Section 1.1 Linear Equations: Slope and Equations of Lines

Size: px
Start display at page:

Download "Section 1.1 Linear Equations: Slope and Equations of Lines"

Transcription

1 Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of change in x, the run. Let ( x, y ) and (, ) x y be two arbitrary points on the coordinate plane. The slope of the line that passes through these two points, denoted by m, is given by y y m x x = = = rise run vertical change, horizontal change provided that x x 0. If the slope is positive, the line rises to the right. If the slope is negative, the line falls to the right. If the slope is zero, the line is a horizontal line. If the slope is undefined, the line is a vertical line. (This occurs when x x = 0.) Example : Find the slope of each line shown below. A. B. C. Math Page of 9 Section.

2 Solution: A. To find the slope of the given line, choose two points on the graph with integer coordinates, like ( 0, ) and (, 0), and keep in mind that the slope is rise over run. Let us start at ( 0, ). To get to (, 0 ), we rise units, then run two units. Hence, we get m = =. B. To find the slope of the given line, choose two points on the graph with integer coordinates, like ( 0, ) and, 0, and keep in mind that the slope is rise over run. Let us start at ( 0, ). To get to (, 0 ), we move down four units, then to the right two units. Hence, we get m = =. C. To find the slope of the given line, choose two points on the graph with integer coordinates, like (, ) and (, ), and keep in mind that the slope is rise over run. Let us start at (, ). To get to (, ), we move up unit, then to the left units. Hence, we get m = =. Example : Find the slope of the line that passes through the following points. A. (, ) and (, ) B. (, 0) and ( 6, 7) C. E., 8 and, 6, 6 and, 6 D. (, 9) and, 9 Math Page of 9 Section.

3 Solution: A. Let ( x, y ) represent (, ), and ( x, y ) represent (, ) y y 6 6 m = = = = x x ( ) 7 7. Notice that if we had switched the selection of ( x, y ) and (, ) same result: Let ( x, y ) represent (, ), and ( x, y ) represent (,) 6 6 = = = = 7 7 y y m x x B. Let ( x, y ) represent (, 0), and ( x, y ) represent ( 6, 7) y y m x x 7 0 = = = = 6. x y, we would obtain the. Then C. Let (, ) x y represent, 8, and, x y represent, 6. + y y m = = = x x To simplify the complex fraction, we first simplify the numerator and denominator separately (by finding a common denominator for each) m = = To divide the two fractions, we multiply by the reciprocal of the denominator and then simplify m = = = = Note: Another way to simplify the complex fraction is to multiply both the numerator and denominator by the least common multiple of, 6, and (which is ). Math Page of 9 Section.

4 m = = = D. Let ( x, y ) represent (, 9), and (, ) x y represent, 9. y y m x x = = = 9 9 ( ) 0 We do not need to compute the denominator, since zero divided by a nonzero number is zero. Recall that if the slope of a line is zero, the line is a horizontal line. E. Let (, ) x y represent, 6, and, x y represent, 6. y y m x x Intercepts = = = ( ), which is undefined Division by zero is undefined. Recall that if the slope of a line is undefined, the line is a vertical line. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis, and is found by setting x = 0 in the equation and solving for y. Similarly, the x-intercept is the x-coordinate of the point where the graph crosses the x-axis, and is found by setting y = 0 and solving for x. Math Page of 9 Section.

5 Equations of Lines There are four forms of an equation of a line: Point-Slope Form: y y m( x x ) where m is the slope and (, ) =, x y is a point on the line. Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept of the line. Standard Form: Ax + By = C, where A, B, and C real numbers and are written as integers whenever possible*, and A and B cannot both be equal to zero. General Form: Ax + By + C = 0, where A, B, and C are real numbers and are written as integers whenever possible*, and A and B cannot both be equal to zero. *Notes about standard and general form: Standard form and general form are to be written such that A, B, and C are integers whenever possible. In this course, you will be given problems where it is always possible to change the equation so that A, B, and C are integers. There are cases where it is not possible to change the coefficients to integers, such as the equation x + π y = 7, but such examples will not be used in this course. The equations for standard and general form are not unique, as seen in the example below. However, textbooks often display standard and general form so that A > 0, and so that A, B, and C are relatively prime. Example : Change each of the following equations to slope-intercept form, standard form, and general form. 7 A. y = ( x 6) B. x 6 = 8y C. y x = Solution: A. To change to slope-intercept form, y = mx + b, we want to distribute the solve for y. and then 7 y = ( x 6), so 7 0 y = x Math Page of 9 Section.

