1.2 Solving a System of Linear Equations

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1.2 Solving a System of Linear Equations"

Transcription

1 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables is of the form >< > a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + + a n x n = b a m1 x 1 + a m x + + a mn x n = b m Some of the coe cients a ij can be zero. In fact, the more coe cients are zero, the easier the system will be to solve. The easiest system to solve is of the form a 11 x 1 = b 1 >< a x = b a x = b > a mn x n = b m Its corresponding augmented matrix is a b 1 0 a 0 b 0 0 a 0 b a mn b m To solve, we simply divide by the coe cient in front of each variable. This is illustrated below. < x 1 = 10 Example 0 Solve x = 9 x = The solution is x 1 = 10 =, x = 9 =, x =. When all the coe cients in the system above are 1, the system in the above example is said to be in reduced row-echelon form. The precise de nition is given below. De nition 1 Consider a system of linear equations. 1. The system is said to be in reduced row-echelon form if it satis es the four properties below

2 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES (a) If a row does not consist entirely of zeros, then the rst nonzero number is a 1. This number is called the leading 1. (b) The rows consisting entirely of zeros, if there are any, are at the bottom of the system. (c) If two consecutive rows contain a leading 1, then the leading 1 of the higher row is further to the left than the leading 1 of the lower row. (d) Each column that contains a leading 1 contains 0 everywhere else.. The system is said to be in row-echelon form if the properties a - c are satis ed. Thus, a system in reduced row-echelon form is necessarily in row-echelon form. Remark The same de nitions apply to the augmented matrix of a system. Remark Since we can switch back and forth between a system of linear equations and its corresponding augmented matrix, we can either work on a system, or on its corresponding augmented matrix. We will illustrate both. Example The matrices below are in reduced row-echelon form Example The matrices below are in row-echelon form A system in row-echelon form is also easy to solve. We illustrate how with an example.

3 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 9 Example Consider the system < x 1 +x x = 10 x +x = x = Its corresponding augmented matrix is Such a system is also fairly easy to solve. The method used is called backsubstitution. Since we know x =, we can replace x by its value in the second equation to obtain x + = or x =. Now that we know x and x, we can replace in the rst equation to obtain x 1 + = 10 or x 1 =. It is called back substitution because we work backward. We start by nding the value of the last variable, then the next to the last and so on, until we nd the value of the rst variable. At this point, we are done. Remark In order to be able to do back-substitution, it is not necessary that a ii = 1 in the i th equation. De nition Two systems are said to be equivalent if they have the same solution set. Similarly, two augmented matrices are said to be equivalent if they are the augmented matrices of two systems having the same solution set. You remember for elementary mathematics, to solve a given equation in one variable say x, we transform it into an equation of the form x = S where S is then the solution we are after. To transform it, we use certain transformations which do not change the solution set of the equation, in other words, we obtain equivalent equations until we have one of the form x = S. You will recall that the transformations that can be applied when solving an equation are 1. Add the same number on both sides of the equation.. Multiply both sides by the same nonzero number. We follow a similar procedure to solve systems of equations. There are actually two procedures we can use. They are outlined below, then explored thoroughly in the next two subsections. The rst technique, is called Gaussian elimination. Algorithm 9 (Gaussian Elimination) To solve a system of linear equations, follow the steps below 1. Transform its augmented matrix into an equivalent augmented matrix in row-echelon form.

