Section 1.1 Linear Equations: Slope and Equations of Lines

Size: px
Start display at page:

Download "Section 1.1 Linear Equations: Slope and Equations of Lines"

Transcription

1 Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of change in x, the run. Let ( x, y ) and (, ) x y be two arbitrary points on the coordinate plane. The slope of the line that passes through these two points, denoted by m, is given by y y m x x = = = rise run vertical change, horizontal change provided that x x 0. If the slope is positive, the line rises to the right. If the slope is negative, the line falls to the right. If the slope is zero, the line is a horizontal line. If the slope is undefined, the line is a vertical line. (This occurs when x x = 0.) Example : Find the slope of each line shown below. A. B. C. Math Page of 9 Section.

2 Solution: A. To find the slope of the given line, choose two points on the graph with integer coordinates, like ( 0, ) and (, 0), and keep in mind that the slope is rise over run. Let us start at ( 0, ). To get to (, 0 ), we rise units, then run two units. Hence, we get m = =. B. To find the slope of the given line, choose two points on the graph with integer coordinates, like ( 0, ) and, 0, and keep in mind that the slope is rise over run. Let us start at ( 0, ). To get to (, 0 ), we move down four units, then to the right two units. Hence, we get m = =. C. To find the slope of the given line, choose two points on the graph with integer coordinates, like (, ) and (, ), and keep in mind that the slope is rise over run. Let us start at (, ). To get to (, ), we move up unit, then to the left units. Hence, we get m = =. Example : Find the slope of the line that passes through the following points. A. (, ) and (, ) B. (, 0) and ( 6, 7) C. E., 8 and, 6, 6 and, 6 D. (, 9) and, 9 Math Page of 9 Section.

3 Solution: A. Let ( x, y ) represent (, ), and ( x, y ) represent (, ) y y 6 6 m = = = = x x ( ) 7 7. Notice that if we had switched the selection of ( x, y ) and (, ) same result: Let ( x, y ) represent (, ), and ( x, y ) represent (,) 6 6 = = = = 7 7 y y m x x B. Let ( x, y ) represent (, 0), and ( x, y ) represent ( 6, 7) y y m x x 7 0 = = = = 6. x y, we would obtain the. Then C. Let (, ) x y represent, 8, and, x y represent, 6. + y y m = = = x x To simplify the complex fraction, we first simplify the numerator and denominator separately (by finding a common denominator for each) m = = To divide the two fractions, we multiply by the reciprocal of the denominator and then simplify m = = = = Note: Another way to simplify the complex fraction is to multiply both the numerator and denominator by the least common multiple of, 6, and (which is ). Math Page of 9 Section.

4 m = = = D. Let ( x, y ) represent (, 9), and (, ) x y represent, 9. y y m x x = = = 9 9 ( ) 0 We do not need to compute the denominator, since zero divided by a nonzero number is zero. Recall that if the slope of a line is zero, the line is a horizontal line. E. Let (, ) x y represent, 6, and, x y represent, 6. y y m x x Intercepts = = = ( ), which is undefined Division by zero is undefined. Recall that if the slope of a line is undefined, the line is a vertical line. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis, and is found by setting x = 0 in the equation and solving for y. Similarly, the x-intercept is the x-coordinate of the point where the graph crosses the x-axis, and is found by setting y = 0 and solving for x. Math Page of 9 Section.

5 Equations of Lines There are four forms of an equation of a line: Point-Slope Form: y y m( x x ) where m is the slope and (, ) =, x y is a point on the line. Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept of the line. Standard Form: Ax + By = C, where A, B, and C real numbers and are written as integers whenever possible*, and A and B cannot both be equal to zero. General Form: Ax + By + C = 0, where A, B, and C are real numbers and are written as integers whenever possible*, and A and B cannot both be equal to zero. *Notes about standard and general form: Standard form and general form are to be written such that A, B, and C are integers whenever possible. In this course, you will be given problems where it is always possible to change the equation so that A, B, and C are integers. There are cases where it is not possible to change the coefficients to integers, such as the equation x + π y = 7, but such examples will not be used in this course. The equations for standard and general form are not unique, as seen in the example below. However, textbooks often display standard and general form so that A > 0, and so that A, B, and C are relatively prime. Example : Change each of the following equations to slope-intercept form, standard form, and general form. 7 A. y = ( x 6) B. x 6 = 8y C. y x = Solution: A. To change to slope-intercept form, y = mx + b, we want to distribute the solve for y. and then 7 y = ( x 6), so 7 0 y = x Math Page of 9 Section.

