MATH APPLIED MATRIX THEORY

Size: px
Start display at page:

Download "MATH 551 - APPLIED MATRIX THEORY"

Transcription

1 MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points each:. Draw the web and its baclins. Solution: This is easy to do: just remember how a matrix describes a directed graph. For instance, since the element A(, 3 equals, then there is an arrow (baclin going from page to page 3. Since A(4,, then there is no baclin going from page 4 to page, and so on. 2. Find the importance score matrix B for the web. Solution: Once the web is understood, the importance scores x,..., x 5 verify the following x 3 x x 5 x 2 2 x + 3 x x 5 x 3 2 x In matrix notation, we obtain x x 2 x 3 x 4 x 5 x 4 x x 3 x 5 x 4 /3 /2 /2 /3 /2 /2 /3 x x 2 x 3 x 4 x 5

2 Hence, B /3 /2 /2 /3 /2 /2 /3 Notice that all the columns of B add up to (that is, B is column stochastic. This is a quic way to chec that B is not incorrect. 3. Let M.85 B +.5 /5 ones(5 and suppose that MATLAB gives >> [P D eig(m P i i i i i i i i D i i.482 Find the importance score vector x [x, x 2, x 3, x 4, x 5. Solution: The importance score vector must verify x Mx and x +x 2 +x 3 +x 4 +x 5. In particular, the equation x Mx says that x must be an eigenvector of M with eigenvalue λ. In the matrix D the eigenvalue λ is in the first column, so that one associated eigenvector will be the first column of P. That is, the vector v [.352,.499,.23,.5488,.538. Clearly, the sum of the components of this eigenvector v is not equal to. To create an eigenvector whose components add up to, we divide the vector v by the sum of its components. That is, x [.352,.499,.23,.5488, [.352,.499,.23,.5488, [.635,.233,.995,.2562,.2478 Hence the score importance vector is x [.635,.233,.995,.2562,

3 PROBLEM 2 (25 points Determine whether the following matrices are linearly independent M [ 2 (This is problem 2, section 7.2 [, M 2 [ 5 3, M [ 2, M 4 3 Solution: By definition, M, M 2, M 3, M 4 are linearly independent if whenever there are real numbers x, x 2, x 3, and x 4 such that x M + x 2 M 2 + x 3 M 3 + x 4 M 4, then necessarily x x 2 x 3 x 4. The equation x M + x 2 M 2 + x 3 M 3 + x 4 M 4 means ( x M + x 2 M 2 + x 3 M 3 + x 4 M 4. That is, x [ 2 + x 2 [ + x 3 [ x 4 [ 2 3 ( Thus, componentwise this implies That is, we end up with the system If we denote A x + x 2 + 5x 3 + 2x 4 x 2 + 3x 3 + x 4 x 2 3x 3 x 4 2x + x 2 + 5x 3 + 3x x x 2 x 3 x 4, then x is a solution to the system Ax. Linearly independence of M, M 2, M 3, and M 4 means that there is exactly one solution to Ax, that is, the zero solution. Let s see if that s the case. By computing the reduced row echelon form of the augmented matrix [A b, where b [,,,, (which is very simple to do by hand, we get that there is one free variable. Therefore, there are infinitely many solutions. This is telling us that M, M 2, M 3, and M 4 are linearly dependent since there are infinitely many non-zero numbers x, x 2, x 3, and x 4 such that x M + x 2 M 2 + x 3 M 3 + x 4 M 4. 3

