LINEAR ALGEBRA. September 23, 2010

Size: px
Start display at page:

Download "LINEAR ALGEBRA. September 23, 2010"

Transcription

1 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition Inverses and Transposes Column Spaces and NullSpaces Ax = 0 and Pivot Variables Solving Ax = b The Four Fundamental Subspaces Orthogonality Projections Gram Schmidt technique Determinants Properties of Determinants Cramers rule Eigenvalues and Eigenvectors Diagonalization of Matrices Symmetric and Positive Semi-Definite Matrices Similar Matrices and Jordan Form Linear Transformation LU-decomposition Aufgabe Solve the nonsingular triangular system u + v + w = b () v + w = b () w = b 3 (3) Show that your solution gives a combination of the columns that equals the column on the right. Lösung zu Aufgabe u = b b, v = b b 3, w = b 3 Aufgabe Explain why the system u + v + w = (4) u + v + 3w = (5) v + w = 0 (6)

2 is singular, by finding a combination of the three equations that adds up to 0 =. What value should replace the last zero on the right side, to allow the equations to have solutions and what is one of the solutions? Lösung zu Aufgabe eq() eq() + eq(3) = 0 = ; ; (3,, 0) is one of the solutions Aufgabe 3 Apply elimination to produce the factors L and U for A =, A = 3 3, A = 4 4 (7) Lösung zu Aufgabe ; ; (8) Aufgabe 4 How could you factor A into a product U L, upper triangular times lower triangular? Would they be the same factors as in A = LU? Lösung zu Aufgabe 4 Gaussian elimination starting from the bottom row (or maybe the first column); no. 0. Inverses and Transposes Aufgabe 5 Which properties of a matrix A are preserved by its inverse (assuming A exists)? () A is triangular () A is symmetric (3) A is tridiagonal (4) all entries are whole numbers (5) all entries are fractions (including whole numbers like 3 ) Lösung zu Aufgabe 5 (), (), (5). Aufgabe 6 (a) How many entries can be chosen independently, in a symmetric matrix of order n? (b) How many entries can be chosen independently, in a skew-symmetric matrix of order n?

3 Lösung zu Aufgabe 6 (a) n(n + )/. (b) (n )n/. Aufgabe 7 If A = L D U and A = L D U, prove that L = L, D = D and U = U. If A is invertible, the factorization is unique. (a) Derive the equation L L D = D U U and explain why one side is lower triangular and the other side is upper triangular. (b) Compare the main diagonals in that equation, and then compare the off-diagonals. Lösung zu Aufgabe 7 (a) The inverse of a lower (upper) triangular matrix is still a lower (upper) triangular matrix. The multiplication of the two lower (upper) triangular matrices gives a lower (upper) triangular matrix. (b) The main diagonals of L L D and D U U are the same as those of D and D respectively. L L D = D U U, so we have D = D. By comparing the off-diagonals of L L D = D U U, they must both be diagonal matrices. L L D = D, D U U = D, D is invertible L L = I, U U = I L = L, U = U. 0.3 Column Spaces and NullSpaces Aufgabe 8 Which of the following subsets of R 3 are actually subspaces? (a) The plane of vectors with first component b = 0. (b) The plane of vectors b with b =. (c) The vectors b with b b = 0 (this is the union of two subspaces, the plane b = 0 and the plane b = 0). (d) The solitary vector b = (0, 0, 0). (e) All combinations of two given vectors x = (,, 0) and y = (, 0, ). (f) The vectors (b, b, b 3 ) that satisfy b 3 b + 3b = 0. Lösung zu Aufgabe 8 (a), (d), (e), (f) Aufgabe 9 Let P be the plane in 3-space with equation x + y + z = 6. What is the equation of the plane P 0 through the origin parallel to P? Are P and P 0 subspaces of R 3? Lösung zu Aufgabe 9 x + y + z = 0; P 0 is a subspace of R 3, P isn t. Aufgabe 0 Which descriptions are correct? The solutions x of [ Ax = x x 0 0 = 0] x 3 (9) form a plane, line, point, subspace, nullspace of A, column space of A. 3

