1.2 Solving a System of Linear Equations

Size: px
Start display at page:

Download "1.2 Solving a System of Linear Equations"

Transcription

1 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables is of the form >< > a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + + a n x n = b a m1 x 1 + a m x + + a mn x n = b m Some of the coe cients a ij can be zero. In fact, the more coe cients are zero, the easier the system will be to solve. The easiest system to solve is of the form a 11 x 1 = b 1 >< a x = b a x = b > a mn x n = b m Its corresponding augmented matrix is a b 1 0 a 0 b 0 0 a 0 b a mn b m To solve, we simply divide by the coe cient in front of each variable. This is illustrated below. < x 1 = 10 Example 0 Solve x = 9 x = The solution is x 1 = 10 =, x = 9 =, x =. When all the coe cients in the system above are 1, the system in the above example is said to be in reduced row-echelon form. The precise de nition is given below. De nition 1 Consider a system of linear equations. 1. The system is said to be in reduced row-echelon form if it satis es the four properties below

2 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES (a) If a row does not consist entirely of zeros, then the rst nonzero number is a 1. This number is called the leading 1. (b) The rows consisting entirely of zeros, if there are any, are at the bottom of the system. (c) If two consecutive rows contain a leading 1, then the leading 1 of the higher row is further to the left than the leading 1 of the lower row. (d) Each column that contains a leading 1 contains 0 everywhere else.. The system is said to be in row-echelon form if the properties a - c are satis ed. Thus, a system in reduced row-echelon form is necessarily in row-echelon form. Remark The same de nitions apply to the augmented matrix of a system. Remark Since we can switch back and forth between a system of linear equations and its corresponding augmented matrix, we can either work on a system, or on its corresponding augmented matrix. We will illustrate both. Example The matrices below are in reduced row-echelon form Example The matrices below are in row-echelon form A system in row-echelon form is also easy to solve. We illustrate how with an example.

3 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 9 Example Consider the system < x 1 +x x = 10 x +x = x = Its corresponding augmented matrix is Such a system is also fairly easy to solve. The method used is called backsubstitution. Since we know x =, we can replace x by its value in the second equation to obtain x + = or x =. Now that we know x and x, we can replace in the rst equation to obtain x 1 + = 10 or x 1 =. It is called back substitution because we work backward. We start by nding the value of the last variable, then the next to the last and so on, until we nd the value of the rst variable. At this point, we are done. Remark In order to be able to do back-substitution, it is not necessary that a ii = 1 in the i th equation. De nition Two systems are said to be equivalent if they have the same solution set. Similarly, two augmented matrices are said to be equivalent if they are the augmented matrices of two systems having the same solution set. You remember for elementary mathematics, to solve a given equation in one variable say x, we transform it into an equation of the form x = S where S is then the solution we are after. To transform it, we use certain transformations which do not change the solution set of the equation, in other words, we obtain equivalent equations until we have one of the form x = S. You will recall that the transformations that can be applied when solving an equation are 1. Add the same number on both sides of the equation.. Multiply both sides by the same nonzero number. We follow a similar procedure to solve systems of equations. There are actually two procedures we can use. They are outlined below, then explored thoroughly in the next two subsections. The rst technique, is called Gaussian elimination. Algorithm 9 (Gaussian Elimination) To solve a system of linear equations, follow the steps below 1. Transform its augmented matrix into an equivalent augmented matrix in row-echelon form.

4 10 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Use back-substitution to nish solving. The second technique is called Gauss-Jordan elimination Algorithm 0 (Gauss-Jordan Elimination) To solve a system of linear equations, follow the steps below 1. Transform its augmented matrix into an equivalent augmented matrix in reduced row-echelon form.. The solution is given by the last column of the augmented matrix in reduced row-echelon form. With either technique, since the systems are equivalent, they will have the same solution set. Usually, getting from a system to an equivalent system in row-echelon form or reduced row-echelon form requires several steps, each step producing an equivalent system. The question is which transformations can we apply to a system so that it is transformed into a system in row echelon form or reduced row-echelon form. The key is that the new system should be equivalent to the original one, so they have the same solutions. It would not help to get a system which is simpler to solve, but which does not have the same solutions as the original one. There are three transformations which can be applied, to a system that will produce an equivalent system. For simplicity, let us label the equations of a system E 1, E,, E m. We will use the same names for the rows of the corresponding augmented matrix. Proposition 1 Each of the following operations on a system of linear equations produces an equivalent system 1. Equation E i can be multiplied by a nonzero constant, with the result used in place of E i. This operation is denoted (E i )! (E i ). Equation E j can be multiplied by any constant and added to equation E i, with the result used in place of E i. This operation is denoted (E j + E i )! (E i ). Equations E i and E j can be transposed in order. This operation is denoted (E i ) $ (E j ) Remark The same operations can be applied to the augmented matrix of a system. Simply replace the term equation by row in the above proposition. Remark These operations are called elementary row operations. Let us look at some examples to illustrate how these transformations are done.