6 0 y = x +, so 7 7 Slope-intercept form is y = x + + = x + + = x y = x We want to clear all fractions in order to put the equation in standard or general form. We can do this by multiplying by 7 (the common denominator of the fractions): 8 7( y) = 7 x + 7 7, so 7 y = x + 8. We can then rearrange the terms to obtain standard and general form. The equation x + 7 y = 8 is in standard form. The equation x + 7y 8 = 0 is in general form. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. B. To change to slope-intercept form, y = mx + b, we can divide both sides of the equation by 8 to solve for y. x 6 = 8y, so x 6 6 y = = x = x Slope-intercept form is y = x. Since the original equation already has terms with integer coefficients, we can simply rearrange the terms of x 6 = 8y to obtain standard and general form. The equation x 8y = 6 is in standard form, and the equation x 8y 6 = 0 is in general form. Although both of the previous answers are acceptable, notice that the first term is negative, and that all three terms have a common factor of. We can divide each term by to obtain x + y = for standard form and x + y + = 0 for general form. These are the answers that would most commonly be given in a textbook answer key. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. C. Since the equation y x = 7 contains multiple fractions, we will choose to clear the 9 6 equation of fractions by multiplying each term by the common denominator of 9,, and 6 which is 6. Math Page 6 of 9 Section.

7 7 6 y x 6 6 y 6 x 6 7 =, so =. Simplifying each term, we obtain y 6 x 6 7 =, which gives us the equation 6y x =. 9 6 To change to slope-intercept form, y = mx + b, we need to solve for y: 6y x =, so 6y = x +. Dividing by 6, x + y = = x To change 6y x = to standard form and general form, we can simply rearrange the terms, since the coefficients and the constant term are already integers. The equation x + 6y = is in standard form, and the equation x + 6y = 0 is in general form. Although both of the previous equations are acceptable, it is common to make the first term positive by multiplying each term by, to obtain a standard form of x 6y =, and a general form of x 6y + = 0. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example : Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. We can see from the graph that the y-intercept is, so b =. We now need to find the slope, m. Choose any two points on the graph with integer coordinates; we will use ( 0, ) and From the point ( 0, ), we move down units, then to the right unit to get to (, 0 )., 0. Math Page 7 of 9 Section.

8 rise So m = = =. We can now substitute m = and b = into y = mx + b and obtain the run equation of the line: y = x + Example : Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. We can see from the graph that the y-intercept is 0, so b = 0. We now need to find the slope, m. Choose any two points on the graph with integer coordinates; we will use ( 0, 0 ) and From the point ( 0, 0 ), we move up units, then to the right units to get to (, ).,. Math Page 8 of 9 Section.

9 So rise m = =. We can now substitute run equation of the line: y = x m = and b = 0 into y = mx + b and obtain the Example 6: Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. Notice on the graph that the y-intercept is not an integer; we will use other means to find that later. Let us first find the slope, m. Choose any two points on the graph with integer coordinates; we will use (, ) and (, ). From the point (, ) right units to get to (, )., we move down units, then to the So m =. We can now use the slope along with one of the two chosen points and substitute into either y mx b = + or y y m( x x ) = to find the equation of the line. (There are four means of solving this problem, using either of the two points with either of the two equations. All methods yield the same result. We will show two of the four methods below.) First, let us plug the point (, ) and the known slope,, into the equation y = mx + b. Math Page 9 of 9 Section.

10 y = mx + b = ( ) + b 6 = + b b = = = Now that we have found the slope and the y-intercept, we can substitute y = mx + b to obtain the equation of the line. 0 y = x m = and 0 b = into If we instead use the point (, ) with the point-slope formula, we obtain the same result: y y = m x x y ( ) = ( x ( ) ) y + = ( x + ) Next, distribute the y + = x 6 y = x = x 0 y = x This equation and solve for y. 0 y = x is in slope-intercept form, and matches the answer we found using the first method. Notice that when using y y m( x x ) =, we did not need to separately find the value of b. After solving for y, the equation is in slope-intercept form. Math Page 0 of 9 Section.