4 10 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES. Use back-substitution to nish solving. The second technique is called Gauss-Jordan elimination Algorithm 0 (Gauss-Jordan Elimination) To solve a system of linear equations, follow the steps below 1. Transform its augmented matrix into an equivalent augmented matrix in reduced row-echelon form.. The solution is given by the last column of the augmented matrix in reduced row-echelon form. With either technique, since the systems are equivalent, they will have the same solution set. Usually, getting from a system to an equivalent system in row-echelon form or reduced row-echelon form requires several steps, each step producing an equivalent system. The question is which transformations can we apply to a system so that it is transformed into a system in row echelon form or reduced row-echelon form. The key is that the new system should be equivalent to the original one, so they have the same solutions. It would not help to get a system which is simpler to solve, but which does not have the same solutions as the original one. There are three transformations which can be applied, to a system that will produce an equivalent system. For simplicity, let us label the equations of a system E 1, E,, E m. We will use the same names for the rows of the corresponding augmented matrix. Proposition 1 Each of the following operations on a system of linear equations produces an equivalent system 1. Equation E i can be multiplied by a nonzero constant, with the result used in place of E i. This operation is denoted (E i )! (E i ). Equation E j can be multiplied by any constant and added to equation E i, with the result used in place of E i. This operation is denoted (E j + E i )! (E i ). Equations E i and E j can be transposed in order. This operation is denoted (E i ) $ (E j ) Remark The same operations can be applied to the augmented matrix of a system. Simply replace the term equation by row in the above proposition. Remark These operations are called elementary row operations. Let us look at some examples to illustrate how these transformations are done.

5 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 11 Example Consider If we perform (E 1 )! (E ), we obtain Example Consider If we perform 1 E! (E ), we obtain This is useful when we want to obtain a leading 1 on a given row. Example Consider If we perform ( E 1 + E )! (E ), we obtain This is useful when we want to make an entry equal to 0. In this case, we made the rst entry of the second row equal to 0. We now look at each method to solve a system in greater detail. 1.. Gaussian Elimination Gaussian elimination was brie y outlined above. It has two main steps. First, we get a system (or its augmented matrix) in row-echelon form. Then, we use back substitution to nish solving. We have already explained back substitution. The rst step is always done in a very orderly fashion. In fact, it is very easy to implement on a computer. It always proceeds as follows (the algorithm below works for both a system and its augmented matrix. The augmented matrix part appears in parentheses)

6 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Remark Proceed from the rst equation (row) to the last. Look at the rst equation (row), make sure no equation (row) below it has a leading entry further to the left. If one does, switch the two. Eliminate all the entries below the leading entry of the rst equation (row). Repeat the procedure for equation (row), then, In general, we look at the i th equation (row), make sure the coe cient for x i is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x i from all the equations below the i th equation. We do this for i = 1; ; ; n 1 if the system has n equations. Recall that Gaussian elimination is a systematic procedure which transforms a system into an equivalent system in row-echelon form. We illustrate it with examples. Example Consider the system E 1 x 1 +x +x = >< E x 1 +x x +x = 1 E x 1 x x +x = > E x 1 +x +x x = (1.) Its corresponding augmented matrix is We follow the algorithm described above. We begin with the rst row. Its leading entry is in column 1. The goal is to set to 0 all the other entries in column 1 and rows -. In order to achieve this, we perform (E E 1 )! (E ), (E E 1 )! (E ) and (E + E 1 )! (E ). The resulting augmented matrix is Next, we work on the second row. First, we make its leading entry 1 by performing ( E 1 )! (E 1 ). The resulting augmented matrix is

7 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 Then we make the entries below the leading entry of the second row equal to 0 by performing (E + E )! (E ) and (E E )! (E ). The resulting augmented matrix is We actually were lucky. In the process, we did part of the next step. Looking at row, we already set the entry below it to 0. We just have 1 to set the leading entry of row to 1 by performing E! E. The resulting augmented matrix is We are on the last row, the only thing to do here is to set its leading entry 1 to 1 by performing 1 E! (E ). The resulting augmented matrix is Now, we see that the matrix is in row-echelon form. The corresponding system is > < > E 1 x 1 +x +x = E x +x +x = E x + 1 x = 1 E x = 1 (1.) The system in (1) has the same solutions as the original system (1). We nish solving the system in (1) using back-substitution. From E, we get x = 1 We can now use E to nd x as follows x + 1 x = 1 x = 1 (1 x ) x = 0 since x = 1