5 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 11 Example Consider If we perform (E 1 )! (E ), we obtain Example Consider If we perform 1 E! (E ), we obtain This is useful when we want to obtain a leading 1 on a given row. Example Consider If we perform ( E 1 + E )! (E ), we obtain This is useful when we want to make an entry equal to 0. In this case, we made the rst entry of the second row equal to 0. We now look at each method to solve a system in greater detail. 1.. Gaussian Elimination Gaussian elimination was brie y outlined above. It has two main steps. First, we get a system (or its augmented matrix) in row-echelon form. Then, we use back substitution to nish solving. We have already explained back substitution. The rst step is always done in a very orderly fashion. In fact, it is very easy to implement on a computer. It always proceeds as follows (the algorithm below works for both a system and its augmented matrix. The augmented matrix part appears in parentheses)

6 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Remark Proceed from the rst equation (row) to the last. Look at the rst equation (row), make sure no equation (row) below it has a leading entry further to the left. If one does, switch the two. Eliminate all the entries below the leading entry of the rst equation (row). Repeat the procedure for equation (row), then, In general, we look at the i th equation (row), make sure the coe cient for x i is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x i from all the equations below the i th equation. We do this for i = 1; ; ; n 1 if the system has n equations. Recall that Gaussian elimination is a systematic procedure which transforms a system into an equivalent system in row-echelon form. We illustrate it with examples. Example Consider the system E 1 x 1 +x +x = >< E x 1 +x x +x = 1 E x 1 x x +x = > E x 1 +x +x x = (1.) Its corresponding augmented matrix is We follow the algorithm described above. We begin with the rst row. Its leading entry is in column 1. The goal is to set to 0 all the other entries in column 1 and rows -. In order to achieve this, we perform (E E 1 )! (E ), (E E 1 )! (E ) and (E + E 1 )! (E ). The resulting augmented matrix is Next, we work on the second row. First, we make its leading entry 1 by performing ( E 1 )! (E 1 ). The resulting augmented matrix is

7 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 Then we make the entries below the leading entry of the second row equal to 0 by performing (E + E )! (E ) and (E E )! (E ). The resulting augmented matrix is We actually were lucky. In the process, we did part of the next step. Looking at row, we already set the entry below it to 0. We just have 1 to set the leading entry of row to 1 by performing E! E. The resulting augmented matrix is We are on the last row, the only thing to do here is to set its leading entry 1 to 1 by performing 1 E! (E ). The resulting augmented matrix is Now, we see that the matrix is in row-echelon form. The corresponding system is > < > E 1 x 1 +x +x = E x +x +x = E x + 1 x = 1 E x = 1 (1.) The system in (1) has the same solutions as the original system (1). We nish solving the system in (1) using back-substitution. From E, we get x = 1 We can now use E to nd x as follows x + 1 x = 1 x = 1 (1 x ) x = 0 since x = 1

8 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES We now continue with E. Finally, using E 1 yields x x x = x = (x + x ) x = x 1 + x + x = x 1 = x x + x 1 = 1 The solutions of the system in (1) and therefore of the system in (1) are x 1 = 1; x = ; x = 0; and x = 1 This is an example in which the procedure produced a unique solution, we had a consistent system. Following the same procedure, how will we detect if we have a system with no solutions, or one with an in nite number of solutions? The next two examples illustrate this. To also illustrate that the same procedure can be applied to system as well as augmented matrices, we do the next example using the system. < Example 9 Solve the system x 1 + x + x = x 1 + x + x = x 1 + x + x = To eliminate x 1 from E and E, we perform (E E 1 )! (E ) and (E E 1 )! (E ). The resulting system is < x 1 + x + x = x = x = The next step would be to eliminate x from E. This was done in the previous step. The only thing left is to set the leading coe cient of the second equation to 1 by performing ( E )! (E ). The corresponding system is < x 1 + x + x = x = x = This system has an in nite number of solutions given by x = and x 1 +x = or x 1 = x. The free variable is x. In parametric notation, the solution set is < x 1 = t x = t x =

