Solving Systems of Two Equations Algebraically

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Solving Systems of Two Equations Algebraically"

Transcription

1 8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns called the substitution method. Substitution method. steps: The substitution method involves two consecutive 1. Solve either equation for either variable. 2. Substitute the result from step one into the other equation. EXAMPLE 1. Solve the following system of equations: 2x 5y = 8 (3.5) y =3x 1 (3.6) Solution: Equation (3.30) is already solved for y. Substitute equation (3.30) into equation (3.29). Now solve for x. 2x 5y = 8 Equation (3.29). 2x 5(3x 1) = 8 Substitute (3.30) in (3.29). 2x 15x +5= 8 Distribute 5. 13x +5= 8 13x = 13 Subtract 5 from both sides. x =1 Divide both sides by 13. Substitute x = 1 in equation (3.30), then solve for y. y =3x 1 Equation (3.30). y =3(1) 1 Substitute 1 for x. y =2 Hence, (x, y) =(1, 2) is the solution of the system. Check: To show that the solution (x, y) =(1, 2) is a solution of the system, we need to show that (x, y) =(1, 2) satisfies both equations (3.29) and(3.30).

2 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 9 Substitute (x, y) =(1, 2) in equation (3.29): 2x 5y = 8 2(1) 5(2) = = 8 8 = 8 Thus, (1, 2) satisfies equation (3.29). Substitute (x, y) =(1, 2) in equation (3.30): y =3x 1 2=3(1) 1 2=3 1 2=2 Thus, (1, 2) satisfies equation (3.30). EXAMPLE 2. Solve the following system of equations: 5x 2y = 12 (3.7) 4x + y = 6 (3.8) Solution: The first step is to solve either equation for either variable. This means that we can solve the first equation for x or y, but it also means that we could first solve the second equation for x or y. Of these four possible choices, solving equation (3.32) for y seems the easiest way to start. 4x + y =6 Equation (3.32). y =6 4x Subtract 4x from both sides. Next, substitute y =6 4x for y in equation (3.31). 5x 2y =12 Equation (3.31). 5x 2(6 4x) =12 Substitute y =6 4x for y. 5x x =12 Distribute 2. 13x 12 = 12 13x =24 x = Add 12 to both sides. Divide both sides by 13. Finally, to find the y-value, substitute x =24/13 into the equation y =

3 10 MODULE 3. EQUATIONS 6 4x (you can also substitute x =24/13 into equation (3.31) or(3.32)). y =6 4x ( ) 24 y = y = y = Substitute x =24/13 in y =6 4x. Multiply, then make equivalent fractions. Hence, (x, y) =(24/13, 18/13) is the solution of the system. EXAMPLE 3. Solve the following system of equations: 3x 2y = 6 (3.9) 4x +5y = 20 (3.10) Solution: Dividing by 2 gives easier fractions to deal with than dividing by 3, 4, or 5, so let s start by solving equation (3.33) fory. 3x 2y =6 Equation (3.33). 2y =6 3x y = 6 3x 2 y = x Substitute y = x for y in equation (3.34). Subtract 3x from both sides. Divide both sides by 2. Divide both terms by 2 using distributive property. 4x + 5y = 20 Equation (3.34). 4x +5 ( ) x =20 Substitute 3+ 3 x for y. 2 4x x =20 Distribute the x x = 40 Clear fractions by multiplying both sides by 2. 23x = 70 x = Add 30 to both sides. Divide both sides by 23.