4 PROBLEM 3 (3 points Determine whether the following sets are vector spaces ( points each. U {a + b t such that a, b R} (This is problem 28, section 7. Solution: By definition. U is a vector space if whenever the sum of two objects in U is also an object in U, and whenever an object is U is multiplied by a real number the result is also an object in U. To chec the first condition let s tae two objects u and v in U. By the definition of U u and v must be of the form u + l t, v r + s t where, l, r and s are some fixed real numbers (here t is the variable. Now, the sum u + v is u + v ( + r + (l + s t, which is also of the form real number + real number t. Hence, u + v is also an object of U. Now tae a real number λ and an object u U. Then, u must be of the form u m + y t for some real numbers m and y. Therefore, the product λu is given by λu λ(m + y t λm + λy t, which is also of the form real number + real number t. Hence, λu is also an object of U. Therefore, U is a vector space. {[ } a b 2. V such that a + d (This is problem 2, section 7. c d Solution: By definition, the objects of V are those 2 2 matrices whose diagonal elements add up to. Given two objects u and v in V, they must be of the form [ [ e f i j u, v g h l for some real numbers e, f, g, h, i, j, and l such that e + h and i + l. The sum u + v is then [ e + i f + j u + v g + h + l We only need to chec whether the diagonal elements of u + v add up to. The diagonal elements of u + v are e + i and h + l. Hence That, is u + v is also an object in V. (e + i + (h + l e + h + i + l +. Now, tae a real number λ and an object u V. Therefore, since u must be of the form [ p q u r s for some real numbers p, q, r, and s with p + s. The product λu is given by [ λp λq λu λr λs 4

5 It remains to chec whether the diagonal elements of λu add up to zero. We have λp + λs λ(p + s λ. Hence, λu is also an object of V, for every real number λ and every object u in V. Thus, V is a vector space. 3. The set S consisting of all 2 2 symmetric matrices. (This is problem 23, section 7. Solution: Given any two objects u and v of S, they must be of the form [ [ p q a b u, v q s b c for some real numbers p, q, s, a, b, and c. Notice that u and v are symmetric, that is, u u T and v v T (they equal their transposes. Now, u + v is given by [ p + a q + b u + v q + b s + c Notice that u + v is also symmetric. Therefore, u + v is also an object in S. Now tae a real number λ and an object u S. u must be of the form [ r t u t s for some real numbers r, s, and t. Hence, the product λu is given by [ λr λt λu, λt λs which is also a symmetric matrix. Hence, λu is also an object in S. Therefore, S is a vector space. 5

6 PROBLEM 4 (25 points The system of difference equations { x x 2y y 2x + y where, 2, 3,... defines a discrete dynamical system. Find a formula for u [x, y for every natural number using that x y and that MATLAB gives >> [P Deig([ -2; -2 (This is problem 2, section 6.3 [ / 2 / 2 P / 2 / 2 [ D 3 Solution: Set u [x, y. Clearly, the system above is equivalent to u Au, where the matrix A is given by A [ 2 2 Iterating the equation u Au we get that u A u (where u [x, y [,. On the other hand, by using the MATLAB information we see that A is diagonalizable (here we use the quic chec that its eigenvalues are all different. In particular, we have which gives [ A P D P P 3 A P D P, [ P ( P 3 P. [ a b Now remember that the inverse of any 2 2 matrix is given by the matrix c d ad bc [ d b c a Using this little tric, we easily compute the inverse of P. P ( / 2 (/ 2 ( / 2 ( / 2 [ / 2 / 2 / 2 / 2 [ / 2 / 2 / 2 / 2 as which gives that P P (that is, in this particular case P turned out to be an orthogonal matrix. All this gives [ A ( P 3 P. 6,

7 Hence, [ u A ( u P 3 Now, we compute the product [ / 2 / 2 / 2 / 2 [ / 2 / 2 P u / 2 / 2 [ ( 3 [ ( 3 [ ( / 2 / 2 / 2 / 2 [ / 2 / 2 [ [ / 2 / 2 / 2 / ( 2 3 / 2 + / 2 [ [ [ / 2 / 2 / 2 / ( 2/ [ [ / 2 / 2 / 2 / ( ( 2/ 2 2 [ ( / 2( ( 2/ 2 ( / 2( ( 2/ 2 [ ( ( [ / 2 / 2 / 2 / 2 [ ( Hence, the general formula for u is u (. That is y ( and x (. In particular, we have that x y, x 2 y 2, x 3 y 3, and so on. ( 7