9 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 < Example 0 Solve the system x 1 + x + x = x 1 + x + x = x 1 + x + x = To eliminate x 1 from E and E, we perform (E E 1 )! (E ) and (E E 1 )! (E ). The resulting system is < x 1 + x + x = x = x = The next step would be to eliminate x from E. This was done in the previous step. The only thing left is to set the leading coe cient of the second equation to 1 by performing ( E )! (E ). The corresponding system is x 1 + x + x = x = x = This system has no solutions because the last two equations are in contradiction. Remark 1 It is important to notice that the Gaussian elimination procedure is always done in a very orderly fashion. In fact, it is very easy to implement on a computer. It always proceeds as follows Look at the rst equation, make sure the coe cient for x 1 is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x 1 from all the equations below the rst equation. Next, look at the second equation, make sure the coe cient for x is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x from all the equations below the second equation. The procedure continues the same way. In general, we look at the i th equation, make sure the coe cient for x i is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x i from all the equations below the i th equation. We do this for i = 1; ; ; n 1 if the system has n equations. 1.. Gauss-Jordan Elimination Here, we will work with augmented matrices. Recall that Gauss-Jordan elimination is a systematic procedure which transforms a system into an equivalent system in reduced row-echelon form. To obtain a reduced row-echelon form, we rst obtain a row-echelon form, then we go further. We need to make the columns containing the leading entries equal to 0, except for the leading entry of course. We illustrate it with an example.

10 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Example Solve the system x 1 +x +x = >< x 1 +x x +x = 1 x 1 x x +x = > x 1 +x +x x = Its corresponding augmented matrix is This is the system we did above. We will take it from its row-echelon form Now, we start from the bottom and work our way up. There is nothing to do on the last row. For row, we make the th entry 0 by performing E 1 E! (E ). The resulting augmented matrix is For row, we make the rd and th entry 0. Let s do them one at a time. First, we perform (E E )! (E ). We obtain Next, we perform (E E ) to obtain

11 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 Finally row 1. We make entries and equal to 0 by performing rst (E 1 E )! (E 1 ), this gives us then (E 1 E )! (E 1 ), this gives us The solution is now read from the last column. Thus, we see that x 1 = 1, x =, x = 0, and x = Homogeneous Linear Systems We nish this section by looking at a special type of system, homogeneous systems. These system as we will see, always have at least one solution. De nition (Homogeneous System) A system of linear equations is said to be homogeneous if the constant terms are always 0. In other words, a homogeneous system is of the form a 11 x 1 + a 1 x + + a 1n x n = 0 >< a 1 x 1 + a x + + a n x n = 0 > a m1 x 1 + a m x + + a mn x n = 0 De nition The solution x i = 0 for i = 1,,, n is called the trivial solution. Other solutions are called nontrivial solutions. Remark A homogeneous system always has at least the trivial solution. So, a homogeneous system is always consistent. Remark Another important fact about homogeneous systems is that the elementary transformations will not alter the last column of their augmented matrix. Thus, when we transform a homogeneous system in row-echelon form or reduced row-echelon form, we still have a homogeneous system. It turns out that a homogeneous system of linear equations either has only the trivial solution, or has in nitely many solutions. We state this result without proof. We will prove it later in the course. If the homogeneous system has more equations than unknowns, then it will have in nitely many solutions.

12 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Example Solve < x 1 +x +x = 0 x 1 +x x +x = 0 x 1 x x +x = 0 The corresponding augmented matrix is To set the 1st entries in rows and, we perform (E (E E 1 )! E. We obtain E 1 )! E and Set the leading entry of row to 1 by performing ( E )! E. We obtain Set the second entry in row to 0 by performing (E + E )! E. We obtain Set the leading entry in row to 1 by performing 1 E! E. We obtain The corresponding system is < x 1 +x +x = 0 x +x +x = 0 x + 1 x = 0 We can use back substitution. Letting x be the free variable and setting x = t, we get from equation that x = t. From equation, we get 1 x = x x = 1 t t = t