4 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 11 To find y, substitute x =70/23 for x into equation y = x. y = x y = 3+ 3 ( ) 70 Substitute 70/23 for x y = Multiply. Make equivalent fractions. 23 y = Hence, (x, y) =(70/23, 36/23) is the solution of the system. Exceptional Cases Revisited It is entirely possible that you might apply the substitution method to asystem of equations that either have an infinite number of solutions or no solutions at all. Let s see what happens should you do that. EXAMPLE 4. Solve the following system of equations: 2x +3y = 6 (3.11) y = 2 3 x + 4 (3.12) Solution: Equation (3.36) is already solved for y, so let s substitute y = 2 3x +4fory in equation x + 3y = 6 Equation (3.35). 2x +3 ( 23 ) x +4 =6 Substitute 2 3 x +4fory. 2x 2x +12=6 Distribute the = 6 Goodness! What happened to the x? How are we supposed to solve for x in this situation? However, the resulting statement, 12 = 6, is false, no matter what we use for x and y. This should give us a clue that there are no solutions. Perhaps we are dealing with parallel lines? Let s solve equation (3.35) to determine the situation. 2x + 3y = 6 Equation (3.35). 3y = 2x +6 Subtract 2x from both sides. y = 2 x +2 Divide both sides by 3. 3

5 12 MODULE 3. EQUATIONS Thus, our system is equivalent to the following two equations. y = 2 3 x + 2 (3.13) y = 2 3 x + 4 (3.14) These lines have the same slope 2/3, but different y-intercepts (one has y- intercept (0, 2), the other has y-intercept (0, 4)). Hence, these are two distinct parallel lines and the system has no solution. EXAMPLE 5. Solve the following system of equations: 2x 6y = 8 (3.15) x =3y 4 (3.16) Solution: Equation (3.40) is already solved for x, so let s substitute x =3y 4 for x in equation (3.39). 2x 6y = 8 Equation (3.39). 2(3y 4) 6y = 8 Substitute 3y 4forx. 6y 8 6y = 8 Distribute the 2. 8 = 8 Goodness! What happened to the x? How are we supposed to solve for x in this situation? However, note that the resulting statement, 8 = 8, is a true statement this time. Perhaps this is an indication that we are dealing with the same line? Let s put both equations (3.39) and(3.40) into slope-intercept form so that we can compare them. Solve equation (3.39) for y: 2x 6y = 8 6y = 2x 8 y = 2x 8 6 y = 1 3 x Solve equation (3.40) for y: x =3y 4 x +4=3y x +4 = y 3 y = 1 3 x Hence, the lines have the same slope and the same y-intercept and they are exactly the same lines. Thus, there are an infinite number of solutions. Indeed,

6 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 13 any point on either line is a solution. Examples of solution points are (0, 4/3), ( 4, 0), and ( 1, 1). Tip. When you substitute one equation into another and the variable disappears, consider: 1. If the resulting statement is false, suspect that the lines are parallel lines and there is no solution. 2. If the resulting statement is true, suspect that you have the same lines and there are an infinite number of solutions. Solving Systems by Elimination When both equations of a system are in standard form Ax + By = C, thena process called elimination is the best procedure to use to find the solution of the system. Elimination is based on two simple ideas, the first of which should be familiar. 1. Multiplying both sides of an equation by a non-zero number does not change its solutions. Thus, the equation x +3y = 7 (3.17) will have the same solutions (it s the same line) as the equation obtained by multiplying equation (3.17) by 2. 2x +6y = 14 (3.18) 2. Adding two true equations produces another true equation. For example, consider what happens when you add 4 = 4 to 5 = 5. 4 = 4 5 = 5 9 = 9 Even more importantly, consider what happens when you add two equations that have (2, 1) as a solution. The result is a third equation whose graph also passes through the solution.

7 14 MODULE 3. EQUATIONS x + y =3 5 y x + y = 3 x y = 1 2x = 4 x = x x y =1 5 x =2 Elimination. Adding a multiple of an equation to a second equation produces and equation that passes through the same solution as the first two equations. Let s use these ideas to solve a system of equations.