4 0.4 Ax = 0 and Pivot Variables Aufgabe For the matrix A = [ 0 4 ] (0) determine the echelon form U, the basic variables, the free variables, and the general solution to Ax = 0. Then apply elimination to Ax = b, with components b and b on the right side; find the conditions for Ax = b to be consistent (that is, to have a solution) and find the general solution in the same form as Equation (3). What is the rank of A? Lösung zu Aufgabe U = ; u, w, y are basic variables and v is free; the general solution to Ax = is x = (u 4w, w, y); Ax = bis consistent if b b = 0; the general solution to Ax = b is u x = b 4w w = u w 4 + y b 0 ; r =. y Aufgabe Write the general solution to u [ v = 4 5 4] w () as the sum of a particular solution to Ax = b and the general solution to Ax = 0, as in (3). Lösung zu Aufgabe u v = v 3 v = v w 0 Aufgabe 3 Find the value of c which makes it possible to solve u + v + w = () u + 3v w = 5 (3) 3u + 4v + w = c (4) 0.5 Solving Ax = b Aufgabe 4 Is it true that if v, v, v 3 are linearly independent, that also the vectors w = v +v, w = v + v 3, w 3 = v + v 3 are linearly independent? (Hint: Assume some combination c w + c w + c 3 w 3 = 0, and find which c i are possible.) 4

5 Lösung zu Aufgabe 4 Yes; c (v + v ) + c (v + v 3 ) + c 3 (v + v 3 ) = 0 (c + c )v + (c + c 3 )v + (c + c 3 )v 3 = 0 c + c = 0, c + c 3 = 0, c + c 3 = 0 c = c = c 3 = 0 w, w, w 3 are independent. Aufgabe 5 Find a counterexample to the following statement: If v, v, v 3, v 4 is a basis for the vector space R 4, and if W is a subspace, then some subset of the v s is a basis for W. Lösung zu Aufgabe 5 Let v = (, 0, 0, 0),..., v 4 = (0, 0, 0, ) be the coordinate vectors. If W is the line through (,, 3, 4), none of the v s are in W. Aufgabe 6 Suppose V is known to have dimension k. Prove that (i) any k independent vectors in V form a basis; (ii) any k vectors that span V form a basis. In other words, if the number of vectors is known to be right, either of the two properties of a basis implies the other. Lösung zu Aufgabe 6 (i) If it were not a basis, we could add more independent vectors, which would exceed the given dimension k. (ii) If it were not a basis, we could delete some vectors, leaving less than the given dimension k. Aufgabe 7 Prove that if V and W are three-dimensional subspaces of R 5, then V and W must have a nonzero vector in common. Hint: Start with bases of the two subspaces, making six vectors in all. Lösung zu Aufgabe 7 If v, v, v 3 is a basis for V, and w, w, w 3 is a basis for W, then these six vectors cannot be independent and some combination is zero: c i v i + d i w i = 0, or c i v i = d i w i is a vector in both subspaces. 0.6 The Four Fundamental Subspaces Aufgabe 8 Find the dimension and construct a basis for the four subspaces associated with each of the matrices A = and U = (5)

6 Lösung zu Aufgabe 8 R(A) : r =, (, ); N(A) : n r = 3, (, 0, 0, 0), (0, 4,, 0), (0, 0, 0, ); R(A T ) : r =, (0,, 4, 0); N(A T ) : m r =, (, ); R(U) : (, 0); N(U) : (, 0, 0, 0), (0, 4,, 0), (0, 0, 0, ); R(U T ) : (0,, 4, 0); N(U T ) : (0, ). Aufgabe 9 If the product of two matrices is the zero matrix, AB = 0, show that the column space of B is contained in the nullspace of A. (Also the row space of A is the left nullspace of B, since each row of A multiplies B to give a zero row.) Lösung zu Aufgabe 9 AB = 0 A(b,..., b n ) = 0 Ab = 0,..., Ab n = 0 b N(A),..., b n N(A) R(B) is contained in N(A). Aufgabe 0 Explain why Ax = b is solvable if and only if rank A = rank A, where A is formed from A by adding b as an extra column. Hint: The rank is the dimension of the column space; when does adding an extra column leave the dimension unchanged? Lösung zu Aufgabe 0 Ax = b is solvable b R(A) R(A) = R(A ) rank A = rank A. Aufgabe does Suppose A is an m by n matrix of rank r. Under what conditions on those numbers (a) A have a two-sided inverse: AA = A A = I? (b) Ax = b have infinitely many solutions for every b? Lösung zu Aufgabe (a) m = n = r (b) n > m = r Aufgabe If Ax = 0 has a nonzero solution, show that A T y = f fails to be solvable for some right sides f. Construct an example of A and f. Lösung zu Aufgabe Ax = 0 has a nonzero solution r < n R(A T ) smaller than R n A T y = f is not solvable for some f. 0.7 Orthogonality Aufgabe 3 In R 3 find all vectors that are orthogonal to (,, ) and (, -, 0). Produce from these vectors a mutually orthogonal system of unit vectors (an orthogonal system) in R 3. 6