6 0 y = x +, so 7 7 Slope-intercept form is y = x + + = x + + = x y = x We want to clear all fractions in order to put the equation in standard or general form. We can do this by multiplying by 7 (the common denominator of the fractions): 8 7( y) = 7 x + 7 7, so 7 y = x + 8. We can then rearrange the terms to obtain standard and general form. The equation x + 7 y = 8 is in standard form. The equation x + 7y 8 = 0 is in general form. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. B. To change to slope-intercept form, y = mx + b, we can divide both sides of the equation by 8 to solve for y. x 6 = 8y, so x 6 6 y = = x = x Slope-intercept form is y = x. Since the original equation already has terms with integer coefficients, we can simply rearrange the terms of x 6 = 8y to obtain standard and general form. The equation x 8y = 6 is in standard form, and the equation x 8y 6 = 0 is in general form. Although both of the previous answers are acceptable, notice that the first term is negative, and that all three terms have a common factor of. We can divide each term by to obtain x + y = for standard form and x + y + = 0 for general form. These are the answers that would most commonly be given in a textbook answer key. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. C. Since the equation y x = 7 contains multiple fractions, we will choose to clear the 9 6 equation of fractions by multiplying each term by the common denominator of 9,, and 6 which is 6. Math Page 6 of 9 Section.

7 7 6 y x 6 6 y 6 x 6 7 =, so =. Simplifying each term, we obtain y 6 x 6 7 =, which gives us the equation 6y x =. 9 6 To change to slope-intercept form, y = mx + b, we need to solve for y: 6y x =, so 6y = x +. Dividing by 6, x + y = = x To change 6y x = to standard form and general form, we can simply rearrange the terms, since the coefficients and the constant term are already integers. The equation x + 6y = is in standard form, and the equation x + 6y = 0 is in general form. Although both of the previous equations are acceptable, it is common to make the first term positive by multiplying each term by, to obtain a standard form of x 6y =, and a general form of x 6y + = 0. Note that standard form and general form are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example : Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. We can see from the graph that the y-intercept is, so b =. We now need to find the slope, m. Choose any two points on the graph with integer coordinates; we will use ( 0, ) and From the point ( 0, ), we move down units, then to the right unit to get to (, 0 )., 0. Math Page 7 of 9 Section.

8 rise So m = = =. We can now substitute m = and b = into y = mx + b and obtain the run equation of the line: y = x + Example : Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. We can see from the graph that the y-intercept is 0, so b = 0. We now need to find the slope, m. Choose any two points on the graph with integer coordinates; we will use ( 0, 0 ) and From the point ( 0, 0 ), we move up units, then to the right units to get to (, ).,. Math Page 8 of 9 Section.

9 So rise m = =. We can now substitute run equation of the line: y = x m = and b = 0 into y = mx + b and obtain the Example 6: Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. Notice on the graph that the y-intercept is not an integer; we will use other means to find that later. Let us first find the slope, m. Choose any two points on the graph with integer coordinates; we will use (, ) and (, ). From the point (, ) right units to get to (, )., we move down units, then to the So m =. We can now use the slope along with one of the two chosen points and substitute into either y mx b = + or y y m( x x ) = to find the equation of the line. (There are four means of solving this problem, using either of the two points with either of the two equations. All methods yield the same result. We will show two of the four methods below.) First, let us plug the point (, ) and the known slope,, into the equation y = mx + b. Math Page 9 of 9 Section.

10 y = mx + b = ( ) + b 6 = + b b = = = Now that we have found the slope and the y-intercept, we can substitute y = mx + b to obtain the equation of the line. 0 y = x m = and 0 b = into If we instead use the point (, ) with the point-slope formula, we obtain the same result: y y = m x x y ( ) = ( x ( ) ) y + = ( x + ) Next, distribute the y + = x 6 y = x = x 0 y = x This equation and solve for y. 0 y = x is in slope-intercept form, and matches the answer we found using the first method. Notice that when using y y m( x x ) =, we did not need to separately find the value of b. After solving for y, the equation is in slope-intercept form. Math Page 0 of 9 Section.