8 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 15 EXAMPLE 6. Solve the following system of equations. x +2y = 5 (3.19) 2x y = 5 (3.20) Solution: Our focus will be on eliminating the variable x. We note that if we multiply equation (3.19) by 2, then add the result to equation (3.20), the x terms will be eliminated. 2x 4y = 10 Multiply equation (3.19) by 2. 2x y = 5 Equation (3.20). 5y = 5 Add the equations. Thus, y = 1. To find the corresponding value of x, substitute y = 1 in equation (3.19) (or equation (3.20)) and solve for x. x +2y = 5 Equation (3.19) x +2( 1) = 5 Substitute y = 1. x = 3 Solve for x. Check: To check, we need to show that the point (x, y) =( 3, 1) satisfies both equations. Substitute (x, y) = ( 3, 1) into equation (3.19). x +2y = 5 3+2( 1) = 5 5 = 5 Substitute (x, y) = ( 3, 1) into equation (3.20). 2x y = 5 2( 3) ( 1) = 5 5 = 5 Thus, the point (x, y) =( 3, 1) satisfies both equations and is therefore the solution of the system. To show that you have the option of which variable you choose to eliminate, let s try Example 6 a second time, this time eliminating y instead of x. EXAMPLE 7. Solve the following system of equations. x +2y = 5 (3.21) 2x y = 5 (3.22)

9 16 MODULE 3. EQUATIONS Solution: This time we focus on eliminating the variable y. We note that if we multiply equation (3.22) by 2, then add the result to equation (3.21), the y terms will be eliminated. x + 2y = 5 Equation (3.21). 4x 2y = 10 Multiply equation (3.22) by2. 5x = 15 Add the equations. Thus, x = 3. To find the corresponding value of y, substitute x = 3 in equation (3.21) (or equation (3.22)) and solve for y. x +2y = 5 Equation (3.21) 3+2y = 5 Substitute x = 3. 2y = 2 Add 3 to both sides. y = 1 Divide both sides by 2. Hence, (x, y) =( 3, 1), just as in Example 6, is the solution of the system. Sometimes the elimination method requires a process similar to that of finding a common denominator. EXAMPLE 8. Solve the following system of equations. 3x +4y = 12 (3.23) 2x 5y = 10 (3.24) Solution: Let s focus on eliminating the x-terms. Note that if we multiply equation (3.23) by 2, then multiply equation (3.24) by 3, the x-terms will be eliminated when we add the resulting equations. Note that 6 is the least common multiple of 3 and 2. 6x + 8y = 24 Multiply equation (3.23) by2. 6x + 15y = 30 Multiply equation (3.24) by 3. 23y = 6 Add the equations. Hence, y = 6/23. At this point, we could substitute y = 6/23 in either equation, then solve the result for x. However, working with y = 6/23 is a bit daunting, particularly in the light of elimination being easier. So let s use elimination again, this time focusing on eliminating y. Similarly, if we multiply equation (3.23) by 5, then multiply equation (3.24) by 4, when we add the results, the y-terms will be eliminated.

10 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 17 15x + 20y = 60 Multiply equation (3.23) by5. 8x 20y = 40 Multiply equation (3.24) by4. 23x = 100 Add the equations. Thus, x =100/23, and the system of the system is (x, y) =(100/23, 6/23). Exceptional Cases In the previous section, we saw that if the substitution method led to a false statement, we should suspect that we have parallel lines. The same thing can happen with the elimination method of this section. EXAMPLE 9. Solve the following system of equations. x + y = 3 (3.25) 2x +2y = 6 (3.26) Solution: Let s focus on eliminating the x-terms. Note that if we multiply equation (3.25)by 2, the x-terms will be eliminated when we add the resulting equations. 2x 2y = 6 Multiply equation (3.25) by 2. 2x + 2y = 6 Equation (3.26). 0 = 12 Add the equations. Because of our experience with this solving this exceptional case with substitution, the fact that both variables have disappeared should not be completely surprising. Note that this last statement is false, regardless of the values of x and y. Hence, the system has no solution. Indeed, if we find the intercepts of each equation and plot them, then we can easily see that the lines of this system are parallel (see Figure 3.8). Parallel lines never intersect, so the system has no solutions. EXAMPLE 10. Solve the following system of equations. x 7y = 4 (3.27) 3x +21y = 12 (3.28)