7 Lösung zu Aufgabe 3 All multiples of (,, ); (/ 3, / 3, / 3), (/, /, 0), (/ 6, / 6, / 6). Aufgabe 4 Show that x y is orthogonal to x + y if and only if x = y. Lösung zu Aufgabe 4 (x y) T (x + y) = 0 x T x + x T y y T x y T y = 0 x T x = y T y x = y. Aufgabe 5 Let P be the plane (not a subspace) in 3-space with equation x + y z = 6. Find the equation of a plane P parallel to P but going through the origin. Find also a vector perpendicular to those planes. What matrix has the plane P as its nullspace, and what matrix hast P as its row space? 0.8 Projections Aufgabe 6 Suppose A is the 4 4 identity matrix with its last column removed. A is 4 3. Project b = (,, 3, 4) onto the column space of A. What shape is the projection matrix P and what is P? Lösung zu Aufgabe Gram Schmidt technique Aufgabe 7 If u is a unit vector, show that Q = I uu T is an orthogonal matrix. (It is a reflection, also known as a Householder transformation.) Compute Q when u T = [ ]. Lösung zu Aufgabe 7 (I uu T ) T (I uu T ) = I 4uu T + 4uu T uu T = I; Q = Aufgabe 8 Show, by forming b T b directly, that Pythagoras law holds for any combination b = x q x n q n of orthonormal vectors: b = x x n. In matrix terms b = Qx, so this again proves that lengths are preserved: Qx = x. Lösung zu Aufgabe 8 (x q x n q n ) T (x q x n q n ) = x x n b = b T b = x x n Aufgabe 9 Apply the Gram-Schmidt process to a = 0 0, b = 0, c =. (6) 7

8 and write the result in the form A = QR. Lösung zu Aufgabe = 0 0, Determinants Aufgabe 30 How are det(a), det( A), and det(a ) related to det A, when A is n by n? Lösung zu Aufgabe 30 n det(a); ( ) n det(a); (det(a)) Aufgabe 3 (a) a rank one matrix Find the determinants of: A = 4 [ ] (7) (b) the upper triangular matrix U = (8) (c) the lower triangular matrix U T ; (d) the inverse matrix U ; (e) the reverse-triangular matrix that results from row exchanges, M = (9) Lösung zu Aufgabe 3 (a) 0 (b) 6 (c) 6 (d) /6 (e) 6 Aufgabe 3 If every row of A adds to zero prove that det A = 0. If every row adds to prove that det(a I) = 0. Show by example that this does not imply det A =. Lösung zu Aufgabe 3 Adding every column of A to the first column makes it a zero column, so det ] A = 0. If every row of A adds to, every row of A I adds to 0 det(a I) = 0; A =, det(a I) = 0, but det A = 0. 8 [