8 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES We now continue with E. Finally, using E 1 yields x x x = x = (x + x ) x = x 1 + x + x = x 1 = x x + x 1 = 1 The solutions of the system in (1) and therefore of the system in (1) are x 1 = 1; x = ; x = 0; and x = 1 This is an example in which the procedure produced a unique solution, we had a consistent system. Following the same procedure, how will we detect if we have a system with no solutions, or one with an in nite number of solutions? The next two examples illustrate this. To also illustrate that the same procedure can be applied to system as well as augmented matrices, we do the next example using the system. < Example 9 Solve the system x 1 + x + x = x 1 + x + x = x 1 + x + x = To eliminate x 1 from E and E, we perform (E E 1 )! (E ) and (E E 1 )! (E ). The resulting system is < x 1 + x + x = x = x = The next step would be to eliminate x from E. This was done in the previous step. The only thing left is to set the leading coe cient of the second equation to 1 by performing ( E )! (E ). The corresponding system is < x 1 + x + x = x = x = This system has an in nite number of solutions given by x = and x 1 +x = or x 1 = x. The free variable is x. In parametric notation, the solution set is < x 1 = t x = t x =

9 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 < Example 0 Solve the system x 1 + x + x = x 1 + x + x = x 1 + x + x = To eliminate x 1 from E and E, we perform (E E 1 )! (E ) and (E E 1 )! (E ). The resulting system is < x 1 + x + x = x = x = The next step would be to eliminate x from E. This was done in the previous step. The only thing left is to set the leading coe cient of the second equation to 1 by performing ( E )! (E ). The corresponding system is x 1 + x + x = x = x = This system has no solutions because the last two equations are in contradiction. Remark 1 It is important to notice that the Gaussian elimination procedure is always done in a very orderly fashion. In fact, it is very easy to implement on a computer. It always proceeds as follows Look at the rst equation, make sure the coe cient for x 1 is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x 1 from all the equations below the rst equation. Next, look at the second equation, make sure the coe cient for x is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x from all the equations below the second equation. The procedure continues the same way. In general, we look at the i th equation, make sure the coe cient for x i is not 0. If it is, you will have to nd an equation in which it is not, and interchange the two equations. Then, eliminate x i from all the equations below the i th equation. We do this for i = 1; ; ; n 1 if the system has n equations. 1.. Gauss-Jordan Elimination Here, we will work with augmented matrices. Recall that Gauss-Jordan elimination is a systematic procedure which transforms a system into an equivalent system in reduced row-echelon form. To obtain a reduced row-echelon form, we rst obtain a row-echelon form, then we go further. We need to make the columns containing the leading entries equal to 0, except for the leading entry of course. We illustrate it with an example.

10 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Example Solve the system x 1 +x +x = >< x 1 +x x +x = 1 x 1 x x +x = > x 1 +x +x x = Its corresponding augmented matrix is This is the system we did above. We will take it from its row-echelon form Now, we start from the bottom and work our way up. There is nothing to do on the last row. For row, we make the th entry 0 by performing E 1 E! (E ). The resulting augmented matrix is For row, we make the rd and th entry 0. Let s do them one at a time. First, we perform (E E )! (E ). We obtain Next, we perform (E E ) to obtain