11 18 MODULE 3. EQUATIONS y 5 (0, 3) (3, 0) 5 ( 3, 0) 5 x x + y =3 (0, 3) 5 2x +2y = 6 Figure 3.8: The lines x + y =3and2x +2y = 6 are parallel. Solution: We might recognize that the equations 3.27 and (3.28) are identical. But it s also conceivable that we don t see that right away and begin the elimination method. Let s multiply the first equation by 3, then add. This will eliminate the x-terms. 3x 21y = 12 Multiply equation (3.27) by3. 3x + 21y = 12 Equation (3.28). 0 = 0 Add the equations. Again, all of the variables have disappeared! However, this time the last statement is true, regardless of the values of x and y. Notice that if we multiply equation (3.27) by 3, then we have two identical equations. 3x + 21y = 12 Multiply equation (3.27) by3. 3x + 21y = 12 Equation (3.28). The equations are identical! Hence, there are an infinite number of points of intersection. Indeed, any point on either line is a solution. Example points of solution are (4, 0), (0, 4/7), and (18, 2).

12 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 19 Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns called the substitution method. Substitution method. steps: The substitution method involves two consecutive 1. Solve either equation for either variable. 2. Substitute the result from step one into the other equation. EXAMPLE 11. Solve the following system of equations: 2x 5y = 8 (3.29) y =3x 1 (3.30) Solution: Equation (3.30) is already solved for y. Substitute equation (3.30) into equation (3.29). Now solve for x. 2x 5y = 8 Equation (3.29). 2x 5(3x 1) = 8 Substitute (3.30) in (3.29). 2x 15x +5= 8 Distribute 5. 13x +5= 8 13x = 13 Subtract 5 from both sides. x =1 Divide both sides by 13. Substitute x = 1 in equation (3.30), then solve for y. y =3x 1 Equation (3.30). y =3(1) 1 Substitute 1 for x. y =2 Hence, (x, y) =(1, 2) is the solution of the system. Check: To show that the solution (x, y) =(1, 2) is a solution of the system, we need to show that (x, y) =(1, 2) satisfies both equations (3.29) and(3.30).

13 20 MODULE 3. EQUATIONS Substitute (x, y) =(1, 2) in equation (3.29): 2x 5y = 8 2(1) 5(2) = = 8 8 = 8 Thus, (1, 2) satisfies equation (3.29). Substitute (x, y) =(1, 2) in equation (3.30): y =3x 1 2=3(1) 1 2=3 1 2=2 Thus, (1, 2) satisfies equation (3.30). EXAMPLE 12. Solve the following system of equations: 5x 2y = 12 (3.31) 4x + y = 6 (3.32) Solution: The first step is to solve either equation for either variable. This means that we can solve the first equation for x or y, but it also means that we could first solve the second equation for x or y. Of these four possible choices, solving equation (3.32) for y seems the easiest way to start. 4x + y =6 Equation (3.32). y =6 4x Subtract 4x from both sides. Next, substitute y =6 4x for y in equation (3.31). 5x 2y =12 Equation (3.31). 5x 2(6 4x) =12 Substitute y =6 4x for y. 5x x =12 Distribute 2. 13x 12 = 12 13x =24 x = Add 12 to both sides. Divide both sides by 13. Finally, to find the y-value, substitute x =24/13 into the equation y =6 4x

14 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 21 (you can also substitute x = 24/13 into equation (3.31) or(3.32)). y =6 4x ( ) 24 y = y = y = Substitute x =24/13 in y =6 4x. Multiply, then make equivalent fractions. Hence, (x, y) =(24/13, 18/13) is the solution of the system. EXAMPLE 13. Solve the following system of equations: 3x 2y = 6 (3.33) 4x +5y = 20 (3.34) Solution: Dividing by 2 gives easier fractions to deal with than dividing by 3, 4, or 5, so let s start by solving equation (3.33) fory. 3x 2y =6 Equation (3.33). 2y =6 3x y = 6 3x 2 y = x Substitute y = x for y in equation (3.34). Subtract 3x from both sides. Divide both sides by 2. Divide both terms by 2 using distributive property. 4x + 5y = 20 Equation (3.34). 4x +5 ( ) x =20 Substitute 3+ 3 x for y. 2 4x x =20 Distribute the x x = 40 Clear fractions by multiplying both sides by 2. 23x =70 x = Add 30 to both sides. Divide both sides by 23.