8 [ PROBLEM 5 (2 points Determine whether the matrix P 2 matrix for A [ 4 2 is a diagonalizing. (This is problem 8 in the Review for Chapter 6, page 323 Solution: By definition, P is a diagonalizing matrix for A if the we have P A P D where D is a diagonal matrix. Hence, we only need to compute the product P A P and chec whether or not it is a diagonal matrix. [ a b To find P we use that the inverse of any 2 2 matrix is given by the matrix c d ad bc In our case, the matrix in question is P P [ d b c a [ 2 [ Hence, its inverse is given by [ 2 Now, we compute [ P A P 2 [ 2 [ 2 3 [ 4 2 [ [ 2 Hence, P A P is a diagonal matrix and therefore P is indeed a diagonalizing matrix for A. 8

9 PROBLEM 6 (2 points Suppose that the characteristic polynomial of a 3 3 matrix B is Answer the following (5 points each:. What are the eigenvalues of B? p(λ (λ (λ + (λ 4. Solution: By definition, the eigenvalues of B are the roots of its characteristic polynomial. That is, the eigenvalue of B are the solutions to Clearly, the eigenvalues are,, and Is B diagonalizable? p(λ (λ (λ + (λ 4 Solution: Yes, it is. The eigenvalues are all distinct (they do not repeat. This is a sufficient (although not necessary condition for diagonalization. 3. What is det(b? Solution: Since B is diagonalizable, we now that B P D P for some invertible matrix P and some diagonal matrix D whose diagonal elements are the eigenvalues of A. Therefore we have det(b det(p D P det(p det(d det(p det(p det(d det(p Thus, det(b Is B invertible? det(d ( 4 4. Solution: Yes, since det(b 4 it follows that B is invertible. 9

10 PROBLEM 7 (25 points Let u [ 3, 2, 4, v [ 2,, and w [, 5,. Compute u (v w. (This is problem 56, section 5.2 Solution: Let s recall the definitions of the dot and cross products (which is a number and [x, x 2, x 3 [y, y 2, y 3 x y + x 2 y 2 + x 3 y 3, [x, x 2, x 3 [y, y 2, y 3 [x 2 y 3 x 3 y 2, x 3 y x y 3, x y 2 x 2 y (which is a vector. We then have v w [ 2,, [, 5, [4, 2, and u (v w [ 3, 2, 4 [4, 2, PROBLEM 8 (25 points Find the shortest distance from the point P ( 2, 3, to the subspace U span{u, u 2 } where u [2,, and u 2 [7, 4, 2. (This is problem 7, section 4.3 Solution: Let v [ 2, 3,. Since u and u 2 are orthogonal (their dot product is zero the projection of v onto the subspace U is given by v v u u 2 u + v u 2 u 2 2 u 2 Recall that the norm of a vector x [x, x 2, x 3 is given by x x 2 + x2 2 + x2 3. Computing and plugging in the dot products and the norms in the formula for v we obtain v 7 5 u u [2,, [7, 4, 2. Finally, the distance from P to the subspace U is given by v v

11 PROBLEM 9 (3 points Let T : R 3 R 2 be the linear operator given by T (x, x 2, x 3 (2x 3x 2 + x 3, x + x 3. Determine the following ( points each (This is problem 7, section 3.4:. The matrix that represents T. Solution: The canonical basis for R 3 is B {[,,, [,,, [,, } Hence, the matrix A that represents T is given by A [T (,,, T (,,, T (,, We now use the definition of T to compute ( T (,, + and Hence, 2. What is ran(t? Is T onto? ( T (,, + ( T (,, + A ( 2 3,,,. Solution: ran(t equals col(a. Hence, since a basis for col(a is {( ( } 2 3, (the third column is a linear combination of the first two. We obtain that {( ( } 2 3 col(a span, In particular, ran(a 2, which coincides with the dimension of the target space R 2. Therefore, T is onto. 3. What is er(t? Is T one-to-one? Solution: Since er(t null(a and, by definition, null(a consists of those vectors x such that Ax, we obtain that er(t is the subspace formed by the solutions to Ax. This leads to the system ( 2 3 x x 2 x 3 (.