13 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 19 Therefore x 1 = x x = t t = t Thus, the solution in para,etric form is x 1 = >< x = x = > x = t 1.. Concept Review t t 1 t Know what a system in row-echelon form and reduced row-echelon form is. Be able to solve a system in row-echelon form, using back-substitution. Know the transformations which produce equivalent systems. Be able to perform Gaussian elimination to transform a system of linear equations into an equivalent system in row-echelon form. Be able to perform Gauss-Jordan elimination to transform a system of linear equations into an equivalent system in reduced row-echelon form. Be able to solve a system of linear equation using either Gaussian elimination or Gauss-Jordan elimination. 1.. Problems On pages 19-1, do # 1,,,,,,, 1, 1, 1, 1, 19, 0,,,,.

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination) Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

More information

1 Gaussian Elimination

1 Gaussian Elimination Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

More information

1 Systems Of Linear Equations and Matrices

1 Systems Of Linear Equations and Matrices 1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a

More information

Systems of Linear Equations

Systems of Linear Equations A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Systems of Linear Equations Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC

More information

Math 240: Linear Systems and Rank of a Matrix

Math 240: Linear Systems and Rank of a Matrix Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011

More information

2. Systems of Linear Equations.

2. Systems of Linear Equations. 2. Systems of Linear Equations 2.1. Introduction to Systems of Linear Equations Linear Systems In general, we define a linear equation in the n variables x 1, x 2,, x n to be one that can be expressed

More information

4.2: Systems of Linear Equations and Augmented Matrices 4.3: Gauss-Jordan Elimination

4.2: Systems of Linear Equations and Augmented Matrices 4.3: Gauss-Jordan Elimination 4.2: Systems of Linear Equations and Augmented Matrices 4.3: Gauss-Jordan Elimination 4.2/3.1 We have discussed using the substitution and elimination methods of solving a system of linear equations in

More information

1.4 More Matrix Operations and Properties

1.4 More Matrix Operations and Properties 8 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. More Matrix Operations Properties In this section, we look at the properties of the various operations on matrices. As we do so, we try to draw a parallel

More information

4 Solving Systems of Equations by Reducing Matrices

4 Solving Systems of Equations by Reducing Matrices Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations S F Ellermeyer May, 9 These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (rd edition) These notes

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations.

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations. A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x

More information

Solving Systems of Linear Equations; Row Reduction

Solving Systems of Linear Equations; Row Reduction Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed

More information

MAC Module 1 Systems of Linear Equations and Matrices I. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 1 Systems of Linear Equations and Matrices I. Learning Objectives. Upon completing this module, you should be able to: MAC 03 Module Systems of Linear Equations and Matrices I Learning Objectives Upon completing this module, you should be able to:. Represent a system of linear equations as an augmented matrix.. Identify

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

4.6 Null Space, Column Space, Row Space

4.6 Null Space, Column Space, Row Space NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

More information

Reinserting the variables in the last row of this augmented matrix gives

Reinserting the variables in the last row of this augmented matrix gives Math 313 Lecture #2 1.2: Row Echelon Form Not Reaching Strict Triangular Form. The algorithm that reduces the augmented matrix of an n n system to that of an equivalent strictly triangular system fails

More information

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form 1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

More information

Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Lecture 11: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University February 3, 2016 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

MATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0,

MATH 2030: SYSTEMS OF LINEAR EQUATIONS. ax + by + cz = d. )z = e. while these equations are not linear: xy z = 2, x x = 0, MATH 23: SYSTEMS OF LINEAR EQUATIONS Systems of Linear Equations In the plane R 2 the general form of the equation of a line is ax + by = c and that the general equation of a plane in R 3 will be we call

More information

Lecture 2. Solving Linear Systems

Lecture 2. Solving Linear Systems Lecture. Solving Linear Systems As we discussed before, we can solve any system of linear equations by the method of elimination, which is equivalent to applying a sequence of elementary row reductions

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 23, 2015 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

2.5 Gaussian Elimination

2.5 Gaussian Elimination page 150 150 CHAPTER 2 Matrices and Systems of Linear Equations 37 10 the linear algebra package of Maple, the three elementary 20 23 1 row operations are 12 1 swaprow(a,i,j): permute rows i and j 3 3