11 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1 Finally row 1. We make entries and equal to 0 by performing rst (E 1 E )! (E 1 ), this gives us then (E 1 E )! (E 1 ), this gives us The solution is now read from the last column. Thus, we see that x 1 = 1, x =, x = 0, and x = Homogeneous Linear Systems We nish this section by looking at a special type of system, homogeneous systems. These system as we will see, always have at least one solution. De nition (Homogeneous System) A system of linear equations is said to be homogeneous if the constant terms are always 0. In other words, a homogeneous system is of the form a 11 x 1 + a 1 x + + a 1n x n = 0 >< a 1 x 1 + a x + + a n x n = 0 > a m1 x 1 + a m x + + a mn x n = 0 De nition The solution x i = 0 for i = 1,,, n is called the trivial solution. Other solutions are called nontrivial solutions. Remark A homogeneous system always has at least the trivial solution. So, a homogeneous system is always consistent. Remark Another important fact about homogeneous systems is that the elementary transformations will not alter the last column of their augmented matrix. Thus, when we transform a homogeneous system in row-echelon form or reduced row-echelon form, we still have a homogeneous system. It turns out that a homogeneous system of linear equations either has only the trivial solution, or has in nitely many solutions. We state this result without proof. We will prove it later in the course. If the homogeneous system has more equations than unknowns, then it will have in nitely many solutions.

12 1 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS AND MATRICES Example Solve < x 1 +x +x = 0 x 1 +x x +x = 0 x 1 x x +x = 0 The corresponding augmented matrix is To set the 1st entries in rows and, we perform (E (E E 1 )! E. We obtain E 1 )! E and Set the leading entry of row to 1 by performing ( E )! E. We obtain Set the second entry in row to 0 by performing (E + E )! E. We obtain Set the leading entry in row to 1 by performing 1 E! E. We obtain The corresponding system is < x 1 +x +x = 0 x +x +x = 0 x + 1 x = 0 We can use back substitution. Letting x be the free variable and setting x = t, we get from equation that x = t. From equation, we get 1 x = x x = 1 t t = t

13 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 19 Therefore x 1 = x x = t t = t Thus, the solution in para,etric form is x 1 = >< x = x = > x = t 1.. Concept Review t t 1 t Know what a system in row-echelon form and reduced row-echelon form is. Be able to solve a system in row-echelon form, using back-substitution. Know the transformations which produce equivalent systems. Be able to perform Gaussian elimination to transform a system of linear equations into an equivalent system in row-echelon form. Be able to perform Gauss-Jordan elimination to transform a system of linear equations into an equivalent system in reduced row-echelon form. Be able to solve a system of linear equation using either Gaussian elimination or Gauss-Jordan elimination. 1.. Problems On pages 19-1, do # 1,,,,,,, 1, 1, 1, 1, 19, 0,,,,.

160 CHAPTER 4. VECTOR SPACES

160 CHAPTER 4. VECTOR SPACES 160 CHAPTER 4. VECTOR SPACES 4. Rank and Nullity In this section, we look at relationships between the row space, column space, null space of a matrix and its transpose. We will derive fundamental results

More information

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)

Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination) Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix

More information

4.6 Null Space, Column Space, Row Space

4.6 Null Space, Column Space, Row Space NULL SPACE, COLUMN SPACE, ROW SPACE Null Space, Column Space, Row Space In applications of linear algebra, subspaces of R n typically arise in one of two situations: ) as the set of solutions of a linear

More information

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form 1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Math 240: Linear Systems and Rank of a Matrix

Math 240: Linear Systems and Rank of a Matrix Math 240: Linear Systems and Rank of a Matrix Ryan Blair University of Pennsylvania Thursday January 20, 2011 Ryan Blair (U Penn) Math 240: Linear Systems and Rank of a Matrix Thursday January 20, 2011

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Solving Systems of Linear Equations; Row Reduction

Solving Systems of Linear Equations; Row Reduction Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations. Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Lecture 6. Inverse of Matrix

Lecture 6. Inverse of Matrix Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

5.5. Solving linear systems by the elimination method

5.5. Solving linear systems by the elimination method 55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

Partial Fractions Decomposition

Partial Fractions Decomposition Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational

More information

Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development

Linear Equations ! 25 30 35$ &  350 150% &  11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix

B such that AB = I and BA = I. (We say B is an inverse of A.) Definition A square matrix A is invertible (or nonsingular) if matrix Matrix inverses Recall... Definition A square matrix A is invertible (or nonsingular) if matrix B such that AB = and BA =. (We say B is an inverse of A.) Remark Not all square matrices are invertible.