11 Example 7: Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. Once again, notice that the y-intercept is not an integer. Let us first find the slope, m. Choose any two points on the graph with integer coordinates; we will choose (, ) and (, ), we move up units, then to the right units to get to (, ).,. From the point So m =. Next, we can use the slope and either of the two chosen points and substitute into = + or y y m( x x ) either y mx b =, to find the equation of the line. Let us use the point (, ) and the known slope,. Two methods are shown, but any one method is sufficient. y = mx + b y y = m x x = ( ) + b y ( ) = ( x ( ) ) 9 9 = + b y + = x b = + = + = y = x + = x + y = mx + b = x + y = x + Math Page of 9 Section.

12 The equation of the line is y = x +. Horizontal and Vertical Lines The equation of any horizontal line is of the form y = b, where b is the y-intercept of the line. The line therefore passes through the point ( 0, b ). The slope of any horizontal line is zero. The equation of any vertical line is of the form x = a, where a is the x-intercept of the line. The line therefore passes through the point ( a, 0). The slope of any vertical line is undefined. Example 8: Write an equation for the line shown below. Solution: The slope of any horizontal line is zero. The form of any horizontal line is y Hence, the equation of the line is y =. Example 9: Write an equation for the line shown below. = b. Math Page of 9 Section.

13 Solution: The slope of any vertical line is undefined. The form of any vertical line is x = a. Hence, the equation of the line is x =. Example 0: Find an equation of the line in slope-intercept form that passes through ( 0, 7) and has slope. Solution: We are given the y-intercept and the slope, so we can substitute into the slope-intercept form and obtain the equation of the line: y = x + 7 Example : A line passes through the point ( 0, 8) and has slope. Find an equation of the line in point-slope form. Then write the equation in slope-intercept form. Solution: Let ( x, y ) represent the point ( 0, 8) information into the point-slope equation. y y = m x x y = y + 8 = 0 ( 8) ( x 0) ( x ). It is given that m =. Substitute this The above equation is in point-slope form. We will now solve for y to write the equation in slope-intercept form. y + 8 = 0 y + 8 = x + y = x + 8 y = x ( x ) Point-slope form is y 8 ( x 0) + =, and slope-intercept form is y = x. Math Page of 9 Section.

14 Example : Find an equation of the line in slope-intercept form that passes through the points (, 9) and (, ). Solution: We can find the slope of the line by applying the slope formula. y y m x x = = = 9 8 We can now use the slope and either one of the two given points to write the equation of the line. Two methods are shown below, but one method is sufficient. We will use the point (, 9). y = mx + b y y = m x x = ( ) + b y 9 = ( x ( ) ) 8 9 = + b y 9 = x b = 9 = = y = x + 9 = x y = mx + b = x y = x The equation of the line is 8 y = x. Example : Find an equation of the line in standard form that has x-intercept and y-intercept 0.7. Solution: We are given the points (, 0 ) and ( 0, 0.7) m = = 0. 0, respectively. First, find the slope. Now use the slope and the given y-intercept to write the equation in slope-intercept form. y = 0.x 0.7 The above equation can alternatively be written with fractions: 7 y = x, so y = x 0 We can clear the fractions by multiplying by 0 (the common denominator of and 0). Math Page of 9 Section.

15 y = x 0 0( y) = 0 x 0 0y = x We then rearrange the terms to obtain x + 0y =, which is in standard form, but is not unique. If we want to make the first term positive (which is common), we can multiply each term by to obtain x 0y =. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example : Find an equation of the line that passes through ( 9,.) and ( 0.,. ). Solution: First, we use the slope formula to find the slope of the line. y y m x x = = = = Recall that if the slope of a line is zero, the line is a horizontal line. Hence, we have a horizontal line, and its equation is y =.. Example : Find an equation of the line that passes through, 7 and, 7. Solution: First, we need to find the slope of the line. y y m x x = = =, which is undefined Recall that if the slope of a line is undefined, the line is a vertical line. Hence, we have a vertical line and its equation is x =. 7 Parallel and Perpendicular Lines Two nonvertical lines are parallel if and only if their slopes are the same. (Any two vertical lines are parallel to each other, but have undefined slope.) Math Page of 9 Section.