More information

Using Matrix Elimination to Solve Three Equations With Three Unknowns

Using Matrix Elimination to Solve Three Equations With Three Unknowns Using Matrix Elimination to Solve Three Equations With Three Unknowns Here we will be learning how to use Matrix Elimination to solve a linear system with three equation and three unknowns. Matrix Elimination

More information

1 Systems Of Linear Equations and Matrices

1 Systems Of Linear Equations and Matrices 1 Systems Of Linear Equations and Matrices 1.1 Systems Of Linear Equations In this section you ll learn what Systems Of Linear Equations are and how to solve them. Remember that equations of the form a

More information

Linear Systems and Gaussian Elimination

Linear Systems and Gaussian Elimination Eivind Eriksen Linear Systems and Gaussian Elimination September 2, 2011 BI Norwegian Business School Contents 1 Linear Systems................................................ 1 1.1 Linear Equations...........................................

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

4.5 Basis and Dimension of a Vector Space

4.5 Basis and Dimension of a Vector Space .. BASIS AND DIMENSION OF A VECTOR SPACE. Basis and Dimension of a Vector Space In the section on spanning sets and linear independence, we were trying to understand what the elements of a vector space

More information

MAT Solving Linear Systems Using Matrices and Row Operations

MAT Solving Linear Systems Using Matrices and Row Operations MAT 171 8.5 Solving Linear Systems Using Matrices and Row Operations A. Introduction to Matrices Identifying the Size and Entries of a Matrix B. The Augmented Matrix of a System of Equations Forming Augmented

More information

12. x 1 = 4x 1 + 3x 2 + 4t, x 2 = 6x 1 4x 2 + t x 1 = t2 x 1 tx 2, x 2 = ( sin t)x 1 + x x 1 = e2t x 2, x 2 + (sin t)x 1 = 1.

12. x 1 = 4x 1 + 3x 2 + 4t, x 2 = 6x 1 4x 2 + t x 1 = t2 x 1 tx 2, x 2 = ( sin t)x 1 + x x 1 = e2t x 2, x 2 + (sin t)x 1 = 1. page 139 3 Verify that for all values of t, (1 t,2 + 3t,3 2t) is a solution to the linear system x 1 + x 2 + x 3 = 6, x 1 x 2 2x 3 = 7, 5x 1 + x 2 x 3 = 4 24 Elementary Row Operations and Row-Echelon Matrices

More information

4.3 Linear Combinations and Spanning Sets

4.3 Linear Combinations and Spanning Sets 4.. LINEAR COMBINATIONS AND SPANNING SETS 5 4. Linear Combinations and Spanning Sets In the previous section, we looked at conditions under which a subset W of a vector space V was itself a vector space.

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

Chapter 4: Systems of Equations and Ineq. Lecture notes Math 1010

Chapter 4: Systems of Equations and Ineq. Lecture notes Math 1010 Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an

More information

Lecture 6. Inverse of Matrix

Lecture 6. Inverse of Matrix Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

More information

Overview. Matrix Solutions to Linear Systems. Three-variable systems. Matrices. Solving a three-variable system

Overview. Matrix Solutions to Linear Systems. Three-variable systems. Matrices. Solving a three-variable system Overview Matrix Solutions to Linear Systems Section 8.1 When solving systems of linear equations in two variables, we utilized the following techniques: 1.Substitution 2.Elimination 3.Graphing In this

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations. Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

More information

MATH 304 Linear Algebra Lecture 4: Row echelon form. Gauss-Jordan reduction.

MATH 304 Linear Algebra Lecture 4: Row echelon form. Gauss-Jordan reduction. MATH 304 Linear Algebra Lecture 4: Row echelon form Gauss-Jordan reduction System of linear equations: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2

More information

A Quick Introduction to Row Reduction

A Quick Introduction to Row Reduction A Quick Introduction to Row Reduction Gaussian Elimination Suppose we are asked to solve the system of equations 4x + 5x 2 + 6x 3 = 7 6x + 7x 2 + 8x 3 = 9. That is, we want to find all values of x, x 2

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Chapter 1 Matrices and Systems of Linear Equations

Chapter 1 Matrices and Systems of Linear Equations Chapter 1 Matrices and Systems of Linear Equations 1.1: Introduction to Matrices and Systems of Linear Equations 1.2: Echelon Form and Gauss-Jordan Elimination Lecture Linear Algebra - Math 2568M on Friday,

