# Special Situations in the Simplex Algorithm

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the Simplex algorithm to this problem. After a couple of iterations, we will hit a degenerate solution, which is why this example is chosen. We will then examine the geometrical origin of degeneracy and the related issue of cycling in the Simplex algorithm, with the help of the graphical representation of this problem. After introducing three slack variables and setting up the objective function, we obtain the following initial Simplex tableau. s 3 Variable s s s With x 1 as the entering variable, there is a tie for the minimum ratio, at R 2 and R 3. This (also observed in the previous two-phase example) implies that after a pivot with either R 2 or R 3 as the pivot row, the resulting tableau will have a degenerate basic variable. Let us choose R 2 (say) as the pivot row. Then, after executing a pivot, we obtain the tableau below. Tableau I: s 3 Variable 1 0 1/2 0 1/2 0 4 s x /4 0 1/4 0 2 s The current basic feasible solution is (x 1, x 2, s 1, s 2, s 3 ) = (2, 0, 4, 0, 0), where s 3 is (as expected) a degenerate basic variable. The next pivot column and pivot row will be the x 2 -column and R 3, respectively. After executing another pivot, we obtain the following 1

2 tableau. Tableau II: s 3 Variable /2 4 s x /2 1/4 2 x Again, the current basic feasible solution is (x 1, x 2, s 1, s 2, s 3 ) = (2, 0, 4, 0, 0). However, the identify of the degenerate basic variable has switched from s 3 to x 2. Note that this tableau happens to be optimal (independent of the phenomenon of degeneracy). To understand what it means to have a degenerate solution, let us now refer to the graphical representation of this problem, which is shown in Figure LP-8. Notice that three, not two, constraint equations pass through the corner-point solution (x 1, x 2 ) = (2, 0). These equations are: x 2 = 0, 4x 1 + x 2 = 8, and 4x 1 + 2x 2 = 8. Since only two lines are needed to define such an intersection, we see that degeneracy is a manifestation of redundancy in information. That is, we can choose to let any pair of these equations (out of ( ) 3 = 3 2 combinations) to define this intersection. For example, if we choose x 2 = 0 and 4x 1 +x 2 = 8 as the defining equations, then, since the solution to this pair of equations will automatically satisfy equation 4x 1 + 2x 2 = 8, the value of the slack variable associated with the inequality 4x 1 + 2x 2 8, namely s 3, must turn out to be 0. This accounts for the appearance of the degenerate basic variable s 3 in Tableau I. Similarly, if we choose 4x 1 + x 2 = 8 and 4x 1 + 2x 2 = 8 as the defining equations, then the inequality constraint x 2 0 will turn out to be binding. This accounts for the fact that x 2 is a degenerate basic variable in Tableau II. What will happen if we choose x 2 = 0 and 4x 1 + 2x 2 = 8 as the defining equations? A careful examination of Tableau II shows that if we choose the s 2 -column and R 3 as the pivot column and the pivot row, then the following tableau results after a pivot. Tableau III: s 3 Variable /2 4 s x / /4 2 s This new tableau, again, corresponds to the solution (x 1, x 2, s 1, s 2, s 3 ) = (2, 0, 4, 0, 0). Notice however that the slack variable s 2 associated with the inequality 4x 1 + x 2 8 has indeed replaced x 2 as the degenerate basic variable. 2