16 Two lines are perpendicular if and only if their slopes are negative reciprocals of each other. The exception to this rule is when one line is vertical (with undefined slope) and the other line is horizontal (with slope zero). These lines are clearly perpendicular to each other, but are not negative reciprocals since we cannot take the reciprocal of undefined. Note that two numbers c and d are negative reciprocals of each other if d =, which means that c d =. c Example 6: Find the negative reciprocal of each of the following numbers. A. B. C. 0. D. 0.7 Solution: A. The negative reciprocal of is. B. The negative reciprocal of is. C. 0. can be written as, which is 00 D. 0.7 can be written as 0, which is 7. Its negative reciprocal is Its negative reciprocal is. Example 7: Find an equation of the line in slope-intercept form that passes through the point, and is parallel to the line y = x. Solution: Notice that the line y = x is in slope-intercept form y = mx + b, and has a slope of. Our desired line is parallel to y = x, and therefore also has a slope of. We can use the slope,, and the given point,,, to find the equation of the line. Two different methods are shown below which yield the same result. Math Page 6 of 9 Section.

17 y = mx + b y y = m x x = + b y = x = + b y = x + b = 7 y = x + 7 y = mx + b = x + 7 The equation of the line in slope-intercept form is y = x + 7. Example 8: Find an equation of the line in general form that passes through the point (, ) and is perpendicular to the line x + y = 0. Solution: To find the slope of the line x + y = 0, we first need to write it in slope-intercept form. x + y = 0 y = x + 0 y = x + The given line, y = x +, has a slope of. Since we want to write the equation of a line perpendicular to the line y = x +, the desired line has a slope equal to the negative reciprocal of, which is. We can now use the slope,,, to find the equation of the desired line. Two different methods are shown below, which yield the same result., along with the given point, b y x b y ( x ) y = mx + b y y = m x x = + = = = + b = 8 y + = x 8 b = 9 y = x 9 y = mx + b = x 9 Using either method above, we obtain the equation y = x 9. Math Page 7 of 9 Section.

18 We want to write the equation in general form, Ax + By + C = 0, where A, B, and C are integers. We can rearrange the terms so that they are all on one side of the equation. x + y + 9 = 0 Remember that when writing in general form, the answers are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example 9: Find an equation of the line in standard form that has x-intercept 8 and is perpendicular to the line that passes through (, 7) and ( 6, 0). Solution: We first use the slope formula to find the slope of the line that passes through (, 7) and ( 6, 0). 0 7 = = = 6 y y m x x To find the slope of the desired perpendicular line, we find the negative reciprocal of is, which. We know that the line has x-intercept 8, which means that the graph passes through the point ( 8, 0). We can now use the slope,, along with the given point, ( 8, 0 ), to find the equation of the desired line. Two different methods are shown below, which yield the same result. y = mx + b y y = m x x 0 = = = + b y = x + 6 b = b y x 6 y = mx + b = x + Using either method above, we obtain the equation 6 y = x +. Math Page 8 of 9 Section.

19 We want to write the equation in standard form, Ax + By = C, where A, B, and C are integers. We can clear the fractions by multiplying each term by. 6 ( y) = x + y = x + 6 We then rearrange the terms to obtain x + y = 6, which is in standard form, but is not unique. If we want to make the first term positive (which is common), we can multiply each term by to obtain x y = 6. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example 0: Find an equation of the line in slope-intercept form that passes through (, ) and is parallel to the line that passes through (, 0) and ( 0, ). Solution: We first use the slope formula to find the slope of the line that passes through (, 0) and ( 0, ). y y m x x = = = = 0 0 Since the equation of the line we wish to write is parallel to the line that passes through (, 0) and ( 0, ), we need to use this same slope, to find, along with the point (, ) the equation of the line. Two different methods are shown below, which yield the same result. y = mx + b y y = m x x = + = = + b y = x + b = + = 8 y = x + + y = mx + b = x + 8 y = x + 8 b y ( x ) The equation of the line is y = x + 8. Math Page 9 of 9 Section.

We call y = mx + b the Slope-Intercept Form of the linear equation.

