Factorization Theorems

Size: px
Start display at page:

Download "Factorization Theorems"

Transcription

1 Chapter 7 Factorization Theorems This chapter highlights a few of the many factorization theorems for matrices While some factorization results are relatively direct, others are iterative While some factorization results serve to simplify the solution to linear systems, others are concerned with revealing the matrix eigenvalues We consider both types of results here 7 The PLU Decomposition The PLU decomposition (or factorization) To achieve LU factorization we require a modified notion of the row reduced echelon form Definition 7 The modified row echelon form of a matrix is that form which satisfies all the conditions of the modified row reduced echelon form except that we do not require zeros to be above leading ones, and moreover we do not require leading ones, just nonzero entries For example the matrices below are in row echelon form A = 0 0 B = Most of the factorizations A M n (C) studied so far require one essential ingredient, namely the eigenvectors of A While it was not emphasized when we studied Gaussian elimination, there is a LU-type factorization there Assume for the moment that the only operations needed to carry A to its 20

2 202 CHAPTER 7 FACTORIZATION THEOREMS modified row echelon form are those that add a multiple of one row to another The modified row echelon form of a matrix is that form which satisfies all the conditions of the modified row reduced echelon form except that we do not require zeros to be above leading ones, and moreover we do not require leading ones, just nonzero entries Naturally it is easy to make the leading nonzero entries into leading ones by the multiplication by an appropriate identity matrix That is not the point here What we want to observe is that in this case the reduction is accomplished by the left multiplication of A by a sequence of lower triangular matrices of the form 0 0 L = 0 c 0 Since we pivot at the (, )-entry first, we eliminate all the entries in the first column below the first row The product of all the matrices L to accomplish this has the form L = c 2 0 c 3 0 c n 0 where c k = a k a Thus, with the notation that A = A has entries a () ij this first phase of the reduction renders the matrix A 2 with entries a (2) ij a (2) a (2) n 0 a (2) 22 A 2 = L A = 0 a (2) 32 a (2) 33 0 a (2) n2 a (2) nn Since we have assumed that no row interchanges are necessary to carry out the reduction we know that a (2) 22 6=0 The next part of the reduction process is the elimination of the elements in the second column below the second

3 7 THE PLU DECOMPOSITION 203 row, ie a (2) (2) 32 0, a n2 0 Correspondingly, this can be achieved by a matrix of the form 0 0 L 2 = 0 c 22 0 c n2 (What are the values c k2?) The result is the matrix A 3 given by A 3 = L 2 A 2 = L 2 L A = a (3) a (3) n 0 a (3) a (3) a (3) 3n a (3) nn Proceeding in this way through all the rows (columns) there results A n = L n A n = L n L 2 L A = a (3) a (3) n 0 a (3) a (3) a (3) nn The right side of the equation above is an upper triangular matrix Denote it by U Since each of the matrices L i,i=,n is invertible we can write The lemma below is useful in this A = L L n U Lemma 7 Suppose the lower triangular matrix L M n (C) has the

4 204 CHAPTER 7 FACTORIZATION THEOREMS form L = c k+,k 0 0 c nk k th row Then L is invertible with inverse given by 0 0 L = 0 c k+,k 0 0 c nk Proof Trivial k th row Lemma 72 Suppose L, L 2,,L n are the matrices given above Then the matrix L = L L n has the form c 2 0 c 3 c 32 L = c k+,k c n c n2 c nk Proof Trivial Applying these lemmas to the present situation we can say that when no row interchanges are needed we can factor and matrix A M n (C) as A = LU, where L is lower triangular and U is upper triangular When row

5 7 THE PLU DECOMPOSITION 205 interchanges are needed and we let P be the permutation matrix that creates these row interchanges then the LU-factorization above can be carried out for the matrix PA Thus PA = LU, where L is lower triangular and U is upper triangular We call this the PLU factorization Let us summarize this in the following theorem Theorem 7 Let A M n (C) Then there is a permutation matrix P M n (C) and lower L and upper U triangular matrices ( M n (C)), such that PA = LU Moreover, L can be taken to have ones on its diagonal That is, `ii =, i =,n By applying the result above to A T it is easy to see that the matrix U can be taken to have the ones in its diagonal The result is stated as a corollary Corollary 7 Let A M n (C) Then there is a permutation matrix P M n (C) and lower and upper triangular matrices ( M n (C)) respectively, such that PA = LU Moreover, U can be taken to have ones on its diagonal (u ii =, i =,n) The PLU decomposition can be put in service to solving the system Ax = b as follows Assume that A M n (C) is invertible Determine the permutation matrix P in order that PA = LU, where L is lower triangular and U is upper triangular Thus, we have Solve the systems Ax = b PAx = Pb LUx = Pb Ly = Pb Ux = y Then LUx = Ly = Pb Hence x is a solution to the system The advantages of this formulation over the direct Gaussian elimination is that the systems Ly = Pband Ux = y are triangular and hence are easy to solve For example i T for the first of the systems, Ly = Pb, let the vector Pb = hˆb,,ˆb n Then it is easy to see that back substitution (aka forward substitution )