3 Recall that in the last pivot, the pivot element is a negative number, 1. This will never occur during ordinary Simplex iterations. (Why?) Our purpose for carrying out such a pivot is to show that there is indeed a third tableau that is associated with the corner-point solution (2, 0). Now, with three tableaus all corresponding to the same set of coordinates, the question is: Is it possible for the Simplex algorithm to cycle through these (or a subset of these) tableaus forever? Theoretically, the answer is yes. However, this happens rarely in practice, and can in fact be avoided. Observe that in order for the Simplex algorithm to cycle, we must repeat ourselves during the iterations. Suppose a (nonoptimal) tableau that has been visited before is generated as the result of a pivot. The idea is to look for a different choice for either the pivot column or the pivot row. Whenever such a choice can be found, we simply continue the algorithm with the new choice. It turns out that repeatedly doing this will eventually take us out of any degenerate solution. We will leave out the difficult theoretical argument that supports this last assertion. In terms of the mechanics of the Simplex algorithm, how does one get out of degeneracy? We will answer this with an example. Consider a tableau that has the configuration below. Pivot Column RHS a d b 0 Degeneracy c e Pivot Row Here, we assume that: we are maximizing, the column explicitly shown on the left is the pivot column, the entry a is negative, the entry b is nonpositive, the entry c is positive, the column shown on the right is the right-hand-side column, the entry e is positive, and finally the row containing c and e is the pivot row. Notice that in the row just above the pivot row, the right-hand-side constant equals 0, which indicates that the current solution is degenerate. However, since b is assumed to be nonpositive, we do not compute a ratio for this row in the ratio test. (To simplify discussion, we also assume that this is the only row with a zero on the right-hand side.) This makes it possible for a row with a positive right-hand-side constant to become the pivot row. Now, when a pivot is performed with the entry c as the pivot element, we will multiply the pivot row by a/c and add the outcome into R 0. This will result in a strict improvement in the objective-function value, from d to d + ( a/c)e. With this strict increase, we are now guaranteed never to return to this tableau again in the remainder of the Simplex algorithm. 3

4 In summary, the phenomenon of cycling in the Simplex algorithm is caused by degeneracy. While cycling can be avoided, the presence of degenerate solutions may temporarily suspend progress in the algorithm. Unboundedness Consider the linear program: Maximize 2x 1 +x 2 Subject to: x 1 x 2 10 (1) 2x 1 x 2 40 (2) x 1, x 2 0. Again, we will first apply the Simplex algorithm to this problem. The algorithm will take us to a tableau that indicates unboundedness of the problem. We will then examine the geometrical origin of unboundedness with the help of the graphical representation of this problem. After introducing two slack variables and setting up the objective function, we obtain the following initial Simplex tableau. Variable s s With x 1 as the entering variable, it is easily seen that R 1 is the pivot row. After executing a pivot, we obtain the tableau below. Variable x s Since x 2 has a negative coefficient in R 0, this tableau is not optimal. Another pivot takes us to the next tableau. Variable x x This tableau again is not optimal. However, at this point, we are unable to perform further iterations, because as we attempt to carry out a ratio test with s 1 as the entering variable, 4

5 it turns out that there is no ratio to compute. What this means is that as we attempt to bring s 1 in as a basic variable, none of the constraints will stop us from increasing its value to infinity. Now, as the value of s 1 increases, the objective-function value will also increase correspondingly at a rate of 4. It follows that the problem does not have an optimal solution. The feasible region of this problem is depicted in Figure LP-9. There, we see that the Simplex algorithm starts with the point (0, 0), follows the x 1 -axis to the point (10, 0), rises diagonally to the point (30, 20), and then takes off to infinity along an infinite ray that emanates from (30, 20). More formally, what we have is that for any nonnegative δ, the solution (x 1, x 2, s 1, s 2 ) = (30 + δ, δ, δ, 0) is feasible. Since this solution has a corresponding objective-function value of δ, we see that the problem is unbounded. Clearly, unboundedness of a problem can occur only when the feasible region is unbounded, which, unfortunately, is something we cannot tell in advance of the solution attempt. In the above example, we detected unboundedness when we encountered a pivot column that does not contain any positive entry. More generally, we can in fact declare a problem as unbounded if any (nonbasic) column, not necessarily associated with the entering variable, is identified to have the above-stated property at the end of an iteration. Referring back to the initial tableau, we see that, indeed, the x 2 -column had this property. Therefore, we could have concluded that the problem is unbounded at the outset. The difference is that the algorithm would then follow the x 2 -axis to infinity. (Of course, another difference is the amount of effort.) The corresponding condition for unboundedness in a minimization problem is slightly different: We should look for a nonbasic column with a positive coefficient in R 0 and with all other entries nonpositive. In most applications of linear programming, if a problem turns out to be unbounded, it is often due to the fact that at least one relevant constraint has been left out during the formulation stage. Therefore, one should carefully reexamine the original formulation. Multiple Optimal Solutions Consider the linear program: Maximize 4x 1 +14x 2 Subject to: 2x 1 +7x 2 21 (1) 7x 1 +2x 2 21 (2) x 1, x