12 Computing the reduced row echelon form of the augmented matrix ( [A [, 2 3, which can be easily done by hand, we obtain that there is one free variable and that er(t turns out to be er(t span ( [3, 3. By definition, T is one-to-one only when er(t consists of just the zero vector. In our case er(t consists of infinitely many vectors (all the multiples of [3, 3. Hence, T is not one-to-one. PROBLEM (2 points Find the value of such that the angle between the vectors [2, 3, and [ 2, 5, equals π/2. (This is problem 7, section 4. Solution: The vectors forming an angle of π/2 means that they are orthogonal to each other. That is, their dot product has to be zero. Hence, we need to find the value of such that Clearly the answer is 9. [2, 3, [ 2, 5,

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Math 22 Final Exam 1

Math 22 Final Exam 1 Math 22 Final Exam. (36 points) Determine if the following statements are true or false. In each case give either a short justification or example (as appropriate) to justify your conclusion. T F (a) If

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Review Session There will be a review session on Sunday March 14 (Pi day!!) from 3:30-5:20 in Center 119.

Review Session There will be a review session on Sunday March 14 (Pi day!!) from 3:30-5:20 in Center 119. Announcements Review Session There will be a review session on Sunday March 14 (Pi day!!) from 3:30-5:20 in Center 119. Additional Office Hours I will have office hours Monday from 2-3 (normal time) and

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

(Practice)Exam in Linear Algebra

(Practice)Exam in Linear Algebra (Practice)Exam in Linear Algebra First Year at The Faculties of Engineering and Science and of Health This test has 9 pages and 15 problems. In two-sided print. It is allowed to use books, notes, photocopies

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

Diagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions

Diagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential

More information

Math 308 Final Exam Winter 2015, Form Bonus. of (10) 135

Math 308 Final Exam Winter 2015, Form Bonus. of (10) 135 Math 308 Final Exam Winter 015, 3-18-015 Your Name Your Signature Student ID # Points 1.. 3. 4. 5. 6. 7. 8. 9. 10. 11. Form Bonus of 50 13 1 17 8 3 7 6 3 4 6 6 (10) 135 No books are allowed. But you are

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A =

Section 2.1. Section 2.2. Exercise 6: We have to compute the product AB in two ways, where , B =. 2 1 3 5 A = Section 2.1 Exercise 6: We have to compute the product AB in two ways, where 4 2 A = 3 0 1 3, B =. 2 1 3 5 Solution 1. Let b 1 = (1, 2) and b 2 = (3, 1) be the columns of B. Then Ab 1 = (0, 3, 13) and

More information

1 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

More information

Math 54 Midterm 2, Fall 2015

Math 54 Midterm 2, Fall 2015 Math 54 Midterm 2, Fall 2015 Name (Last, First): Student ID: GSI/Section: This is a closed book exam, no notes or calculators allowed. It consists of 7 problems, each worth 10 points. The lowest problem

More information

2.1: MATRIX OPERATIONS

2.1: MATRIX OPERATIONS .: MATRIX OPERATIONS What are diagonal entries and the main diagonal of a matrix? What is a diagonal matrix? When are matrices equal? Scalar Multiplication 45 Matrix Addition Theorem (pg 0) Let A, B, and

More information

MA 52 May 9, Final Review

MA 52 May 9, Final Review MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters

More information

Linear Algebra A Summary

Linear Algebra A Summary Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u

More information

Solutions to Assignment 9

Solutions to Assignment 9 Solutions to Assignment 9 Math 7, Fall 5.. Construct an example of a matrix with only one distinct eigenvalue. [ ] a b We know that if A then the eigenvalues of A are the roots of the characteristic equation

More information

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, Chapter 1: Linear Equations and Matrices MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 200: EIGENVALUES AND EIGENVECTORS Eigenvalues and Eigenvectors of n n matrices With the formula for the determinant of a n n matrix, we can extend our discussion on the eigenvalues and eigenvectors

More information

SOLUTIONS TO PROBLEM SET 6

SOLUTIONS TO PROBLEM SET 6 SOLUTIONS TO PROBLEM SET 6 18.6 SPRING 16 Note the difference of conventions: these solutions adopt that the characteristic polynomial of a matrix A is det A xi while the lectures adopt the convention