6 206 CHAPTER 7 FACTORIZATION THEOREMS can be used to determine y That is, we have the recursive relations y = ˆb l y 2 = ˆb 2 l 2 y l 22 y n = à ˆbn n X m= l nm y m! l nn A similar formula applies to solve Ux = y Inthiscasewesolvefirst for x n = y n /u nn The general formula is recursive with x k being determined after x k+,,x n are determined using the formula à x k = y k nx m=k+ u km y m! In practice the step of determining and then multiplying by the permutation matrix is not actually carried out Rather, an index array is generated, while the elimination step is accomplished that effectively interchanges a pointer to the row interchanges This saves considerable time in solving potentially very large systems More general and instructive methods are available for accomplishing this LU factorization Also, conditions are available for when no (nontrivial) permutation is required We need the following lemma Lemma 73 Let A M n (C) have the LU factorization A = LU, where L is lower triangular and U is upper triangular For any partition of the matrix of the form A A A = 2 A 2 A 22 u kk there are corresponding decompositions of the matrices L and U L 0 L = L 2 L 22 U U and U = 2 0 U 22

7 7 THE PLU DECOMPOSITION 207 where the L ii and the U ii are lower and upper triangular respectively Moreover, we have A = L U A 2 = L 2 U A 2 = L 2 U 22 A 22 = L 2 U 2 + L 22 U 22 Thus L U is a LU factorization of A With this lemma we can establish that almost every matrix can have a LU factorization Definition 72 Let A M n (C) and suppose that j n The expression det(a{,,j}) means the determininant of the upper left j j submatrix of A These quaditities for j =,,nare called the principal determinants of A Theorem 72 Let A M n (C) and suppose that A has rank k If det(a{,,j}) 6= 0 for j =,,k () then A has a LU factorization A = LU, where L is lower triangular and U is upper triangular Moreover, the factorization may be taken so that either L or U is nonsingular In the case k = n both L and U will be nonsingular Proof We carry out this LU factorization as a direct calculation in comparison to the Gaussian elimination method above Let us propose to solve the equation LU = A expressed as l u u 2 u 3 u n l 2 l 22 0 u 22 u 23 u 2n l 3 l 32 l 33 u 33 0 l n l n2 l nn unn a a 2 a 3 a n a 2 a 22 a 23 a 2n a 3 a 32 a 33 = a n a n2 a nn

8 208 CHAPTER 7 FACTORIZATION THEOREMS It is easy to see that l u = a We can take, for example l =and solve for u The detminant condition assures us that u 6=0 Next solve for the (2, )-entry We have l 2 u = a 2 Since u 6=0, solve for l 2 For the (, 2)-entry we have l u 2 = a 2,whichcanbesolvedforu 2 since l 6= 0 Finally, for the (2, 2)-entry, l 2 u 2 + l 22 u 22 = a 22 is an equation with two unknowns Assign l 22 = and solve for u 22 What is important to note is that the process carried out this way gives the factorization of the upper left 2 2 submatrix of A Thus l 0 u u 2 a a = 2 l 2 l 22 0 u 22 a 2 a 22 µ a a Since det 2 a 2 a 22 l 0 we know that µ u u 6= 0, it follows that det 2 0 u 22 6= 0and is nonsingular as the diagonal elements are ones l 2 l 22 Continue the factorization process through the k k upper left submatrix of A Now consider the blocked matrix form form A A A A = 2 A 2 A 22 where A is k k and has rank k Thus we know that the rows of the lower (n k) n matrix above, that is A 2 A 22 canbewrittenasaunique linear combination of the rows of the upper k n matrix A A 2 Thus A2 A 22 = C A A 2 for some (n k) k matrix C Of course this means: A 2 = CA and A 22 = CA 2 We consider the factorization A A A = 2 A 2 A 22 L 0 = L 2 L 22 U U 2 0 U 22 where the blocks L and U have just been determined From the equations in the lemma above we solve to get U 2 = L A 2 and L 2 =