6 As before, we will first apply the Simplex algorithm to this problem. The algorithm will take us to a tableau that indicates that alternative optimal solutions exist. We will then examine the geometrical origin behind the existence of alternative optimal solutions, with the help of the graphical representation of this problem. After introducing two slack variables and setting up the objective function, we obtain the following initial Simplex tableau. Variable s s With x 2 as the entering variable, it is easily seen that R 1 is the pivot row. After executing a pivot, we obtain the tableau below. Variable x 2 0 2/7 1 1/7 0 3 s /7 0 2/ At this point, since every nonbasic variable has a nonnegative coefficient in R 0, the current solution (x 1, x 2, s 1, s 2 ) = (0, 3, 0, 15) is optimal. However, notice that the nonbasic variable x 1 has a coefficient of 0 in R 0. This implies that if we attempt to let x 1 enter the basis, then the objective-function value will not change. Indeed, after a pivot with the x 1 -column as the pivot column, we obtain the following new tableau. Variable x /45 2/45 7/3 x /45 7/45 7/3 With the same objective-function value, the new solution (x 1, x 2, s 1, s 2 ) = (7/3, 7/3, 0, 0) is, of course, also optimal. Note that a further attempt at a pivot in the s 2 -column will take us back to the previous solution. We will therefore not pursue things further. The feasible region of this problem is depicted in Figure LP-10. There, we see that the Simplex algorithm starts with the point (0, 0), travels along the x 2 -axis to the first optimal solution at (0, 3), and then continues on to the second optimal solution at (7/3, 7/3). Notice that the objective-function line 4x x 2 = c (for any c) is parallel to the edge that begins at (0, 3) and ends at (7/3, 7/3). Hence, every point on this edge is optimal. In general, if we are given two optimal solutions to a linear program, then an infinite number of optimal solutions can be constructed. In this example, both (0, 3) and (7/3, 7/3) are 6

7 optimal. Therefore, every point on the edge connecting these two points will also be optimal. Formally, points on this edge are traced out by solutions of the form: (x 1, x 2 ) = δ (0, 3) + (1 δ) (7/3, 7/3), where δ is any value in the interval [0, 1]. As specific examples, if we let δ = 1, then we have the point (0, 3); if we let δ = 0, then we have the point (7/3, 7/3); and if we let δ = 1/2, then we have the point (7/6, 8/3), which is half way between (0, 3) and (7/3, 7/3). 7

### The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

### Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs These questions are from previous years and should you give you some idea of what to expect on Quiz 1. 1. Consider the

### 3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

### Algebraic Simplex Method - Introduction Previous

Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method.

### Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

### Outline. Linear Programming (LP): Simplex Search. Simplex: An Extreme-Point Search Algorithm. Basic Solutions

Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions

### CHAPTER 17. Linear Programming: Simplex Method

CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

### Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011

Section Notes 3 The Simplex Algorithm Applied Math 121 Week of February 14, 2011 Goals for the week understand how to get from an LP to a simplex tableau. be familiar with reduced costs, optimal solutions,

### LINEAR PROGRAMMING MODULE Part 2 - Solution Algorithm

LINEAR PROGRAMMING MODULE Part 2 - Solution Algorithm Name: THE SIMPLEX SOLUTION METHOD It should be obvious to the reader by now that the graphical method for solving linear programs is limited to models

### Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

### The Simplex Solution Method

Module A The Simplex Solution Method A-1 A-2 Module A The Simplex Solution Method The simplex method is a general mathematical solution technique for solving linear programming problems. In the simplex

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

### Chapter 5: Solving General Linear Programs

Chapter 5: Solving General Linear Programs So far we have concentrated on linear programs that are in standard form, which have a maximization objective, all constraints of type, all of the right hand

### 7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

### Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

### I. Solving Linear Programs by the Simplex Method

Optimization Methods Draft of August 26, 2005 I. Solving Linear Programs by the Simplex Method Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston,

### Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### The Simplex Method. What happens when we need more decision variables and more problem constraints?

The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving two decision variables and relatively few problem

### LINEAR PROGRAMMING THE SIMPLEX METHOD

LINEAR PROGRAMMING THE SIMPLE METHOD () Problems involving both slack and surplus variables A linear programming model has to be extended to comply with the requirements of the simplex procedure, that

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables

Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### 56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

### LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources

### Min-cost flow problems and network simplex algorithm

Min-cost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### Simplex Method. Introduction:

Introduction: In the previous chapter, we discussed about the graphical method for solving linear programming problems. Although the graphical method is an invaluable aid to understand the properties of

### Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

### Linear Programming in Matrix Form

Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

### value is determined is called constraints. It can be either a linear equation or inequality.

Contents 1. Index 2. Introduction 3. Syntax 4. Explanation of Simplex Algorithm Index Objective function the function to be maximized or minimized is called objective function. E.g. max z = 2x + 3y Constraints

### The Simplex Method. yyye

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

### Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

### Standard Form of a Linear Programming Problem

494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

### What is Linear Programming?

Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Geometry of Linear Programming

Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### Linear Programming. April 12, 2005

Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

### The Transportation Problem: LP Formulations

The Transportation Problem: LP Formulations An LP Formulation Suppose a company has m warehouses and n retail outlets A single product is to be shipped from the warehouses to the outlets Each warehouse

### Lecture 4 Linear Programming Models: Standard Form. August 31, 2009

Linear Programming Models: Standard Form August 31, 2009 Outline: Lecture 4 Standard form LP Transforming the LP problem to standard form Basic solutions of standard LP problem Operations Research Methods

### Using the Simplex Method in Mixed Integer Linear Programming

Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation

### LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

### 4.4 The Simplex Method: Non-Standard Form

4.4 The Simplex Method: Non-Standard Form Standard form and what can be relaxed What were the conditions for standard form we have been adhering to? Standard form and what can be relaxed What were the

### Module 3 Lecture Notes 2. Graphical Method

Optimization Methods: Linear Programming- Graphical Method Module Lecture Notes Graphical Method Graphical method to solve Linear Programming problem (LPP) helps to visualize the procedure explicitly.

### The Canonical and Dictionary Forms of Linear Programs

The Canonical and Dictionary Forms of Linear Programs Recall the general optimization problem: Minimize f(x) subect to x D (1) The real valued function f is called the obective function, and D the constraint

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### AM 221: Advanced Optimization Spring Prof. Yaron Singer Lecture 7 February 19th, 2014

AM 22: Advanced Optimization Spring 204 Prof Yaron Singer Lecture 7 February 9th, 204 Overview In our previous lecture we saw the application of the strong duality theorem to game theory, and then saw

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### Converting a Linear Program to Standard Form

Converting a Linear Program to Standard Form Hi, welcome to a tutorial on converting an LP to Standard Form. We hope that you enjoy it and find it useful. Amit, an MIT Beaver Mita, an MIT Beaver 2 Linear

### Degeneracy in Linear Programming

Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students

### 3.5 Reduction to Standard Form

3.5 Reduction to Standard Form 77 Exercise 3-4-4. Read the following statements carefully to see whether it is true or false. Justify your answer by constructing a simple illustrative example (for false),