More information

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison

SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections

More information

Systems of Linear Equations

Systems of Linear Equations Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear

More information

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A.

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A. APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the co-factor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj

More information

Linear Dependence Tests

Linear Dependence Tests Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Inverses and powers: Rules of Matrix Arithmetic

Inverses and powers: Rules of Matrix Arithmetic Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

More information

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0. Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

More information

Representation of functions as power series

Representation of functions as power series Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

More information

SECTION 8.3: THE INVERSE OF A SQUARE MATRIX

SECTION 8.3: THE INVERSE OF A SQUARE MATRIX (Section 8.3: The Inverse of a Square Matrix) 8.47 SECTION 8.3: THE INVERSE OF A SQUARE MATRIX PART A: (REVIEW) THE INVERSE OF A REAL NUMBER If a is a nonzero real number, then aa 1 = a 1 a = 1. a 1, or

More information

2.2/2.3 - Solving Systems of Linear Equations

2.2/2.3 - Solving Systems of Linear Equations c Kathryn Bollinger, August 28, 2011 1 2.2/2.3 - Solving Systems of Linear Equations A Brief Introduction to Matrices Matrices are used to organize data efficiently and will help us to solve systems of

More information

Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations. Substitution Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

5 Homogeneous systems

5 Homogeneous systems 5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m

More information

Notes on Chapter 1, Section 2 Arithmetic and Divisibility

Notes on Chapter 1, Section 2 Arithmetic and Divisibility Notes on Chapter 1, Section 2 Arithmetic and Divisibility August 16, 2006 1 Arithmetic Properties of the Integers Recall that the set of integers is the set Z = f0; 1; 1; 2; 2; 3; 3; : : :g. The integers

More information

Lecture Notes: Matrix Inverse. 1 Inverse Definition

Lecture Notes: Matrix Inverse. 1 Inverse Definition Lecture Notes: Matrix Inverse Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Inverse Definition We use I to represent identity matrices,

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

Chapter 1 - Matrices & Determinants

Chapter 1 - Matrices & Determinants Chapter 1 - Matrices & Determinants Arthur Cayley (August 16, 1821 - January 26, 1895) was a British Mathematician and Founder of the Modern British School of Pure Mathematics. As a child, Cayley enjoyed

More information

4. MATRICES Matrices

4. MATRICES Matrices 4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

More information

DETERMINANTS. b 2. x 2

DETERMINANTS. b 2. x 2 DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

More information

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

More information

Diagonal, Symmetric and Triangular Matrices

Diagonal, Symmetric and Triangular Matrices Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

Solving a System of Equations

Solving a System of Equations 11 Solving a System of Equations 11-1 Introduction The previous chapter has shown how to solve an algebraic equation with one variable. However, sometimes there is more than one unknown that must be determined

More information

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3 MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Matrices, Determinants and Linear Systems

Matrices, Determinants and Linear Systems September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

1 Determinants. Definition 1

1 Determinants. Definition 1 Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 8. Matrices II: inverses. 8.1 What is an inverse? Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we

More information

Matrix Algebra and Applications

Matrix Algebra and Applications Matrix Algebra and Applications Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Matrix Algebra and Applications 1 / 49 EC2040 Topic 2 - Matrices and Matrix Algebra Reading 1 Chapters

More information

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, Chapter 1: Linear Equations and Matrices MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

More information

1.5 SOLUTION SETS OF LINEAR SYSTEMS

1.5 SOLUTION SETS OF LINEAR SYSTEMS 1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as

More information

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self Study Course SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING Self Study Course MODULE 17 MATRICES II Module Topics 1. Inverse of matrix using cofactors 2. Sets of linear equations 3. Solution of sets of linear