9 0. Properties of Determinants Aufgabe 33 diagonals: Suppose A n is the n by n tridiagonal matrix with s everywhere on the three A = [ ], A = 0, A 3 =,... (0) 0 Let D n be the determinant of A n ; we want to find it. (a) Expand in cofactors along the first row of A n to show that D n = D n D n. (b) Starting from D = and D = 0 find D 3, D 4,..., D 8. By noticing how these numbers cycle around (with what period?) find D 000. Lösung zu Aufgabe 33 (b) 6; D 000 = D = D 4 = Aufgabe 34 Explain why a 5 by 5 matrix with a 3 by 3 zero submatrix is sure to be a singular (regardless of the 6 nonzeros marked by x s): x x x x x x x x x x the determinant of A = x x is zero. () x x x x Lösung zu Aufgabe 34 In formula (6), a α...a 5v is sure to be zero for all possible (α,..., v). A + = 4. Or by 3.6.4, rank Aufgabe 35 If A is m by n and B is n by m, show that ( ) 0 A I 0 det = = det AB. Hint: Postmultiply by. B I B I () Do an example with m < n and an example with m > n. Why does the second example have det AB = 0? Lösung zu Aufgabe 35 0 A I 0 AB A I 0 0 A AB A =, det = det = det = B I B I 0 I B I B I 0 I det(ab); e.g.a = [ ] [ [ 0 A, B =, det = 5 = det(ab); A =, B = ] B I ] [ ], 0 A det = 0 = det(ab), because AB is a matrix with rank(ab) rank(a) n < m. B I 9

10 0. Cramers rule Aufgabe 36 The determinant is a linear function of the column. It is zero if two columns are equal. When b = Ax = x a + x a + x 3 a 3 goes into the first column of A, then the determinant of this matrix B is b a a 3 = x a + x a + x 3 a 3 a a 3 = x a a a 3 = x deta (a) What formula for x comes from left side = right side? (b) What steps lead to the middle equation? Lösung zu Aufgabe 36 (a) x = det([b a a 3 ])/deta, if deta 0 (b) The determinant is linear in its first column so x a a a 3 + x a a a 3 + x 3 a a a 3. The last two determinants are zero because of repeated columns, leaving x a a a 3 which is x deta. 0.3 Eigenvalues and Eigenvectors Aufgabe 37 Suppose that λ is an eigenvalue of A, and x is its eigenvector: Ax = λx. (a) Show that this same x is an eigenvector of B = A 7I, and find the eigenvalue. (b) Assuming λ 0, show that x is also an eigenvector of A and find the eigenvalue. Lösung zu Aufgabe 37 Ax = λx (A 7I)x = (λ 7)x; Ax = λx x = λa x A x = (/λ)x. Aufgabe 38 Show that the determinant equals the product of the eigenvalues by imagining that the characteristic polynomial is factored into det(a λi) = (λ λ)(λ λ) (λ n λ) (3) and making a clever choice of λ. Lösung zu Aufgabe 38 Choose λ = 0 Aufgabe 39 Show that the trace equals the sum of the eigenvalues, in two steps. First, find the coefficient of ( λ) n on the right side of (5). Next, look for all the terms in a λ a a n a a λ a n det(a λi) = det (4)... a n a n a nn λ which involve ( λ) n. Explain why they all come from the product down the main diagonal, and find the coefficient of ( λ) n on the left side of (5). Compare. 0

11 Lösung zu Aufgabe 39 The coefficient is λ λ n. In det(λ λi), a term which includes an off-diagonal a ij excludes both a ii λ and a jj λ. Therefore such a term doesn t involve ( λ) n. The coefficient of ( λ) n must come from the main diagonal and it is a +...+a nn = λ +...+λ n. 0.4 Diagonalization of Matrices Aufgabe 40 Factor the following matrices into SΛS : A = and A =. (5) 0 0 Lösung zu Aufgabe 40 [ 0 0 ; Aufgabe 4 ] Suppose A = uv T is a column times a row (a rank-one matrix). (a) By multiplying A times u show that u is an eigenvector. What is λ? (b) What are the other eigenvalues (and why)? (c) Compute trace(a) = v T u in two ways, from the sum on the diagonal and the sum of λ s. Lösung zu Aufgabe 4 (a) Au = uv T u = (v T u)u λ = v T u. (b) All other eigenvalues are zero because dim N(A) = n. Aufgabe 4 If A is diagonalizable, show that the determinant of A = SΛS is the product of the eigenvalues. Lösung zu Aufgabe 4 det A = det(sλs ) = det S det Λ det S = det Λ = λ...λ n. 0.5 Symmetric and Positive Semi-Definite Matrices Aufgabe 43 If A = QΛQ T is symmetric positive definite, then R = Q ΛQ T is its symmetric positive definite square root. Why does R have real eigenvalues? Compute R and verify R = A for Lösung zu Aufgabe 43 Because Λ > 0. R = A = [ and A = ] ; R = 0 6. (6) Aufgabe 44 If A is symmetric positive definite and C is nonsingular, prove that B = C T AC is also symmetric positive definite.