11 Example 7: Write an equation in slope-intercept form for the line shown below. Solution: Slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. Once again, notice that the y-intercept is not an integer. Let us first find the slope, m. Choose any two points on the graph with integer coordinates; we will choose (, ) and (, ), we move up units, then to the right units to get to (, ).,. From the point So m =. Next, we can use the slope and either of the two chosen points and substitute into = + or y y m( x x ) either y mx b =, to find the equation of the line. Let us use the point (, ) and the known slope,. Two methods are shown, but any one method is sufficient. y = mx + b y y = m x x = ( ) + b y ( ) = ( x ( ) ) 9 9 = + b y + = x b = + = + = y = x + = x + y = mx + b = x + y = x + Math Page of 9 Section.

12 The equation of the line is y = x +. Horizontal and Vertical Lines The equation of any horizontal line is of the form y = b, where b is the y-intercept of the line. The line therefore passes through the point ( 0, b ). The slope of any horizontal line is zero. The equation of any vertical line is of the form x = a, where a is the x-intercept of the line. The line therefore passes through the point ( a, 0). The slope of any vertical line is undefined. Example 8: Write an equation for the line shown below. Solution: The slope of any horizontal line is zero. The form of any horizontal line is y Hence, the equation of the line is y =. Example 9: Write an equation for the line shown below. = b. Math Page of 9 Section.

13 Solution: The slope of any vertical line is undefined. The form of any vertical line is x = a. Hence, the equation of the line is x =. Example 0: Find an equation of the line in slope-intercept form that passes through ( 0, 7) and has slope. Solution: We are given the y-intercept and the slope, so we can substitute into the slope-intercept form and obtain the equation of the line: y = x + 7 Example : A line passes through the point ( 0, 8) and has slope. Find an equation of the line in point-slope form. Then write the equation in slope-intercept form. Solution: Let ( x, y ) represent the point ( 0, 8) information into the point-slope equation. y y = m x x y = y + 8 = 0 ( 8) ( x 0) ( x ). It is given that m =. Substitute this The above equation is in point-slope form. We will now solve for y to write the equation in slope-intercept form. y + 8 = 0 y + 8 = x + y = x + 8 y = x ( x ) Point-slope form is y 8 ( x 0) + =, and slope-intercept form is y = x. Math Page of 9 Section.

14 Example : Find an equation of the line in slope-intercept form that passes through the points (, 9) and (, ). Solution: We can find the slope of the line by applying the slope formula. y y m x x = = = 9 8 We can now use the slope and either one of the two given points to write the equation of the line. Two methods are shown below, but one method is sufficient. We will use the point (, 9). y = mx + b y y = m x x = ( ) + b y 9 = ( x ( ) ) 8 9 = + b y 9 = x b = 9 = = y = x + 9 = x y = mx + b = x y = x The equation of the line is 8 y = x. Example : Find an equation of the line in standard form that has x-intercept and y-intercept 0.7. Solution: We are given the points (, 0 ) and ( 0, 0.7) m = = 0. 0, respectively. First, find the slope. Now use the slope and the given y-intercept to write the equation in slope-intercept form. y = 0.x 0.7 The above equation can alternatively be written with fractions: 7 y = x, so y = x 0 We can clear the fractions by multiplying by 0 (the common denominator of and 0). Math Page of 9 Section.

15 y = x 0 0( y) = 0 x 0 0y = x We then rearrange the terms to obtain x + 0y =, which is in standard form, but is not unique. If we want to make the first term positive (which is common), we can multiply each term by to obtain x 0y =. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example : Find an equation of the line that passes through ( 9,.) and ( 0.,. ). Solution: First, we use the slope formula to find the slope of the line. y y m x x = = = = Recall that if the slope of a line is zero, the line is a horizontal line. Hence, we have a horizontal line, and its equation is y =.. Example : Find an equation of the line that passes through, 7 and, 7. Solution: First, we need to find the slope of the line. y y m x x = = =, which is undefined Recall that if the slope of a line is undefined, the line is a vertical line. Hence, we have a vertical line and its equation is x =. 7 Parallel and Perpendicular Lines Two nonvertical lines are parallel if and only if their slopes are the same. (Any two vertical lines are parallel to each other, but have undefined slope.) Math Page of 9 Section.