15 22 MODULE 3. EQUATIONS To find y, substitute x =70/23 for x into equation y = x. y = x y = 3+ 3 ( ) 70 Substitute 70/23 for x y = Multiply. Make equivalent fractions. 23 y = Hence, (x, y) =(70/23, 36/23) is the solution of the system. Exceptional Cases Revisited It is entirely possible that you might apply the substitution method to asystem of equations that either have an infinite number of solutions or no solutions at all. Let s see what happens should you do that. EXAMPLE 14. Solve the following system of equations: 2x +3y = 6 (3.35) y = 2 3 x + 4 (3.36) Solution: Equation (3.36) is already solved for y, so let s substitute y = 2 3x +4fory in equation x + 3y = 6 Equation (3.35). 2x +3 ( 23 ) x +4 =6 Substitute 2 3 x +4fory. 2x 2x +12=6 Distribute the = 6 Goodness! What happened to the x? How are we supposed to solve for x in this situation? However, the resulting statement, 12 = 6, is false, no matter what we use for x and y. This should give us a clue that there are no solutions. Perhaps we are dealing with parallel lines? Let s solve equation (3.35) to determine the situation. 2x + 3y = 6 Equation (3.35). 3y = 2x +6 Subtract 2x from both sides. y = 2 x +2 Divide both sides by 3. 3

16 3B. SOLVING SYSTEMS OF TWO EQUATIONS ALGEBRAICALLY 23 Thus, our system is equivalent to the following two equations. y = 2 3 x + 2 (3.37) y = 2 3 x + 4 (3.38) These lines have the same slope 2/3, but different y-intercepts (one has y- intercept (0, 2), the other has y-intercept (0, 4)). Hence, these are two distinct parallel lines and the system has no solution. EXAMPLE 15. Solve the following system of equations: 2x 6y = 8 (3.39) x =3y 4 (3.40) Solution: Equation (3.40) is already solved for x, so let s substitute x =3y 4 for x in equation (3.39). 2x 6y = 8 Equation (3.39). 2(3y 4) 6y = 8 Substitute 3y 4forx. 6y 8 6y = 8 Distribute the 2. 8 = 8 Goodness! What happened to the x? How are we supposed to solve for x in this situation? However, note that the resulting statement, 8 = 8, is a true statement this time. Perhaps this is an indication that we are dealing with the same line? Let s put both equations (3.39) and(3.40) into slope-intercept form so that we can compare them. Solve equation (3.39) for y: 2x 6y = 8 6y = 2x 8 y = 2x 8 6 y = 1 3 x Solve equation (3.40) for y: x =3y 4 x +4=3y x +4 = y 3 y = 1 3 x Hence, the lines have the same slope and the same y-intercept and they are exactly the same lines. Thus, there are an infinite number of solutions. Indeed,

17 24 MODULE 3. EQUATIONS any point on either line is a solution. Examples of solution points are (0, 4/3), ( 4, 0), and ( 1, 1). Tip. When you substitute one equation into another and the variable disappears, consider: 1. If the resulting statement is false, suspect that the lines are parallel lines and there is no solution. 2. If the resulting statement is true, suspect that you have the same lines and there are an infinite number of solutions.

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Section 3.4 The Slope Intercept Form: y = mx + b

Section 3.4 The Slope Intercept Form: y = mx + b Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Introduction to Diophantine Equations

Introduction to Diophantine Equations Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1 Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

More information

A synonym is a word that has the same or almost the same definition of

A synonym is a word that has the same or almost the same definition of Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

More information

Linear Equations Review

Linear Equations Review Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

Intersecting Two Lines, Part One

Intersecting Two Lines, Part One Module 1.4 Page 97 of 938. Module 1.4: Intersecting Two Lines, Part One This module will explain to you several common methods used for intersecting two lines. By this, we mean finding the point x, y)

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 726 CHAPTER 10 Systems of Equations and Inequalities 10.1 Systems of Linear Equations: Sustitution and Elimination PREPARING FOR THIS SECTION Before getting started, review the following: Linear Equations

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Slope-Intercept Quiz. Name: Class: Date: 1. Graph the line with the slope 1 and y-intercept 3. a. c. b. d.