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations EXAMPLE: Solve the system of linear equations. Solution: From Equation 3, you know the value z. To solve for y, substitute z = 2 into Equation 2 to obtain

More information

Elementary row operations and some applications

Elementary row operations and some applications Physics 116A Winter 2011 Elementary row operations and some applications 1. Elementary row operations Given an N N matrix A, we can perform various operations that modify some of the rows of A. There are

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University May 2016 1 Notation and Terms The row echelon form of a matrix contains a great deal of information, both about

More information

3 Gaussian elimination (row reduction)

3 Gaussian elimination (row reduction) LINEAR ALGEBRA: THEORY. Version: August 12, 2000 23 3 Gaussian elimination (row reduction) Let A be an n k matrix and b is an n 1 vector. We wish to solve the equation Ax = b (3.1) where x R k. One can

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix

More information

Unit 17 The Theory of Linear Systems

Unit 17 The Theory of Linear Systems Unit 17 The Theory of Linear Systems In this section, we look at characteristics of systems of linear equations and also of their solution sets. Theorem 17.1. For any system of linear equations A x = b,

More information

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION

Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 8498_CH08_WilliamsA.qxd 11/13/09 10:35 AM Page 347 Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION C H A P T E R Numerical Methods 8 I n this chapter we look at numerical techniques for

More information

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

Matrix Inverses. Since the linear system. can be written as. where. ,, and,

Matrix Inverses. Since the linear system. can be written as. where. ,, and, Matrix Inverses Consider the ordinary algebraic equation and its solution shown below: Since the linear system can be written as where,, and, (A = coefficient matrix, x = variable vector, b = constant

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations

More information

1.5 Elementary Matrices and a Method for Finding the Inverse

1.5 Elementary Matrices and a Method for Finding the Inverse .5 Elementary Matrices and a Method for Finding the Inverse Definition A n n matrix is called an elementary matrix if it can be obtained from I n by performing a single elementary row operation Reminder:

More information

Direct Methods for Solving Linear Systems. Linear Systems of Equations

Direct Methods for Solving Linear Systems. Linear Systems of Equations Direct Methods for Solving Linear Systems Linear Systems of Equations Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms MA 2071 A 12 Bill Farr August 22, 2012 1 2 3 4 5 Definition of Pivot Postion An Algorithm for Putting a Matrix in RREF An Linear Systems and Matrices A linear system has two associated matrices, the coefficient

More information

2.6 The Inverse of a Square Matrix

2.6 The Inverse of a Square Matrix 200/2/6 page 62 62 CHAPTER 2 Matrices and Systems of Linear Equations 0 0 2 + i i 2i 5 A = 0 9 0 54 A = i i 4 + i 2 0 60 i + i + 5i 26 The Inverse of a Square Matrix In this section we investigate the

More information

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A.

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A. APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the co-factor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj

More information

1.3 Matrices and Matrix Operations

1.3 Matrices and Matrix Operations 0 CHAPTER. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Matrices and Matrix Operations.. De nitions and Notation Matrices are yet another mathematical object. Learning about matrices means learning what they

More information

Transition Maths and Algebra with Geometry

Transition Maths and Algebra with Geometry Transition Maths and Algebra with Geometry Tomasz Brengos Lecture Notes Electrical and Computer Engineering Tomasz Brengos Transition Maths and Algebra with Geometry 1/27 Contents 1 Systems of linear equations

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

ROW REDUCTION AND ITS MANY USES

ROW REDUCTION AND ITS MANY USES ROW REDUCTION AND ITS MANY USES CHRIS KOTTKE These notes will cover the use of row reduction on matrices and its many applications, including solving linear systems, inverting linear operators, and computing

More information

Linear algebra. Systems of linear equations

Linear algebra. Systems of linear equations Linear algebra Outline 1 Basic notation Gaussian elimination Cramer s rule 2 Examples 3 List of tasks for students Lucie Doudová (UoD Brno) Linear algebra 2 / 27 Outline 1 Basic notation Gaussian elimination

More information

Matrix Division Je Stuart c 2008

Matrix Division Je Stuart c 2008 Matrix Division Je Stuart c 008 High School Algebra Revisited The linear system ax = b where a and b are real numbers. Why do we need division? In its earliest form, division must have arisen to answer

More information

De nitions of Linear Algebra Terms

De nitions of Linear Algebra Terms De nitions of Linear Algebra Terms In order to learn and understand mathematics, it is necessary to understand the meanings of the terms (vocabulary words) that are used This document contains de nitions

More information

Let A be a square matrix of size n. A matrix B is called inverse of A if AB = BA = I.