16 Two lines are perpendicular if and only if their slopes are negative reciprocals of each other. The exception to this rule is when one line is vertical (with undefined slope) and the other line is horizontal (with slope zero). These lines are clearly perpendicular to each other, but are not negative reciprocals since we cannot take the reciprocal of undefined. Note that two numbers c and d are negative reciprocals of each other if d =, which means that c d =. c Example 6: Find the negative reciprocal of each of the following numbers. A. B. C. 0. D. 0.7 Solution: A. The negative reciprocal of is. B. The negative reciprocal of is. C. 0. can be written as, which is 00 D. 0.7 can be written as 0, which is 7. Its negative reciprocal is Its negative reciprocal is. Example 7: Find an equation of the line in slope-intercept form that passes through the point, and is parallel to the line y = x. Solution: Notice that the line y = x is in slope-intercept form y = mx + b, and has a slope of. Our desired line is parallel to y = x, and therefore also has a slope of. We can use the slope,, and the given point,,, to find the equation of the line. Two different methods are shown below which yield the same result. Math Page 6 of 9 Section.

17 y = mx + b y y = m x x = + b y = x = + b y = x + b = 7 y = x + 7 y = mx + b = x + 7 The equation of the line in slope-intercept form is y = x + 7. Example 8: Find an equation of the line in general form that passes through the point (, ) and is perpendicular to the line x + y = 0. Solution: To find the slope of the line x + y = 0, we first need to write it in slope-intercept form. x + y = 0 y = x + 0 y = x + The given line, y = x +, has a slope of. Since we want to write the equation of a line perpendicular to the line y = x +, the desired line has a slope equal to the negative reciprocal of, which is. We can now use the slope,,, to find the equation of the desired line. Two different methods are shown below, which yield the same result., along with the given point, b y x b y ( x ) y = mx + b y y = m x x = + = = = + b = 8 y + = x 8 b = 9 y = x 9 y = mx + b = x 9 Using either method above, we obtain the equation y = x 9. Math Page 7 of 9 Section.

18 We want to write the equation in general form, Ax + By + C = 0, where A, B, and C are integers. We can rearrange the terms so that they are all on one side of the equation. x + y + 9 = 0 Remember that when writing in general form, the answers are not unique. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example 9: Find an equation of the line in standard form that has x-intercept 8 and is perpendicular to the line that passes through (, 7) and ( 6, 0). Solution: We first use the slope formula to find the slope of the line that passes through (, 7) and ( 6, 0). 0 7 = = = 6 y y m x x To find the slope of the desired perpendicular line, we find the negative reciprocal of is, which. We know that the line has x-intercept 8, which means that the graph passes through the point ( 8, 0). We can now use the slope,, along with the given point, ( 8, 0 ), to find the equation of the desired line. Two different methods are shown below, which yield the same result. y = mx + b y y = m x x 0 = = = + b y = x + 6 b = b y x 6 y = mx + b = x + Using either method above, we obtain the equation 6 y = x +. Math Page 8 of 9 Section.

19 We want to write the equation in standard form, Ax + By = C, where A, B, and C are integers. We can clear the fractions by multiplying each term by. 6 ( y) = x + y = x + 6 We then rearrange the terms to obtain x + y = 6, which is in standard form, but is not unique. If we want to make the first term positive (which is common), we can multiply each term by to obtain x y = 6. Other acceptable answers can be obtained by choosing any nonzero integer and then multiplying each term in the equation by that integer. Example 0: Find an equation of the line in slope-intercept form that passes through (, ) and is parallel to the line that passes through (, 0) and ( 0, ). Solution: We first use the slope formula to find the slope of the line that passes through (, 0) and ( 0, ). y y m x x = = = = 0 0 Since the equation of the line we wish to write is parallel to the line that passes through (, 0) and ( 0, ), we need to use this same slope, to find, along with the point (, ) the equation of the line. Two different methods are shown below, which yield the same result. y = mx + b y y = m x x = + = = + b y = x + b = + = 8 y = x + + y = mx + b = x + 8 y = x + 8 b y ( x ) The equation of the line is y = x + 8. Math Page 9 of 9 Section.

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

Linear Equations Review

Linear Equations Review Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

More information

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2 Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Sect The Slope-Intercept Form

Sect The Slope-Intercept Form Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line?