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which

Homogeneous systems of algebraic equations. A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which Homogeneous systems of algebraic equations A homogeneous (ho-mo-geen -ius) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x + + a n x n = a

More information

SYSTEMS OF EQUATIONS

SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which

More information

1 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

Mathematics Notes for Class 12 chapter 3. Matrices

Mathematics Notes for Class 12 chapter 3. Matrices 1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form

More information

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013 Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous

More information

Math 315: Linear Algebra Solutions to Midterm Exam I

Math 315: Linear Algebra Solutions to Midterm Exam I Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =

More information

Solving Systems of 3x3 Linear Equations - Elimination

Solving Systems of 3x3 Linear Equations - Elimination Solving Systems of 3x3 Linear Equations - Elimination We will solve systems of 3x3 linear equations using the same strategies we have used before. That is, we will take something we don t recognize and

More information

Matrix Inverse and Determinants

Matrix Inverse and Determinants DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and

More information

The Inverse of a Square Matrix

The Inverse of a Square Matrix These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

MathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse?

MathQuest: Linear Algebra. 1. Which of the following matrices does not have an inverse? MathQuest: Linear Algebra Matrix Inverses 1. Which of the following matrices does not have an inverse? 1 2 (a) 3 4 2 2 (b) 4 4 1 (c) 3 4 (d) 2 (e) More than one of the above do not have inverses. (f) All

More information

2.5 Elementary Row Operations and the Determinant

2.5 Elementary Row Operations and the Determinant 2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)

More information

Solutions to Review Problems

Solutions to Review Problems Chapter 1 Solutions to Review Problems Chapter 1 Exercise 42 Which of the following equations are not linear and why: (a x 2 1 + 3x 2 2x 3 = 5. (b x 1 + x 1 x 2 + 2x 3 = 1. (c x 1 + 2 x 2 + x 3 = 5. (a

More information

We seek a factorization of a square matrix A into the product of two matrices which yields an

We seek a factorization of a square matrix A into the product of two matrices which yields an LU Decompositions We seek a factorization of a square matrix A into the product of two matrices which yields an efficient method for solving the system where A is the coefficient matrix, x is our variable

More information

Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli

Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli Prompt: A mentor teacher and student teacher are discussing

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

Arithmetic and Algebra of Matrices

Arithmetic and Algebra of Matrices Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

LAB 11: MATRICES, SYSTEMS OF EQUATIONS and POLYNOMIAL MODELING

LAB 11: MATRICES, SYSTEMS OF EQUATIONS and POLYNOMIAL MODELING LAB 11: MATRICS, SYSTMS OF QUATIONS and POLYNOMIAL MODLING Objectives: 1. Solve systems of linear equations using augmented matrices. 2. Solve systems of linear equations using matrix equations and inverse

More information

Solution to Homework 2

Solution to Homework 2 Solution to Homework 2 Olena Bormashenko September 23, 2011 Section 1.4: 1(a)(b)(i)(k), 4, 5, 14; Section 1.5: 1(a)(b)(c)(d)(e)(n), 2(a)(c), 13, 16, 17, 18, 27 Section 1.4 1. Compute the following, if

More information

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned

Elementary Number Theory We begin with a bit of elementary number theory, which is concerned CONSTRUCTION OF THE FINITE FIELDS Z p S. R. DOTY Elementary Number Theory We begin with a bit of elementary number theory, which is concerned solely with questions about the set of integers Z = {0, ±1,

More information

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns

Math 54. Selected Solutions for Week Is u in the plane in R 3 spanned by the columns Math 5. Selected Solutions for Week 2 Section. (Page 2). Let u = and A = 5 2 6. Is u in the plane in R spanned by the columns of A? (See the figure omitted].) Why or why not? First of all, the plane in

More information

Lecture Notes 2: Matrices as Systems of Linear Equations

Lecture Notes 2: Matrices as Systems of Linear Equations 2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information