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

Examination paper for TMA4115 Matematikk 3

Examination paper for TMA4115 Matematikk 3 Department of Mathematical Sciences Examination paper for TMA45 Matematikk 3 Academic contact during examination: Antoine Julien a, Alexander Schmeding b, Gereon Quick c Phone: a 73 59 77 82, b 40 53 99

More information

c 1 v 1 + c 2 v c k v k

c 1 v 1 + c 2 v c k v k Definition: A vector space V is a non-empty set of objects, called vectors, on which the operations addition and scalar multiplication have been defined. The operations are subject to ten axioms: For any

More information

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find Scores Name, Section # #2 #3 #4 #5 #6 #7 #8 Midterm 2 Math 27-W, Linear Algebra Directions. You have 0 minutes to complete the following 8 problems. A complete answer will always include some kind of work

More information

Linear Algebra Test File Spring Test #1

Linear Algebra Test File Spring Test #1 Linear Algebra Test File Spring 2015 Test #1 For problems 1-3, consider the following system of equations. Do not use your calculator. x + y - 2z = 0 3x + 2y + 4z = 10 2x + y + 6z = 10 1.) Solve the system

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 06 Method to Find Eigenvalues and Eigenvectors Diagonalization

More information

Note: A typo was corrected in the statement of computational problem #19.

Note: A typo was corrected in the statement of computational problem #19. Note: A typo was corrected in the statement of computational problem #19. 1 True/False Examples True or false: Answers in blue. Justification is given unless the result is a direct statement of a theorem

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Math 24 Winter 2010 Wednesday, February 24

Math 24 Winter 2010 Wednesday, February 24 (.) TRUE or FALSE? Math 4 Winter Wednesday, February 4 (a.) Every linear operator on an n-dimensional vector space has n distinct eigenvalues. FALSE. There are linear operators with no eigenvalues, and

More information

Symmetric Matrices and Quadratic Forms

Symmetric Matrices and Quadratic Forms 7 Symmetric Matrices and Quadratic Forms 7.1 DIAGONALIZAION OF SYMMERIC MARICES SYMMERIC MARIX A symmetric matrix is a matrix A such that. A A Such a matrix is necessarily square. Its main diagonal entries

More information

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am - :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.

More information

Solutions to Assignment 12

Solutions to Assignment 12 Solutions to Assignment Math 7, Fall 6.7. Let P have the inner product given by evaluation at,,, and. Let p =, p = t and q = /(t 5). Find the best approximation to p(t) = t by polynomials in Span{p, p,

More information

MATH 304 Linear Algebra Lecture 11: Basis and dimension.

MATH 304 Linear Algebra Lecture 11: Basis and dimension. MATH 304 Linear Algebra Lecture 11: Basis and dimension. Linear independence Definition. Let V be a vector space. Vectors v 1,v 2,...,v k V are called linearly dependent if they satisfy a relation r 1

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial.

MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. Eigenvalues and eigenvectors of a matrix Definition. Let A be an n n matrix. A number λ R is called

More information

18.03 LA.4: Inverses and Determinants

18.03 LA.4: Inverses and Determinants 8.3 LA.4: Inverses and Determinants [] Transposes [2] Inverses [3] Determinants [] Transposes The transpose of a matrix A is denoted A T, or in Matlab, A. The transpose of a matrix exchanges the rows and

More information

The matrix equation Ax = b can be written in the equivalent form

The matrix equation Ax = b can be written in the equivalent form Last lecture (revision) Let A = (a ij ) be an n m-matrix and let a i = be column i of A ai a ni The matrix equation Ax = b can be written in the equivalent form x a + x 2 a 2 + + x m a m = b Claim The

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A.