5 $75 6 $90 7 $105. Name Hour. Review Slope & Equations of Lines. STANDARD FORM: Ax + By = C. 1. What is the slope of a vertical line? Review Slope & Equations of Lines Name Hour STANDARD FORM: Ax + By = C 1. What is the slope of a vertical line? 2. What is the slope of a horizontal line? 3. Is y = 4 the equation of a horizontal or vertical

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

2.3 Writing Equations of Lines

2.3 Writing Equations of Lines . Writing Equations of Lines In this section ou will learn to use point-slope form to write an equation of a line use slope-intercept form to write an equation of a line graph linear equations using the

More information

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6 Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Lines and Linear Equations. Slopes

Lines and Linear Equations. Slopes Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

More information

Section 3.4 The Slope Intercept Form: y = mx + b

Section 3.4 The Slope Intercept Form: y = mx + b Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

More information

Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

More information

5.1: Rate of Change and Slope

5.1: Rate of Change and Slope 5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called. Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

Study Guide and Review - Chapter 4

Study Guide and Review - Chapter 4 State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

More information

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

More information

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.

1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved. 1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

More information

Section 2.2 Equations of Lines

Section 2.2 Equations of Lines Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

A synonym is a word that has the same or almost the same definition of

A synonym is a word that has the same or almost the same definition of Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

More information

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2).

Chapter 2 Section 4: Equations of Lines. 4.* Find the equation of the line with slope 4 3, and passing through the point (0,2). Chapter Section : Equations of Lines Answers to Problems For problems -, put our answers into slope intercept form..* Find the equation of the line with slope, and passing through the point (,0).. Find

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c.

Name: Class: Date: Does the equation represent a direct variation? If so, find the constant of variation. c. yes; k = 5 3. c. Name: Class: Date: Chapter 5 Test Multiple Choice Identify the choice that best completes the statement or answers the question. What is the slope of the line that passes through the pair of points? 1.

More information

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope

Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope Math 152 Rodriguez Blitzer 2.4 Linear Functions and Slope I. Linear Functions 1. A linear equation is an equation whose graph is a straight line. 2. A linear equation in standard form: Ax +By=C ex: 4x

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points? GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines. The Slope of a Line Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

More information

Graphing - Slope-Intercept Form

Graphing - Slope-Intercept Form 2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

More information

2.1 Equations of Lines

2.1 Equations of Lines Section 2.1 Equations of Lines 1 2.1 Equations of Lines The Slope-Intercept Form Recall the formula for the slope of a line. Let s assume that the dependent variable is and the independent variable is

More information

4.1 & Linear Equations in Slope-Intercept Form

4.1 & Linear Equations in Slope-Intercept Form 4.1 & 4.2 - Linear Equations in Slope-Intercept Form Slope-Intercept Form: y = mx + b Ex 1: Write the equation of a line with a slope of -2 and a y-intercept of 5. Ex 2:Write an equation of the line shown

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines

WARM UP EXERCSE. 1-3 Linear Functions & Straight lines WARM UP EXERCSE A company makes and sells inline skates. The price-demand function is p (x) = 190 0.013(x 10) 2. Describe how the graph of function p can be obtained from one of the library functions.

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

Math 113 Review for Exam I

Math 113 Review for Exam I Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

5. Equations of Lines: slope intercept & point slope

5. Equations of Lines: slope intercept & point slope 5. Equations of Lines: slope intercept & point slope Slope of the line m rise run Slope-Intercept Form m + b m is slope; b is -intercept Point-Slope Form m( + or m( Slope of parallel lines m m (slopes

More information

Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

More information

MATH 111: EXAM 02 SOLUTIONS

MATH 111: EXAM 02 SOLUTIONS MATH 111: EXAM 02 SOLUTIONS BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise

More information

-2- Reason: This is harder. I'll give an argument in an Addendum to this handout.

-2- Reason: This is harder. I'll give an argument in an Addendum to this handout. LINES Slope The slope of a nonvertical line in a coordinate plane is defined as follows: Let P 1 (x 1, y 1 ) and P 2 (x 2, y 2 ) be any two points on the line. Then slope of the line = y 2 y 1 change in

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

Graphing - Parallel and Perpendicular Lines

Graphing - Parallel and Perpendicular Lines . Graphing - Parallel and Perpendicular Lines Objective: Identify the equation of a line given a parallel or perpendicular line. There is an interesting connection between the slope of lines that are parallel

More information

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )

Algebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , ) Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.1-1.4, 1.6-1.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order

More information

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you: Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

More information

Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.