Slope-Intercept Quiz. Name: Class: Date: 1. Graph the line with the slope 1 and y-intercept 3. a. c. b. d. Name: Class: Date: ID: A Slope-Intercept Quiz 1. Graph the line with the slope 1 and y-intercept 3. a. c. b. d.. Write the equation that describes the line with slope = and y-intercept = 3 a. x + y = 3

More information

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you: Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

More information

Solving univariate equations

Solving univariate equations Click on the links below to jump directly to the relevant section Solving univariate equations Solving for one variable in a multivariate equation Solving systems of multivariate equations Solving univariate

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

5.4 Solving Percent Problems Using the Percent Equation

5.4 Solving Percent Problems Using the Percent Equation 5. Solving Percent Problems Using the Percent Equation In this section we will develop and use a more algebraic equation approach to solving percent equations. Recall the percent proportion from the last

More information

Lesson 22: Solution Sets to Simultaneous Equations

Lesson 22: Solution Sets to Simultaneous Equations Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise

More information

3.4 The Point-Slope Form of a Line

3.4 The Point-Slope Form of a Line Section 3.4 The Point-Slope Form of a Line 293 3.4 The Point-Slope Form of a Line In the last section, we developed the slope-intercept form of a line ( = m + b). The slope-intercept form of a line is

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION:

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION: Write an equation in slope-intercept form for the line described 2 passes through ( 2, 3) and (0, 1) Substitute m = 1 and in the point slope form 4 passes through ( 8, 2); Substitute m = and (x, y) = (

More information

MATH 111: EXAM 02 SOLUTIONS

MATH 111: EXAM 02 SOLUTIONS MATH 111: EXAM 02 SOLUTIONS BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise

More information

1 You Try. 2 You Try.

1 You Try. 2 You Try. 1 Simplify. 1 You Try. 1) Simplify. AF 1.2 2 Evaluate if, and. 2 You Try. 2) Evaluate if. 1.0 Page 1 of 19 MDC@ACOE (AUSD) 09/13/10 3 Simplify. 3 You Try. 3) Simplify. NS 1.2 4 Simplify. 4 You Try. 4)

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Algebra 1 Chapter 05 Review

Algebra 1 Chapter 05 Review Class: Date: Algebra 1 Chapter 05 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Find the slope of the line that passes through the pair of points.

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2). Chapter Section : Equations of Lines Answers to Problems For problems -, put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

ModuMath Algebra Lessons

ModuMath Algebra Lessons ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

More information

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

Systems of Linear Equations: Two Variables

Systems of Linear Equations: Two Variables OpenStax-CNX module: m49420 1 Systems of Linear Equations: Two Variables OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section,

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

Grade 8 Mathematics Item Specification C1 TD Task Model 3

Grade 8 Mathematics Item Specification C1 TD Task Model 3 Task Model 3 Equation/Numeric DOK Level 1 algebraically, example, have no solution because 6. 3. The student estimates solutions by graphing systems of two linear equations in two variables. Prompt Features:

More information

1. Graphing Linear Inequalities

1. Graphing Linear Inequalities Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means

More information

Chapter 8. Quadratic Equations and Functions

Chapter 8. Quadratic Equations and Functions Chapter 8. Quadratic Equations and Functions 8.1. Solve Quadratic Equations KYOTE Standards: CR 0; CA 11 In this section, we discuss solving quadratic equations by factoring, by using the square root property

More information

Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Section 2.1 Intercepts; Symmetry; Graphing Key Equations Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

More information

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

Use the graph shown to determine whether each system is consistent or inconsistent and if it is independent or dependent.