Solution. Area(OABC) = Area(OAB) + Area(OBC) = 1 2 det( [ 5 2 1 2. Question 2. Let A = (a) Calculate the nullspace of the matrix A. Solutions to Math 30 Take-home prelim Question. Find the area of the quadrilateral OABC on the figure below, coordinates given in brackets. [See pp. 60 63 of the book.] y C(, 4) B(, ) A(5, ) O x Area(OABC)

More information

for any pair of vectors u and v and any pair of complex numbers c 1 and c 2.

for any pair of vectors u and v and any pair of complex numbers c 1 and c 2. Linear Operators in Dirac notation We define an operator  as a map that associates with each vector u belonging to the (finitedimensional) linear vector space V a vector w ; this is represented by  u

More information

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

More information

(u, Av) = (A T u,v), (6.4)

(u, Av) = (A T u,v), (6.4) 216 SECTION 6.1 CHAPTER 6 6.1 Hermitian Operators HERMITIAN, ORTHOGONAL, AND UNITARY OPERATORS In Chapter 4, we saw advantages in using bases consisting of eigenvectors of linear operators in a number

More information

Coordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write

Coordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write MATH10212 Linear Algebra Brief lecture notes 64 Coordinates Theorem 6.5 Let V be a vector space and let B be a basis for V. For every vector v in V, there is exactly one way to write v as a linear combination

More information

Math 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition.

Math 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition. Math 480 Diagonalization and the Singular Value Decomposition These notes cover diagonalization and the Singular Value Decomposition. 1. Diagonalization. Recall that a diagonal matrix is a square matrix

More information

A Linear Algebra Primer James Baugh

A Linear Algebra Primer James Baugh Introduction to Vectors and Matrices Vectors and Vector Spaces Vectors are elements of a vector space which is a set of mathematical objects which can be added and multiplied by numbers (scalars) subject

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations.

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations. A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Math 215 Exam #1 Solutions

Math 215 Exam #1 Solutions Math 25 Exam # Solutions. (8 points) For each of the following statements, say whether it is true or false. Please write True or False and not just T or F (since these letters are easily mistaken for each

More information

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 4

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 4 . Complex Eigenvalues Math 00: Matrix Theory and Linear Algebra II Solutions to Assignment... Problem [ Restatement: ] Find the eigenvalues and a basis of the eigenspace in C of A =. Final Answer: The

More information

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3 Math 24: Matrix Theory and Linear Algebra II Solutions to Assignment Section 2 The Characteristic Equation 22 Problem Restatement: Find the characteristic polynomial and the eigenvalues of A = Final Answer:

More information

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. 1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is one-to-one

More information

(2) Show that two symmetric matrices are similar if and only if they have the same characteristic polynomials.

(2) Show that two symmetric matrices are similar if and only if they have the same characteristic polynomials. () Which of the following statements are true and which are false? Justify your answer. (a) The product of two orthogonal n n matrices is orthogonal. Solution. True. Let A and B be two orthogonal matrices

More information

Linear Algebra Review (with a Small Dose of Optimization) Hristo Paskov CS246

Linear Algebra Review (with a Small Dose of Optimization) Hristo Paskov CS246 Linear Algebra Review (with a Small Dose of Optimization) Hristo Paskov CS246 Outline Basic definitions Subspaces and Dimensionality Matrix functions: inverses and eigenvalue decompositions Convex optimization

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

Lecture 6. Inverse of Matrix

Lecture 6. Inverse of Matrix Lecture 6 Inverse of Matrix Recall that any linear system can be written as a matrix equation In one dimension case, ie, A is 1 1, then can be easily solved as A x b Ax b x b A 1 A b A 1 b provided that

More information

Math 220 Sections 1, 9 and 11. Review Sheet v.2

Math 220 Sections 1, 9 and 11. Review Sheet v.2 Math 220 Sections 1, 9 and 11. Review Sheet v.2 Tyrone Crisp Fall 2006 1.1 Systems of Linear Equations Key terms and ideas - you need to know what they mean, and how they fit together: Linear equation

More information

Math 215 Exam #1 Practice Problem Solutions

Math 215 Exam #1 Practice Problem Solutions Math 5 Exam # Practice Problem Solutions For each of the following statements, say whether it is true or false If the statement is true, prove it If false, give a counterexample (a) If A is a matrix such

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Coordinates and linear transformations (Leon 3.5, 4.1 4.3) Coordinates relative to a basis Change of basis, transition matrix Matrix