More information

Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Section 2.1 Intercepts; Symmetry; Graphing Key Equations Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

More information

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

Unit 5: Coordinate Geometry Practice Test

Unit 5: Coordinate Geometry Practice Test Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this

More information

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form. Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

More information

Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction 1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Section 3.2. Graphing linear equations

Section 3.2. Graphing linear equations Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

More information

Algebra. Indiana Standards 1 ST 6 WEEKS

Algebra. Indiana Standards 1 ST 6 WEEKS Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

More information

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key

I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key www.mathworksheetsgo.com On Twitter: twitter.com/mathprintables I. Model Problems. II. Practice III. Challenge Problems VI. Answer Key Web Resources Equations of Lines www.mathwarehouse.com/algebra/linear_equation/equation-of-a-line-formula.php

More information

Intro to Linear Equations Algebra 6.0

Intro to Linear Equations Algebra 6.0 Intro to Linear Equations Algebra 6.0 Linear Equations: y x 7 y x 5 x y Linear Equations generally contain two variables: x and y. In a linear equation, y is called the dependent variable and x is the

More information

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope

MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem. Constant Rate of Change/Slope MA.8.A.1.2 Interpret the slope and the x- and y-intercepts when graphing a linear equation for a real-world problem Constant Rate of Change/Slope In a Table Relationships that have straight-lined graphs

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b. PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2

Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Practice Problems for Exam 1 Math 140A, Summer 2014, July 2 Name: INSTRUCTIONS: These problems are for PRACTICE. For the practice exam, you may use your book, consult your classmates, and use any other

More information

Math 10 - Unit 7 Final Review - Coordinate Geometry

Math 10 - Unit 7 Final Review - Coordinate Geometry Class: Date: Math 10 - Unit Final Review - Coordinate Geometry Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Determine the slope of this line segment.

More information

Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture

Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework

More information

Module: Graphing Linear Equations_(10.1 10.5)

Module: Graphing Linear Equations_(10.1 10.5) Module: Graphing Linear Equations_(10.1 10.5) Graph Linear Equations; Find the equation of a line. Plot ordered pairs on How is the Graph paper Definition of: The ability to the Rectangular Rectangular

More information

5.1 Writing Linear Equations in Slope-Intercept Form. 1. Use slope-intercept form to write an equation of a line.

5.1 Writing Linear Equations in Slope-Intercept Form. 1. Use slope-intercept form to write an equation of a line. 5.1 Writing Linear Equations in Slope-Intercept Form Objectives 1. Use slope-intercept form to write an equation of a line. 2. Model a real-life situation with a linear function. Key Terms Slope-Intercept

More information

Week 2 Quiz: Equations and Graphs, Functions, and Systems of Equations

Week 2 Quiz: Equations and Graphs, Functions, and Systems of Equations Week Quiz: Equations and Graphs, Functions, and Systems of Equations SGPE Summer School 014 June 4, 014 Lines: Slopes and Intercepts Question 1: Find the slope, y-intercept, and x-intercept of the following

More information

Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

More information

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION:

2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION: Write an equation in slope-intercept form for the line described 2 passes through ( 2, 3) and (0, 1) Substitute m = 1 and in the point slope form 4 passes through ( 8, 2); Substitute m = and (x, y) = (

More information

55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim

55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of

More information

CHAPTER 1 Linear Equations

CHAPTER 1 Linear Equations CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Chapter 12. The Straight Line

Chapter 12. The Straight Line 302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

Algebra 2 PreAP. Name Period

Algebra 2 PreAP. Name Period Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

More information

IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Math Review Large Print (18 point) Edition Chapter 2: Algebra

Math Review Large Print (18 point) Edition Chapter 2: Algebra GRADUATE RECORD EXAMINATIONS Math Review Large Print (18 point) Edition Chapter : Algebra Copyright 010 by Educational Testing Service. All rights reserved. ETS, the ETS logo, GRADUATE RECORD EXAMINATIONS,

More information

Lecture 9: Lines. m = y 2 y 1 x 2 x 1

Lecture 9: Lines. m = y 2 y 1 x 2 x 1 Lecture 9: Lines If we have two distinct points in the Cartesian plane, there is a unique line which passes through the two points. We can construct it by joining the points with a straight edge and extending

More information

Example 1. Rise 4. Run 6. 2 3 Our Solution

Example 1. Rise 4. Run 6. 2 3 Our Solution . Graphing - Slope Objective: Find the slope of a line given a graph or two points. As we graph lines, we will want to be able to identify different properties of the lines we graph. One of the most important

More information

2. THE x-y PLANE 7 C7

2. THE x-y PLANE 7 C7 2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information