12 Lösung zu Aufgabe 44 If x T Ax > 0 for all x 0, then x T C T ACx = (Cx) T A(Cx) > 0 (C is nonsingular so Cx 0). Aufgabe 45 If A is positive definite and a is increased, prove from cofactors that the determinant is increased. Show by example that this can fail if A is indefinite. Lösung zu Aufgabe 45 det A = a A +... If A is positive definite, then A > 0. As a is increased, a A is increased while the others don t change det A is increased. 0.6 Similar Matrices and Jordan Form Aufgabe 46 Find the Jordan forms (in three steps!) of 0 A = and B = (7) Lösung zu Aufgabe J =, J = Aufgabe 47 Show that each Jordan block J i is similar to its transpose, J T i = P J i P, using the permutation matrix P with ones along the cross-diagonal (lower left to upper right). Deduce that every matrix is similar to its transpose. Lösung zu Aufgabe 47 Every matrix A is similar to a Jordan matrix J = M AM, and by part (a), J = P J T P. (Here P is formed block by block from the cross-diagonal permutations used on each block J i.) Therefore A is similar to A T : M AM = J = P J T P = P M T A T (M T ) P, or A = (MP M T )A T (MP M T ). Aufgabe 48 Find by inspection the Jordan forms of 3 A = and B =. (8) Lösung zu Aufgabe J = , J = Linear Transformation Aufgabe 49 Suppose a linear T transforms (, ) to (, ) and (, 0) to (0, 0). Find T (v):

13 (a) v = (, ) (b) v = (3, ) (c) v = (, ) (d) v = (a, b) Lösung zu Aufgabe 49 Write v as a combination c(, ) + d(, 0). Then T (v) = c(, ) + d(0, 0).T (v) = (4, 4); (, ); (, ); if v = (a, b) = b(, ) + a b (, 0) then T (v) = b(, ) + (0, 0). Aufgabe 50 Suppose T is reflection across the 45Â line, and S is reflection across the y axis. If v = (, ) then T (v) = (, ). Find S(T (v)) and T (S(v)). This shows that generally ST T S. Lösung zu Aufgabe 50 S takes (x, y) to ( x, y). S(T (v)) = (, ). S(v) = (, ) and T (S(v)) = (, ). Aufgabe 5 Suppose we have two bases v,..., v n and w,..., w n for R n. If a vector has coefficients b i in one basis and c i in the other basis, what is the change of basis matrix in b = Mc? Start from b v b n v n = V b = c w c n w n = W c. (9) Your answer represents T (v) = v with input basis of v s and output basis of w s. different bases, the matrix is not I. Because of Lösung zu Aufgabe 5 If V b = W c then b = V W c. The change of basis matrix is V W. 3

MATH36001 Background Material 2015

MATH36001 Background Material 2015 MATH3600 Background Material 205 Matrix Algebra Matrices and Vectors An ordered array of mn elements a ij (i =,, m; j =,, n) written in the form a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn is said to be

More information

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, Chapter 1: Linear Equations and Matrices MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL

INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

1 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors

2.1: Determinants by Cofactor Expansion. Math 214 Chapter 2 Notes and Homework. Evaluate a Determinant by Expanding by Cofactors 2.1: Determinants by Cofactor Expansion Math 214 Chapter 2 Notes and Homework Determinants The minor M ij of the entry a ij is the determinant of the submatrix obtained from deleting the i th row and the

More information

Determinants. Dr. Doreen De Leon Math 152, Fall 2015

Determinants. Dr. Doreen De Leon Math 152, Fall 2015 Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.