More information

Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that

Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M 1 such that 0. Inverse Matrix Definition A square matrix M is invertible (or nonsingular) if there exists a matrix M such that M M = I = M M. Inverse of a 2 2 Matrix Let M and N be the matrices: a b d b M =, N = c

More information

Math Final Review Dec 10, 2010

Math Final Review Dec 10, 2010 Math 301-001 Final Review Dec 10, 2010 General Points: Date and time: Monday, December 13, 10:30pm 12:30pm Exam topics: Chapters 1 4, 5.1, 5.2, 6.1, 6.2, 6.4 There is just one fundamental way to prepare

More information

Example Linear Algebra Competency Test Solutions. N/A vectors and matrices must be of the same dimensions for addition to be defined.

Example Linear Algebra Competency Test Solutions. N/A vectors and matrices must be of the same dimensions for addition to be defined. Example Linear Algebra Competency Test Solutions The 40 questions below are a combination of True or False, multiple choice, fill in the blank, and computations involving matrices and vectors. In the latter

More information

A Crash Course in Linear Algebra

A Crash Course in Linear Algebra A Crash Course in Linear Algebra Jim Fakonas October, 202 Definitions The goal of this section is to provide a brief refresher in the basic terms and concepts of linear algebra, listed here roughly in

More information

Review: Vector space

Review: Vector space Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.

More information

Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n.

Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: x n. X. LINEAR ALGEBRA: THE BASICS OF MATRICES Matrices provide a compact notation for expressing systems of equations or variables. For instance, a linear function might be written as: y = a 1 + a 2 + a 3

More information

Linear Algebra and Matrices

Linear Algebra and Matrices LECTURE Linear Algebra and Matrices Before embarking on a study of systems of differential equations we will first review, very quickly, some fundamental objects and operations in linear algebra.. Matrices

More information

Questions on Eigenvectors and Eigenvalues

Questions on Eigenvectors and Eigenvalues Questions on Eigenvectors and Eigenvalues If you can answer these questions without any difficulty, the question set on this portion within the exam should not be a problem at all. Definitions Let A be

More information

2.5 Spaces of a Matrix and Dimension

2.5 Spaces of a Matrix and Dimension 38 CHAPTER. MORE LINEAR ALGEBRA.5 Spaces of a Matrix and Dimension MATH 94 SPRING 98 PRELIM # 3.5. a) Let C[, ] denote the space of continuous function defined on the interval [, ] (i.e. f(x) is a member

More information

INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL

INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL SOLUTIONS OF THEORETICAL EXERCISES selected from INTRODUCTORY LINEAR ALGEBRA WITH APPLICATIONS B. KOLMAN, D. R. HILL Eighth Edition, Prentice Hall, 2005. Dr. Grigore CĂLUGĂREANU Department of Mathematics

More information

Linear Algebra Summary

Linear Algebra Summary Linear Algebra Summary 1. Linear Equations in Linear Algebra 1.1 Definitions and Terms 1.1.1 Systems of Linear Equations A linear equation in the variables x 1, x 2,..., x n is an equation that can be

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) May 12, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) May 12, 2015 Final Exam Advanced Linear Algebra Math 4377 / 638 (Spring 215) May 12, 215 4 points 1. Label the following statements are true or false. (1) If S is a linearly dependent set, then each vector in S is

More information

Linear Algebra PRACTICE EXAMINATION SOLUTIONS

Linear Algebra PRACTICE EXAMINATION SOLUTIONS Linear Algebra 2S2 PRACTICE EXAMINATION SOLUTIONS 1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in

More information

Math 1180, Hastings. Notes, part 9

Math 1180, Hastings. Notes, part 9 Math 8, Hastings Notes, part 9 First I want to recall the following very important theorem, which only concerns square matrices. We will need to use parts of this frequently. Theorem Suppose that A is

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Summary of week 8 (Lectures 22, 23 and 24)

Summary of week 8 (Lectures 22, 23 and 24) WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

More information

Examination in TMA4110/TMA4115 Calculus 3, August 2013 Solution

Examination in TMA4110/TMA4115 Calculus 3, August 2013 Solution Norwegian University of Science and Technology Department of Mathematical Sciences Page of Examination in TMA40/TMA45 Calculus 3, August 03 Solution 0 0 Problem Given the matrix A 8 4. 9 a) Write the solution

