY CONTENT MODULE Algebra  Linear Equations & Inequalities T37/H37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of
More informationChapter 4: Systems of Equations and Ineq. Lecture notes Math 1010
Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationAlgebra Course KUD. Green Highlight  Incorporate notation in class, with understanding that not tested on
Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight  Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and
More informationSolving Systems by Elimination 35
10/21/13 Solving Systems by Elimination 35 EXAMPLE: 5x + 2y = 1 x 3y = 7 1.Multiply the Top equation by the coefficient of the x on the bottom equation and write that equation next to the first equation
More informationWriting the Equation of a Line in SlopeIntercept Form
Writing the Equation of a Line in SlopeIntercept Form SlopeIntercept Form y = mx + b Example 1: Give the equation of the line in slopeintercept form a. With yintercept (0, 2) and slope 9 b. Passing
More informationQuestion 2: How do you solve a linear programming problem with a graph?
Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.
More information3.1 Graphing Systems of Linear Inequalities
3.1 Graphing Systems of Linear Inequalities An inequality is an expression like x +3y < 4 or 2x 5y 2. They look just like equations except the equal sign is replaced by one of ,,. An inequality does
More informationChapter 4  Systems of Equations and Inequalities
Math 233  Spring 2009 Chapter 4  Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to
More informationHelpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:
Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize
More informationEquations and Inequalities
Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.
More informationLinear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
More informationOrdered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.
Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationFactoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
More informationSystems of Linear Equations  Introduction
Systems of Linear Equations  Introduction What are Systems of Linear Equations Use an Example of a system of linear equations If we have two linear equations, y = x + 2 and y = 3x 6, can these two equations
More information3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes
Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.
More information3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes
Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.
More informationAlgebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
More informationMath 018 Review Sheet v.3
Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1  Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.
More informationAlgebra 1 Topic 10: Systems of linear equations and inequalities Student Activity Sheet 1; use with Overview
Algebra 1 Topic 10: Student Activity Sheet 1; use with Overview 1. Consider the equation y = 3x + 4. [OV, page 1] a. What can you know about the graph of the equation? Numerous answers are possible, such
More informationPreAP Algebra 2 Lesson 21 Solving 2x2 Systems. 3x 2y 22 (6,2) 5x y 28 (1, 3)
Lesson 21 Solving 2x2 Systems Objectives: The students will be able to solve a 2 x 2 system of equations graphically and by substitution, as well as by elimination. Materials: paper, pencil, graphing
More information7.5 SYSTEMS OF INEQUALITIES. Copyright Cengage Learning. All rights reserved.
7.5 SYSTEMS OF INEQUALITIES Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of inequalities in two variables. Solve systems of inequalities. Use systems of inequalities
More informationAlgebra. Chapter 6: Systems of Equations and Inequalities. Name: Teacher: Pd:
Algebra Chapter 6: Systems of Equations and Inequalities Name: Teacher: Pd: Table of Contents Chapter 61: SWBAT: Identify solutions of systems of linear equations in two variables; Solve systems of linear
More informationWhere Do We Meet? Students will represent and analyze algebraically a wide variety of problem solving situations.
Beth Yancey MAED 591 Where Do We Meet? Introduction: This lesson covers objectives in the algebra and geometry strands of the New York State standards for Algebra I. The students will use the graphs of
More informationPRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71. Applications. F = mc + b.
PRIMARY CONTENT MODULE Algebra I Linear Equations & Inequalities T71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.
More informationChapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
More information{ } Sec 3.1 Systems of Linear Equations in Two Variables
Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination
More informationLINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH
59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving
More informationEquations of Lines Derivations
Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated
More informationSolving Quadratic & Higher Degree Inequalities
Ch. 8 Solving Quadratic & Higher Degree Inequalities We solve quadratic and higher degree inequalities very much like we solve quadratic and higher degree equations. One method we often use to solve quadratic
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationLinear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
More informationGraphing Inequalities (Scaffolding Task)
Graphing Inequalities (Scaffolding Task) Introduction In this task, students will graph two separate inequalities in two variables and analyze the graph for solutions to each. The students will then graph
More informationWhat if systems are not in y = mx + b form? Strategies for Solving Systems and Special Cases Lesson Objective:
What if systems are not in y = mx + b form? Strategies for Solving Systems and Special Cases Lesson Objective: Length of Activity: Students will continue work with solving systems of equations using the
More informationGraph the feasible set for the system of inequalities: x y 2. y + 2x 6 y 2
Section.: Feasible Sets Linear Programming problems often have several constraints, leading to several inequalities or a system of linear inequalities. A point (x, y) satisfies a system of inequalities
More informationSolving simultaneous equations. Jackie Nicholas
Mathematics Learning Centre Solving simultaneous equations Jackie Nicholas c 2005 University of Sydney Mathematics Learning Centre, University of Sydney 1 1 Simultaneous linear equations We will introduce
More informationSystems of Linear Equations and Inequalities
Systems of Linear Equations and Inequalities Recall that every linear equation in two variables can be identified with a line. When we group two such equations together, we know from geometry what can
More informationALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section
ALGEBRA 2 CRA 2 REVIEW  Chapters 16 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 53.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 64.2 Solving Equations by
More information7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
More informationModule 3 Lecture Notes 2. Graphical Method
Optimization Methods: Linear Programming Graphical Method Module Lecture Notes Graphical Method Graphical method to solve Linear Programming problem (LPP) helps to visualize the procedure explicitly.
More informationSystems of Linear Equations: Elimination by Addition
OpenStaxCNX module: m21986 1 Systems of Linear Equations: Elimination by Addition Wade Ellis Denny Burzynski This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License
More informationSection 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4.
Section 4.1 Inequalities & Applications Equations 3x + 7 = 13 y = 7 3x + 2y = 6 Inequalities 3x + 7 < 13 y > 7 3x + 2y 6 Symbols: < > 4.1 1 Overview of Linear Inequalities 4.1 Study Inequalities with One
More informationSolve the linear programming problem graphically: Minimize w 4. subject to. on the vertical axis.
Do a similar example with checks along the wa to insure student can find each corner point, fill out the table, and pick the optimal value. Example 3 Solve the Linear Programming Problem Graphicall Solve
More informationLINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad
LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources
More informationGraph Linear Inequalities in Two Variables
Graph Linear Inequalities in Two Variables Name Goal Graph linear inequalities in two variables. VOCABLARY Linear inequality in two variables Graph of an inequality in two variables Example 1 Check solutions
More informationSection 1.4 Graphs of Linear Inequalities
Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,
More informationUsing Linear Programming in RealLife Problems
Name Date A C T I V I T Y 4 Instructions Using Linear Programming in RealLife Problems Mr. Edwards is going to bake some cookies for his algebra class. He will make two different kinds, oatmealraisin
More informationQuestion 2: How will changes in the objective function s coefficients change the optimal solution?
Question 2: How will changes in the objective function s coefficients change the optimal solution? In the previous question, we examined how changing the constants in the constraints changed the optimal
More informationAlgebra 1 Topic 8: Solving linear equations and inequalities Student Activity Sheet 1; use with Overview
Algebra 1 Topic 8: Student Activity Sheet 1; use with Overview 1. A car rental company charges $29.95 plus 16 cents per mile for each mile driven. The cost in dollars of renting a car, r, is a function
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationObjectives. score only one 2point field goal and point field goals even though the ordered
Objectives Graph systems of linear inequalities Investigate the concepts of constraints and feasible polygons Activity 3 Introduction The graph of a system of linear inequalities can create a region defined
More informationIn this section, we ll review plotting points, slope of a line and different forms of an equation of a line.
Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:
More informationFundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras
Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions  Graphical and Algebraic Methods
More informationLESSON OBJECTIVES. Mental Math. Skills Review. 344 Chapter 8 Systems of Equations and Inequalities
LESSON OBJECTIVES 8.1 Solving Systems of Equations by Graphing Identify systems of equations as dependent or independent. Solve systems of linear equations by graphing. 8.2 Solving Systems of Equations
More information3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
More informationUnit 1 Equations, Inequalities, Functions
Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1100 Overview: This unit models realworld situations by using one and twovariable linear equations. This unit will further expand upon pervious
More informationREVIEW: Write each statement as an inequality and then graph the inequality.
LESSON 15 NOTES (Part A): SOLVING INEQUALITIES Words like "at most" and "at least" suggest a relationship in which two quantities may not be equal. These relationships can be represented by a mathematical
More informationLinear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables
Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More information3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
More information63 Solving Systems by Elimination
Warm Up Simplify each expression. 1. 2y 4x 2(4y 2x) 2. 5(x y) + 2x + 5y Write the least common multiple. 3. 3 and 6 4. 4 and 10 5. 6 and 8 Objectives Solve systems of linear equations in two variables
More informationAnswer on Question #48173 Math Algebra
Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.
More informationMath Fall Block Algebra 2 PBA Item #13 System of Inequalities M44085
Math Fall Block 2015 Algebra 2 PBA Item #13 System of Inequalities M44085 Prompt Task is worth a total of 3 points. M44085 Rubric Score Description 3 Student response includes the following 3 elements.
More informationLinear Equations Review
Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The yintercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the yintercept
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n1 x n1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
More informationDetermine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
More information2x  y 4 y 3x  6 y < 2x 5x  3y > 7
DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.
More informationCommon Core Algebra Critical Area 6: Systems of Equations and Inequalities and Linear Programming
Pacing: Weeks 3136 Standards for Mathematical Practice 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the
More informationActivity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration
Objective Graph systems of linear inequalities in two variables in the Cartesian coordinate plane Activity 2 Introduction A set of two or more linear equations is called a system of equations. A set of
More informationSection 3.3 Linear Inequalities in Two Variables
Acc. Alg. II Ch. 3 Notes Name Section 3.3 Linear Inequalities in Two Variables Graph the linear inequalities below. 1. 2x y 3 2. 5x 2y > 4 3. x > 1 Acc. Alg. II Ch. 3 Notes Page 2 4. x < 3 5. Write an
More informationIV. ALGEBRAIC CONCEPTS
IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other
More information4.1 Solving a System of Linear Inequalities
4.1 Solving a System of Linear Inequalities Question 1: How do you graph a linear inequality? Question : How do you graph a system of linear inequalities? In Chapter, we were concerned with systems of
More informationChapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY
Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP
More informationAlgebra 1 Chapter 3 Vocabulary. equivalent  Equations with the same solutions as the original equation are called.
Chapter 3 Vocabulary equivalent  Equations with the same solutions as the original equation are called. formula  An algebraic equation that relates two or more reallife quantities. unit rate  A rate
More informationZeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
More informationInequalities in Two Variables Teacher Notes
Henri Picciotto Inequalities in Two Variables Teacher Notes This unit extends the graphical understanding of systems of equations to inequalities. 1A. Postcards and Letters This activity creates a foundation
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationQuadratic Functions and Models
Quadratic Functions and Models MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: analyze the graphs of quadratic functions, write
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationFunctions and Equations
Centre for Education in Mathematics and Computing Euclid eworkshop # Functions and Equations c 014 UNIVERSITY OF WATERLOO Euclid eworkshop # TOOLKIT Parabolas The quadratic f(x) = ax + bx + c (with a,b,c
More informationLargest FixedAspect, AxisAligned Rectangle
Largest FixedAspect, AxisAligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 19982016. All Rights Reserved. Created: February 21, 2004 Last Modified: February
More information