We call y = mx + b the Slope-Intercept Form of the linear equation. Linear Functions A linear function in two variables is any equation of that may be written in the form y = mx + b where m and b are real number coefficients and x and y represent any real numbers that

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines

MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines MATH 105: Finite Mathematics 1-1: Rectangular Coordinates, Lines Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Rectangular Coordinate System 2 Graphing Lines 3 The Equation of

More information

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x

Section 1.4 Notes Page Linear Equations in Two Variables and Linear Functions., x Section. Notes Page. Linear Equations in Two Variables and Linear Functions Slope Formula The slope formula is used to find the slope between two points ( x, y ) and ( ) x, y. x, y ) The slope is the vertical

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

Linear Equations Review

Linear Equations Review Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

Chapter 1. Functions and Graphs. 1.4 Linear Functions and Slope. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Functions and Graphs. 1.4 Linear Functions and Slope. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Functions and Graphs 1.4 Linear Functions and Slope Copyright 2014, 2010, 2007 Pearson Education, Inc. 1 Objectives: Calculate a line s slope. Write the point-slope form of the equation of a

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2 Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Finding equations of lines

Finding equations of lines Finding equations of lines A very typical question for a student in a math class will be to find the equation of a line. This worksheet will provide several examples of how to complete this task. Find

More information

Linear Equations and Graphs

Linear Equations and Graphs 2.1-2.4 Linear Equations and Graphs Coordinate Plane Quadrants - The x-axis and y-axis form 4 "areas" known as quadrants. 1. I - The first quadrant has positive x and positive y points. 2. II - The second

More information

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

More information

Review. Finding the Slope of a Line. vertical distance horizontal distance. slope = Investigating Slope of a Horizontal Line 9/2/2013.

Review. Finding the Slope of a Line. vertical distance horizontal distance. slope = Investigating Slope of a Horizontal Line 9/2/2013. Outline: Chapter 1 - Lines Graphing lines - using tables / points Slope - calculating via - points - equation - table - meaning - parallel and perpendicular lines - useful for graphing Equations of lines

More information

2.3 Writing Equations of Lines

2.3 Writing Equations of Lines . Writing Equations of Lines In this section ou will learn to use point-slope form to write an equation of a line use slope-intercept form to write an equation of a line graph linear equations using the

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

MA 15910, Lesson 8 notes Algebra part: Sections 3.2 and 3.3 Calculus part: Section 1.1

MA 15910, Lesson 8 notes Algebra part: Sections 3.2 and 3.3 Calculus part: Section 1.1 MA 15910, Lesson 8 notes Algebra part: Sections 3. and 3.3 Calculus part: Section 1.1 Slope: Definition: The slope of a line is the ratio of the change in y to the change in x (ratio of vertical change

More information

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line? Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

2.1 The Distance and Midpoint Formulas

2.1 The Distance and Midpoint Formulas .1 The Distance and Midpoint Formulas The distance d(a,b) between two points A(x 1,y 1 ) and B(x,y ) is given by d(a, B) = ( x y x1 ) ( y 1) Example: Find the distance between the points A( -, 3) and B(-5,

More information

Pre-Calculus III Linear Functions and Quadratic Functions

Pre-Calculus III Linear Functions and Quadratic Functions Linear Functions.. 1 Finding Slope...1 Slope Intercept 1 Point Slope Form.1 Parallel Lines.. Line Parallel to a Given Line.. Perpendicular Lines. Line Perpendicular to a Given Line 3 Quadratic Equations.3

More information

Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

More information

Section 2 1: Slope Introduction

Section 2 1: Slope Introduction Section 2 1: Slope Introduction We use the term Slope to describe how steep a line is as ou move between an two points on the line. The slope or steepness is a ratio of the vertical change in (rise) compared

More information

Coordinate Geometry. Slope intercept form: y = mx + b, where m = slope and b = y-intercept

Coordinate Geometry. Slope intercept form: y = mx + b, where m = slope and b = y-intercept Coordinate Geometry Coordinate geometry involves graphs in the (x, y) coordinate plane. For the SAT and the ACT, you should be especially proficient with the coordinate geometry of linear functions. You

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Section 3.4 The Slope Intercept Form: y = mx + b

Section 3.4 The Slope Intercept Form: y = mx + b Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Lines and Linear Equations. Slopes