Use the graph shown to determine whether each system is consistent or inconsistent and if it is independent or dependent. Use the graph shown to determine whether each system is consistent or inconsistent and if it is independent or dependent. y = 3x + 1 y = 3x + 1 The two equations intersect at exactly one point, so they

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

More information

Systems of Equations - Addition/Elimination

Systems of Equations - Addition/Elimination 4.3 Systems of Equations - Addition/Elimination Objective: Solve systems of equations using the addition/elimination method. When solving systems we have found that graphing is very limited when solving

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

5.4 The Quadratic Formula

5.4 The Quadratic Formula Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function

More information

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line? Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

Practice Test - Chapter 4. y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept.

Practice Test - Chapter 4. y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept. y = 2x 3. The slope-intercept form of a line is y = mx + b, where m is the slope, and b is the y-intercept. Plot the y-intercept (0, 3). The slope is. From (0, 3), move up 2 units and right 1 unit. Plot

More information

Section 2.2 Equations of Lines

Section 2.2 Equations of Lines Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

More information

5.2. Systems of linear equations and their solution sets

5.2. Systems of linear equations and their solution sets 5.2. Systems of linear equations and their solution sets Solution sets of systems of equations as intersections of sets Any collection of two or more equations is called a system of equations. The solution

More information

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations:

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Algebra Chapter 6 Notes Systems of Equations and Inequalities Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Solution of a system of linear equations: Consistent independent system:

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1 10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information

Student Lesson: Absolute Value Functions

Student Lesson: Absolute Value Functions TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,

More information

We now explore a third method of proof: proof by contradiction.

We now explore a third method of proof: proof by contradiction. CHAPTER 6 Proof by Contradiction We now explore a third method of proof: proof by contradiction. This method is not limited to proving just conditional statements it can be used to prove any kind of statement

More information

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b. PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

5.1: Rate of Change and Slope

5.1: Rate of Change and Slope 5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

More information

Let s explore the content and skills assessed by Heart of Algebra questions.

Let s explore the content and skills assessed by Heart of Algebra questions. Chapter 9 Heart of Algebra Heart of Algebra focuses on the mastery of linear equations, systems of linear equations, and linear functions. The ability to analyze and create linear equations, inequalities,

More information

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system 1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

More information

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1 Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

Preliminary Mathematics

Preliminary Mathematics Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

Algebra. Indiana Standards 1 ST 6 WEEKS

Algebra. Indiana Standards 1 ST 6 WEEKS Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

More information

Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines. The Slope of a Line Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

More information

Equations and Inequalities

Equations and Inequalities Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

Section 3.2. Graphing linear equations

Section 3.2. Graphing linear equations Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

More information

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes

3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

More information

Partial Fractions. p(x) q(x)

Partial Fractions. p(x) q(x) Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key Web Resources Equations of Lines www.mathwarehouse.com/algebra/linear_equation/equation-of-a-line-formula.php

More information

Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form

Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form Name Date Linear Functions: Slope-Intercept Form Student Worksheet Overview The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using " (! to review,

More information

Practice Test - Chapter 3. TEMPERATURE The equation to convert Celsius temperature C to Kelvin temperature K is shown.

Practice Test - Chapter 3. TEMPERATURE The equation to convert Celsius temperature C to Kelvin temperature K is shown. TEMPERATURE The equation to convert Celsius temperature C to Kelvin temperature K is shown. a. State the independent and dependent variables.explain. b. Determine the C- and K-intercepts and describe what

More information

Equations, Inequalities, Solving. and Problem AN APPLICATION

Equations, Inequalities, Solving. and Problem AN APPLICATION Equations, Inequalities, and Problem Solving. Solving Equations. Using the Principles Together AN APPLICATION To cater a party, Curtis Barbeque charges a $0 setup fee plus $ per person. The cost of Hotel

More information

Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction 1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

More information

Solving Systems of Linear Equations Graphing

Solving Systems of Linear Equations Graphing Solving Systems of Linear Equations Graphing Outcome (learning objective) Students will accurately solve a system of equations by graphing. Student/Class Goal Students thinking about continuing their academic

More information