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

GRE math study group Linear algebra examples D Joyce, Fall 2011

GRE math study group Linear algebra examples D Joyce, Fall 2011 GRE math study group Linear algebra examples D Joyce, Fall 20 Linear algebra is one of the topics covered by the GRE test in mathematics. Here are the questions relating to linear algebra on the sample

More information

POL502: Linear Algebra

POL502: Linear Algebra POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with

More information

Difference Equations. next page. close. exit. Math 45 Linear Algebra. David Arnold.

Difference Equations. next page. close. exit. Math 45 Linear Algebra. David Arnold. Math 45 Linear Algebra David Arnold David-Arnold@Eureka.redwoods.cc.ca.us Abstract This activity investigates the form of d form solutions of first order difference equations of the form u k = Au k where

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS CHARLES REZK Real inner product. Let V be a vector space over R. A (real) inner product is a function, : V V R such that x, y = y, x for all

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

MATH 33A LECTURE 2 FINAL EXAM #1 #2 #3 #4 #5 #6. #7 #8 #9 #10 #11 #12 Total. Student ID:

MATH 33A LECTURE 2 FINAL EXAM #1 #2 #3 #4 #5 #6. #7 #8 #9 #10 #11 #12 Total. Student ID: MATH A LECTURE FINAL EXAM Please note: Show your work. Except on true/false problems, correct answers not accompanied by sufcent explanations will receive little or no credit. Please call one of the proctors

More information

Linear Dependence Tests

Linear Dependence Tests Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

More information

To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors.

To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Review Matrices and Vectors Objective To provide background material in support of topics in Digital Image Processing that are based on matrices and/or vectors. Some Definitions An m n (read "m by n")

More information

Math Winter Final Exam

Math Winter Final Exam Math 02 - Winter 203 - Final Exam Problem Consider the matrix (i) Find the left inverse of A A = 2 2 (ii) Find the matrix of the projection onto the column space of A (iii) Find the matrix of the projection

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Beifang Chen Fall 6 Vector spaces A vector space is a nonempty set V whose objects are called vectors equipped with two operations called addition and scalar multiplication:

More information

Inverses and powers: Rules of Matrix Arithmetic

Inverses and powers: Rules of Matrix Arithmetic Contents 1 Inverses and powers: Rules of Matrix Arithmetic 1.1 What about division of matrices? 1.2 Properties of the Inverse of a Matrix 1.2.1 Theorem (Uniqueness of Inverse) 1.2.2 Inverse Test 1.2.3

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

Linear Algebra Prerequisites - continued. Jana Kosecka

Linear Algebra Prerequisites - continued. Jana Kosecka Linear Algebra Prerequisites - continued Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html kosecka@cs.gmu.edu Matrices meaning m points from n-dimensional space n x m matrix transformation Covariance

More information

Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

More information

Solution Set 8, Fall 11

Solution Set 8, Fall 11 Solution Set 8 186 Fall 11 1 What are the possible eigenvalues of a projection matrix? (Hint: if P 2 P and v is an eigenvector look at P 2 v and P v) Show that the values you give are all possible Solution

More information

More Linear Algebra Study Problems

More Linear Algebra Study Problems More Linear Algebra Study Problems The final exam will cover chapters -3 except chapter. About half of the exam will cover the material up to chapter 8 and half will cover the material in chapters 9-3.

More information

MATH10212 Linear Algebra B Homework 7

MATH10212 Linear Algebra B Homework 7 MATH22 Linear Algebra B Homework 7 Students are strongly advised to acquire a copy of the Textbook: D C Lay, Linear Algebra and its Applications Pearson, 26 (or other editions) Normally, homework assignments

More information

Application of Linear Algebra on Least Squares Approximation

Application of Linear Algebra on Least Squares Approximation Application of Linear Algebra on Least Squares Approximation Kelan Lu Doctoral Student Univ. of North Texas Dept. of Political Science lillylu01@gmail.com May 8, 2010 An Introduction of the Least Squares

More information