Lines and Linear Equations. Slopes Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

GRAPHING LINEAR EQUATIONS COMMON MISTAKES

GRAPHING LINEAR EQUATIONS COMMON MISTAKES GRAPHING LINEAR EQUATIONS COMMON MISTAKES 1 Graphing-Coordinate System and Plotting Points How to Plot Points The grid containing the x and y axes is called the Cartesian Coordinate Plane. Points are plotted

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2). Chapter Section : Equations of Lines Answers to Problems For problems -, put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find

More information

The idea of the slope will help us in a number of ways. First need a more rigorous definition of slope and a formula for slope as follows.

The idea of the slope will help us in a number of ways. First need a more rigorous definition of slope and a formula for slope as follows. 6.3 Slope of a Line We saw in the last section that we can characterize a line by its intercepts. Another way we can characterize a line is by how steep the line is. That is to say, how much the line changes

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES

DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES DETAILED SOLUTIONS AND CONCEPTS ALGEBRAIC REPRESENTATIONS OF LINEAR EQUATIONS IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C Sections 3.1 3.6, Appendix C Module 5 Highlights Andrea Hendricks Math 0098 Pre-college Algebra Topics Identifying linear equations (Section 3.1, Obj. 1) Interpreting a line graph (Section 3.1, Obj. 5)

More information

5.1: Rate of Change and Slope

5.1: Rate of Change and Slope 5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations.

Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations. Chapter Functions and Their Graphs Section. Lines in the Plane Objective: In this lesson you learn how to find and use the slope of a line to write and graph linear equations. Important Vocabulary Slope

More information

Chapter 7 Equation of a Line, Slope, and the Rectangular Coordinate System

Chapter 7 Equation of a Line, Slope, and the Rectangular Coordinate System Chapter 7 Equation of a Line, Slope, and the Rectangular Coordinate System Introduction: Often, we want to explore relationships between variables. For example we might want to explore the relationship

More information

Section 2.2 Equations of Lines

Section 2.2 Equations of Lines Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

More information

A synonym is a word that has the same or almost the same definition of

A synonym is a word that has the same or almost the same definition of Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

More information

Chapter 1. The Cartesian Coordinate System. Section 2 Graphs and Lines. The Cartesian Coordinate System (continued) Linear Equations in Two Variables

Chapter 1. The Cartesian Coordinate System. Section 2 Graphs and Lines. The Cartesian Coordinate System (continued) Linear Equations in Two Variables Chapter 1 Linear Equations and Graphs Section 2 Graphs and Lines The Cartesian Coordinate System The Cartesian coordinate system was named after René Descartes. It consists of two real number lines, the

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

Chapter 2.1 Relations and Functions

Chapter 2.1 Relations and Functions Analyze and graph relations. Find functional values. Chapter 2.1 Relations and Functions We are familiar with a number line. A number line enables us to locate points, denoted by numbers, and find distances

More information

Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan

Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan Lines, Lines, Lines!!! Point-Slope Form ~ Lesson Plan I. Topic: Point-Slope Form II. III. Goals and Objectives: A. The students will understand the difference between slope-intercept and point-slope form.

More information

SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. (Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

(even), (even), 54, 56, 60, 68

(even), (even), 54, 56, 60, 68 1.10 2-36 (even), 42 52 (even), 54, 56, 60, 68 Solutions 1 8 Find the slope of the line through P and Q. 2) P(0,0), Q(2,-6) m = y 2 y 1 = 6 0 = 6 = 3. x 2 x 1 2 0 2 4) P(1,2), Q(3,3) m = y 2 y 1 x 2 x

More information

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c. Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

Use the Point-Slope Form to Write the Equation of a Line

Use the Point-Slope Form to Write the Equation of a Line Math 95 8.3 "Writing Equations of Lines" Objectives: * Use the point-slope form to write the equation of a line. * Use slope-intercept form to write the equation of a line. * Use slope as an aid when graphing.

More information

Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)

Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What

More information

Precalculus Workshop - Functions

Precalculus Workshop - Functions Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.