More information

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj

Section 5.3. Section 5.3. u m ] l jj. = l jj u j + + l mj u m. v j = [ u 1 u j. l mj Section 5. l j v j = [ u u j u m ] l jj = l jj u j + + l mj u m. l mj Section 5. 5.. Not orthogonal, the column vectors fail to be perpendicular to each other. 5..2 his matrix is orthogonal. Check that

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

1 Determinants. Definition 1

1 Determinants. Definition 1 Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described

More information

Facts About Eigenvalues

Facts About Eigenvalues Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v

More information

Sergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014

Sergei Silvestrov, Christopher Engström, Karl Lundengård, Johan Richter, Jonas Österberg. November 13, 2014 Sergei Silvestrov,, Karl Lundengård, Johan Richter, Jonas Österberg November 13, 2014 Analysis Todays lecture: Course overview. Repetition of matrices elementary operations. Repetition of solvability of

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am - :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.

More information

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points.

18.06 Problem Set 4 Solution Due Wednesday, 11 March 2009 at 4 pm in 2-106. Total: 175 points. 806 Problem Set 4 Solution Due Wednesday, March 2009 at 4 pm in 2-06 Total: 75 points Problem : A is an m n matrix of rank r Suppose there are right-hand-sides b for which A x = b has no solution (a) What

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.

Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A. Solutions to Math 30 Take-home prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)

More information

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

More information

Practice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16.

Practice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. Practice Math 110 Final Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. 1. Let A = 3 1 1 3 3 2. 6 6 5 a. Use Gauss elimination to reduce A to an upper triangular

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

Mathematics Notes for Class 12 chapter 3. Matrices

Mathematics Notes for Class 12 chapter 3. Matrices 1 P a g e Mathematics Notes for Class 12 chapter 3. Matrices A matrix is a rectangular arrangement of numbers (real or complex) which may be represented as matrix is enclosed by [ ] or ( ) or Compact form

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 205/6 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns

4. Matrix inverses. left and right inverse. linear independence. nonsingular matrices. matrices with linearly independent columns L. Vandenberghe EE133A (Spring 2016) 4. Matrix inverses left and right inverse linear independence nonsingular matrices matrices with linearly independent columns matrices with linearly independent rows

More information

Using the Singular Value Decomposition

Using the Singular Value Decomposition Using the Singular Value Decomposition Emmett J. Ientilucci Chester F. Carlson Center for Imaging Science Rochester Institute of Technology emmett@cis.rit.edu May 9, 003 Abstract This report introduces

More information

Topic 1: Matrices and Systems of Linear Equations.

Topic 1: Matrices and Systems of Linear Equations. Topic 1: Matrices and Systems of Linear Equations Let us start with a review of some linear algebra concepts we have already learned, such as matrices, determinants, etc Also, we shall review the method

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Factorization Theorems

Factorization Theorems Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Diagonal, Symmetric and Triangular Matrices

Diagonal, Symmetric and Triangular Matrices Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Matrix Inverse and Determinants

Matrix Inverse and Determinants DM554 Linear and Integer Programming Lecture 5 and Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1 2 3 4 and Cramer s rule 2 Outline 1 2 3 4 and

More information

Inverses and powers: Rules of Matrix Arithmetic

Inverses and powers: Rules of Matrix Arithmetic Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

More information

Chapter 8. Matrices II: inverses. 8.1 What is an inverse?

Chapter 8. Matrices II: inverses. 8.1 What is an inverse? Chapter 8 Matrices II: inverses We have learnt how to add subtract and multiply matrices but we have not defined division. The reason is that in general it cannot always be defined. In this chapter, we

More information

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A.

APPLICATIONS OF MATRICES. Adj A is nothing but the transpose of the co-factor matrix [A ij ] of A. APPLICATIONS OF MATRICES ADJOINT: Let A = [a ij ] be a square matrix of order n. Let Aij be the co-factor of a ij. Then the n th order matrix [A ij ] T is called the adjoint of A. It is denoted by adj

More information

Matrices, Determinants and Linear Systems

Matrices, Determinants and Linear Systems September 21, 2014 Matrices A matrix A m n is an array of numbers in rows and columns a 11 a 12 a 1n r 1 a 21 a 22 a 2n r 2....... a m1 a m2 a mn r m c 1 c 2 c n We say that the dimension of A is m n (we