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

### Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### Lecture notes 1: Introduction to linear and (mixed) integer programs

Lecture notes 1: Introduction to linear and (mixed) integer programs Vincent Conitzer 1 An example We will start with a simple example. Suppose we are in the business of selling reproductions of two different

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Linear Programming with Post-Optimality Analyses

Linear Programming with Post-Optimality Analyses Wilson Problem: Wilson Manufacturing produces both baseballs and softballs, which it wholesales to vendors around the country. Its facilities permit the

### 3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### LINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH

59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving

### MTS OPERATIONS RESEARCH...

MTS 363 - OPERATIONS RESEARCH... Dr.I.A.Osinuga Recommended Texts 1. Operations Research (an introduction) Handy A. Taha (3 rd Edition) 2. Optimization (Theory and applications) S.S. Rao 3. Principles

### 56:171. Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.

56:171 Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### Linear Programming is the branch of applied mathematics that deals with solving

Chapter 2 LINEAR PROGRAMMING PROBLEMS 2.1 Introduction Linear Programming is the branch of applied mathematics that deals with solving optimization problems of a particular functional form. A linear programming

### Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras

Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions - Graphical and Algebraic Methods

### 9.4 THE SIMPLEX METHOD: MINIMIZATION

SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to \$5 What number of audits and tax returns will bring in a maximum revenue? In the simplex

### Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

### Math 407A: Linear Optimization

Math 407A: Linear Optimization Lecture 4: LP Standard Form 1 1 Author: James Burke, University of Washington LPs in Standard Form Minimization maximization Linear equations to linear inequalities Lower

### Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

### Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No.

Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture No. # 22 Inventory Models - Discount Models, Constrained Inventory

### 4.3 The Simplex Method and the Standard Maximization Problem

. The Simplex Method and the Standard Maximiation Problem Question : What is a standard maximiation problem? Question : What are slack variables? Question : How do you find a basic feasible solution? Question

### 7.1 Modelling the transportation problem

Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

### 1. (a) Multiply by negative one to make the problem into a min: 170A 170B 172A 172B 172C Antonovics Foster Groves 80 88

Econ 172A, W2001: Final Examination, Possible Answers There were 480 possible points. The first question was worth 80 points (40,30,10); the second question was worth 60 points (10 points for the first

### SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS

SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS Hossein Arsham, University of Baltimore, (410) 837-5268, harsham@ubalt.edu Veena Adlakha, University of Baltimore, (410) 837-4969,

### Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

### 3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Linear Programming, Lagrange Multipliers, and Duality Geoff Gordon

lp.nb 1 Linear Programming, Lagrange Multipliers, and Duality Geoff Gordon lp.nb 2 Overview This is a tutorial about some interesting math and geometry connected with constrained optimization. It is not

### Chapter 5.1 Systems of linear inequalities in two variables.

Chapter 5. Systems of linear inequalities in two variables. In this section, we will learn how to graph linear inequalities in two variables and then apply this procedure to practical application problems.

### Linear Programming Models: Graphical and Computer Methods

Linear Programming Models: Graphical and Computer Methods Learning Objectives Students will be able to: 1. Understand the basic assumptions and properties of linear programming (LP). 2. Graphically solve

### Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

### Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

### Theory of Linear Programming

Theory of Linear Programming Debasis Mishra April 6, 2011 1 Introduction Optimization of a function f over a set S involves finding the maximum (minimum) value of f (objective function) in the set S (feasible

### Basic solutions in standard form polyhedra

Recap, and outline of Lecture Previously min s.t. c x Ax = b x Converting any LP into standard form () Interpretation and visualization () Full row rank assumption on A () Basic solutions and bases in

### Introduction to Linear Programming.

Chapter 1 Introduction to Linear Programming. This chapter introduces notations, terminologies and formulations of linear programming. Examples will be given to show how real-life problems can be modeled