Let A be a square matrix of size n. A matrix B is called inverse of A if AB = BA = I. Matrix Inverses Let A be a square matrix of size n A matrix B is called inverse of A if AB = BA = I If A has an inverse, then we say that A is invertible The inverse of A is unique and we denote it by

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

2 Matrices and systems of linear equations

2 Matrices and systems of linear equations Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = x y = 0. ( This system can be solved easily: Multiply the nd equation by 4, and add the two resulting

More information

2 Matrices and systems of linear equations

2 Matrices and systems of linear equations Matrices and systems of linear equations You have all seen systems of linear equations such as 3x + 4y = 5 x y = 0. () This system can easily be solved: just multiply the nd equation by 4, and add the

More information

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n

SUBSPACES. Chapter Introduction. 3.2 Subspaces of F n Chapter 3 SUBSPACES 3. Introduction Throughout this chapter, we will be studying F n, the set of all n dimensional column vectors with components from a field F. We continue our study of matrices by considering

More information

SECTION 1.1: SYSTEMS OF LINEAR EQUATIONS

SECTION 1.1: SYSTEMS OF LINEAR EQUATIONS SECTION.: SYSTEMS OF LINEAR EQUATIONS THE BASICS What is a linear equation? What is a system of linear equations? What is a solution of a system? What is a solution set? When are two systems equivalent?

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

8.2 Systems of Linear Equations: Augmented Matrices

8.2 Systems of Linear Equations: Augmented Matrices 8. Systems of Linear Equations: Augmented Matrices 567 8. Systems of Linear Equations: Augmented Matrices In Section 8. we introduced Gaussian Elimination as a means of transforming a system of linear

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations? - It is the set of all ordered pairs (x, y) that satisfy the two equations. You

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Recall that an equation of the form Ax + By = C is a linear equation in two variables. A solution of a linear equation in two variables is an ordered pair (x, y) that makes

More information

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved. 3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices

More information

Math 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices

Math 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that 0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables

More information

( % . This matrix consists of $ 4 5 " 5' the coefficients of the variables as they appear in the original system. The augmented 3 " 2 2 # 2 " 3 4&

( % . This matrix consists of $ 4 5  5' the coefficients of the variables as they appear in the original system. The augmented 3  2 2 # 2  3 4& Matrices define matrix We will use matrices to help us solve systems of equations. A matrix is a rectangular array of numbers enclosed in parentheses or brackets. In linear algebra, matrices are important

More information

2.4 Solving a System of Linear Equations with Matrices

2.4 Solving a System of Linear Equations with Matrices .4 Solving a System of Linear Equations with Matrices Question : What is a matrix? Question : How do you form an augmented matrix from a system of linear equations? Question : How do you use row operations

More information

2. Echelon form It is time to make some more definitions and actually prove that Gaussian elimination works: Definition 2.1. Let m and n Z be two

2. Echelon form It is time to make some more definitions and actually prove that Gaussian elimination works: Definition 2.1. Let m and n Z be two 2. Echelon form It is time to make some more definitions and actually prove that Gaussian elimination works: Definition 2.1. Let m and n Z be two positive integers. Let I = { i Z 0 < i m } and J = { j

More information

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction)

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 12, 2014) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In

More information

Inverses and powers: Rules of Matrix Arithmetic

Inverses and powers: Rules of Matrix Arithmetic Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

More information

SECTION 8.3: THE INVERSE OF A SQUARE MATRIX

SECTION 8.3: THE INVERSE OF A SQUARE MATRIX (Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or

More information

Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations. Substitution Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

More information

2.2/2.3 - Solving Systems of Linear Equations

2.2/2.3 - Solving Systems of Linear Equations c Kathryn Bollinger, August 28, 2011 1 2.2/2.3 - Solving Systems of Linear Equations A Brief Introduction to Matrices Matrices are used to organize data efficiently and will help us to solve systems of

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0. Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

More information

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction)

Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Physics 116A Solving linear equations by Gaussian Elimination (Row Reduction) Peter Young (Dated: February 22, 2013) I. INTRODUCTION The general problem is to solve m linear equations in n variables. In

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

More information