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =

Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A = Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and

More information

Determinants. Chapter Properties of the Determinant

Determinants. Chapter Properties of the Determinant Chapter 4 Determinants Chapter 3 entailed a discussion of linear transformations and how to identify them with matrices. When we study a particular linear transformation we would like its matrix representation

More information

EC9A0: Pre-sessional Advanced Mathematics Course

EC9A0: Pre-sessional Advanced Mathematics Course University of Warwick, EC9A0: Pre-sessional Advanced Mathematics Course Peter J. Hammond & Pablo F. Beker 1 of 55 EC9A0: Pre-sessional Advanced Mathematics Course Slides 1: Matrix Algebra Peter J. Hammond

More information

The Inverse of a Matrix

The Inverse of a Matrix The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a ( 0) has a reciprocal b written as a or such that a ba = ab =. Some, but not all, square matrices have inverses. If a square

More information

LECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A

LECTURE 1 I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find x such that IA = A LECTURE I. Inverse matrices We return now to the problem of solving linear equations. Recall that we are trying to find such that A = y. Recall: there is a matri I such that for all R n. It follows that

More information

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.

MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar

More information

Solutions to Review Problems

Solutions to Review Problems Chapter 1 Solutions to Review Problems Chapter 1 Exercise 42 Which of the following equations are not linear and why: (a x 2 1 + 3x 2 2x 3 = 5. (b x 1 + x 1 x 2 + 2x 3 = 1. (c x 1 + 2 x 2 + x 3 = 5. (a

More information

5.3 Determinants and Cramer s Rule

5.3 Determinants and Cramer s Rule 290 5.3 Determinants and Cramer s Rule Unique Solution of a 2 2 System The 2 2 system (1) ax + by = e, cx + dy = f, has a unique solution provided = ad bc is nonzero, in which case the solution is given

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015

Inverses. Stephen Boyd. EE103 Stanford University. October 27, 2015 Inverses Stephen Boyd EE103 Stanford University October 27, 2015 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3

x + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3 Math 24 FINAL EXAM (2/9/9 - SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r

More information

Presentation 3: Eigenvalues and Eigenvectors of a Matrix

Presentation 3: Eigenvalues and Eigenvectors of a Matrix Colleen Kirksey, Beth Van Schoyck, Dennis Bowers MATH 280: Problem Solving November 18, 2011 Presentation 3: Eigenvalues and Eigenvectors of a Matrix Order of Presentation: 1. Definitions of Eigenvalues

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

9. Numerical linear algebra background

9. Numerical linear algebra background Convex Optimization Boyd & Vandenberghe 9. Numerical linear algebra background matrix structure and algorithm complexity solving linear equations with factored matrices LU, Cholesky, LDL T factorization

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

More information

2.5 Elementary Row Operations and the Determinant

2.5 Elementary Row Operations and the Determinant 2.5 Elementary Row Operations and the Determinant Recall: Let A be a 2 2 matrtix : A = a b. The determinant of A, denoted by det(a) c d or A, is the number ad bc. So for example if A = 2 4, det(a) = 2(5)

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Chapter 1 - Matrices & Determinants

Chapter 1 - Matrices & Determinants Chapter 1 - Matrices & Determinants Arthur Cayley (August 16, 1821 - January 26, 1895) was a British Mathematician and Founder of the Modern British School of Pure Mathematics. As a child, Cayley enjoyed

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 3 Linear Least Squares Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

Orthogonal Bases and the QR Algorithm

Orthogonal Bases and the QR Algorithm Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries

More information

More than you wanted to know about quadratic forms

More than you wanted to know about quadratic forms CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit

More information

DETERMINANTS. b 2. x 2

DETERMINANTS. b 2. x 2 DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Helpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet. Giblin Eunson Library MATRIX ALGEBRA. library.unimelb.edu.au/libraries/bee. Use this sheet to help you: Helpsheet Giblin Eunson Library ATRIX ALGEBRA Use this sheet to help you: Understand the basic concepts and definitions of matrix algebra Express a set of linear equations in matrix notation Evaluate determinants

More information