More information

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

More information

MAT 111 Summary of Key Points for Section 1.1

MAT 111 Summary of Key Points for Section 1.1 1.1 Functions and Function Notation The definition of a function MAT 111 Summary of Key Points for Section 1.1 A function is a rule which takes certain numbers as inputs and assigns to each input number

More information

Graphing - Slope-Intercept Form

Graphing - Slope-Intercept Form 2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

More information

Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines. The Slope of a Line Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

More information

Finding the Equation of a Line

Finding the Equation of a Line Finding the Equation of a Line Lines can come in three forms: A Ax+By=C where A, B and C are numbers and the slope is B Slope-intercept form: y=mx+b where m is the slope and the b is the y-intercept Point-slope

More information

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines WARM UP EXERCSE A company makes and sells inline skates. The price-demand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope 5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

More information

College Prep Algebra II Summer Packet

College Prep Algebra II Summer Packet Name: College Prep Algebra II Summer Packet Please complete and bring this packet to class on the first day of school. Show ALL work! There will be a test soon after. Remember: When simplifying fractions

More information

Geometry Chapter 3: Parallel and Perpendicular Lines Lesson 1: Lines and Angles Learning Target:

Geometry Chapter 3: Parallel and Perpendicular Lines Lesson 1: Lines and Angles Learning Target: Geometry Chapter 3: Parallel and Perpendicular Lines Lesson 1: Lines and Angles Learning Target: (LT-1) Identify parallel lines, perpendicular lines, skew lines, and the angles formed by two lines and

More information

2.1 Equations of Lines

2.1 Equations of Lines Section 2.1 Equations of Lines 1 2.1 Equations of Lines The Slope-Intercept Form Recall the formula for the slope of a line. Let s assume that the dependent variable is and the independent variable is

More information

6.5 Equations of Lines

6.5 Equations of Lines 6.5 Equations of Lines Now that we have given a full treatment to finding the graph of a line when given its equation, we want to, in a sense, work that idea backwards. That is to say, we want to be able

More information

2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7

2x - y 4 y -3x - 6 y < 2x 5x - 3y > 7 DETAILED SOLUTIONS AND CONCEPTS GRAPHICAL REPRESENTATION OF LINEAR INEQUALITIES IN TWO VARIABLES Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu.

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

What students need to know for... ALGEBRA II

What students need to know for... ALGEBRA II What students need to know for... ALGEBRA II 2015-2016 NAME Students expecting to take Algebra II at Cambridge Rindge & Latin School should demonstrate the ability to... General: o Keep an organized notebook

More information

Math 113 Review for Exam I

Math 113 Review for Exam I Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Graphing - Parallel and Perpendicular Lines

Graphing - Parallel and Perpendicular Lines . Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel

More information

MATH 111: EXAM 02 SOLUTIONS

MATH 111: EXAM 02 SOLUTIONS MATH 111: EXAM 02 SOLUTIONS BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise

More information

Unit 5: Coordinate Geometry Practice Test

Unit 5: Coordinate Geometry Practice Test Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this

More information

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key Web Resources Equations of Lines www.mathwarehouse.com/algebra/linear_equation/equation-of-a-line-formula.php

More information

Answer on Question #48173 Math Algebra

Answer on Question #48173 Math Algebra Answer on Question #48173 Math Algebra On graph paper, draw the axes, and the lines y = 12 and x = 6. The rectangle bounded by the axes and these two lines is a pool table with pockets in the four corners.

More information

Graphing Lines Information Packet:

Graphing Lines Information Packet: Table of Contents: Graphing Lines Information Packet: Graphing Ordered Pairs p. 1 Slope p. 2-4 Horizontal/Vertical Lines p. 5 Graphing Linear Equations p. 6-8 Make a Table p. 6 Intercepts p. 7 Slope Intercept

More information

Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

More information

Section 1.3 Systems of Linear Equations

Section 1.3 Systems of Linear Equations Section 1.3 Systems of Linear Equations A system of linear equations is a set of two or more linear equations. It is also called a linear system. In this section we will study 2 2 linear systems, which

More information

Mini Lecture 4.1 Graphing Equations in Two Variables

Mini Lecture 4.1 Graphing Equations in Two Variables Mini Lecture 4. Graphing Equations in Two Variables Learning Objectives:. Plot ordered pairs in the rectangular coordinate system.. Find coordinates of points in the rectangular coordinate system. 3. Determine

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you: Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

More information