9 72 LR FACTORIZATION 209 A 2 U Then A 22 = L 2 U 2 + L 22 U 22 = A 2 U L A 2 + L 22 U 22 = A 2 A A 2 + L 22 U 22 = CA A A 2 + L 22 U 22 = C A 2 + L 22 U 22 = A 22 + L 22 U 22 Thus we solve L 22 U 22 =0 Obviously, we can take for L 22 any nonsingular matrix we wish and solve for U 22 or conversely 72 LR factorization While the PLU factorization is useful for solving systems, the LR factorization can be used to determine eigenvalues Let A M n be given Then Then Continue in this fashion to obtain We define A = A = L R L A L = R L A 2 A 2 = L 2 R 2 L 2 A 2L 2 = R 2 L 2 A 3 L k A kl k = R k L k A k+ (?) Then P k = L L 2 L k Q k = R k R 2 R P k A k+ = A P k

10 20 CHAPTER 7 FACTORIZATION THEOREMS for or Hence A k+ = L k A kl k = L k L k A k L k L k = P k A P k P k A k+ = A P k P k Q k = P k A k Q k = A P k Q k = A P k 2 A k Q k 2 = A 2 P k 2 Q k 2 = A k Theorem 72 (Rutishauser) Let A M n be given Assume the eigenvalues of A satisfy λ > λ 2 > > λ n > 0 Then A Λ = diag(λ λ n ) Assume A = SΛS,and Y S = L y R y X = S = L x R x where L y and L x are lower unit triangular matrices and R y and R x are upper triangular Then A k defined by (?) satisfy the result lim A k is upper triangular Proof (Wilkinson) We have A k = XΛ k Y = XΛ k L y R y = XΛ k L y Λ k Λ k R y

11 73 THE QR ALGORITHM 2 By the strict inequalities between the eigenvalues we have i = j µ k (Λ k L y Λ k λi ) ij = `ij i>j λ j 0 i<j Hence Λ k L y Λ k I (because λ i λ j < ifi>j) Hence with and A k = L x R x (Λ k L y Λ k )Λ k R y A k = P k Q k we conclude that lim k P k = L x Therefore L k = P k P k I Finally we have that A k must be upper triangular because is upper triangular L k A k = R k This exposes all the eigenvalues of A determined Therefore the eigenvectors can be 73 The QR algorithm Certain numerical problems with the LU algorithm have led to the QR algorithm, which is based on the decomposition of the matrix A as A = QR where Q is unitary and R is upper triangular Theorem 73 (QR-factorization) (i) Suppose A is in M n,m and n m Then there is a matrix Q M n,m with orthogonal columns and an uppertriangularmatrix R M m such that A = QR

12 22 CHAPTER 7 FACTORIZATION THEOREMS (ii) If n = m, thenq is unitary If A is nonsingular the diagonal entries of R can be chosen to be positive (iii) If A is real; then Q and R maybechosentobereal Proof (i) We proceed inductively Let a,, a n denote the columns of A and q,q 2,,q m denote the columns of Q The basic idea of the QR-factorization is to orthogonalize the columns of A from left P to right Then the columns can be expressed by the formulas a k = k i= c kq k, k =,,n The coefficients of the expansion become, respectively, the entries of the k th column of R, completedbyn k zeros (Of course, if the rank of A is less than m, wefill in arbitrary orthogonal vectors which we know exist as m n) For the details, first define q = a /ka k To compute q 2 we use the Gram Schmidt procedure Tracing backwards note that ˆq 2 = a 2 hq,a iq q 2 =ˆq 2 /kˆq 2 k a 2 =ˆq 2 + hq,a iq = kˆq 2 kq 2 + hq,a iq So we have ka k hq,a i a a 2 a 3 q q = 2 q 3 0 kˆq 2 k Instead of the full inductive step we compute q 3 and finish at that point ˆq 3 = a 3 hq,a 3 iq hq 2,a 3 iq 2 q 3 =ˆq 3 /kˆq 3 k Hence a 3 = kˆq 3 kq 3 + hq,a 3 iq + hq 2,a 3 iq 2

13 73 THE QR ALGORITHM 23 The third column of R is thus given by r 3 =[hq,a 3 i, hq 2,a 3 i, kˆq 3 k, 0, 0,,0] T In this way we see that the columns of Q are orthogonal and the matrix R is upper triangular, with an exception That is the possibility that ˆq k = 0 for some k In this degenerate case we take q k to be any vector orthogonal to the span of a,a 2,,a m,andwetaker kj =0, j = k, k +m Alsowenotethatifˆq k =0,thena k is linearly dependent on a,a 2,,a k, and hence on q,q 2,q k Select the coefficients r k,,r k k to reflect this dependence (ii) If m = n, the process above yields a unitary matrix If A is nonsingular, the process above yields a matrix R with a positive diagonal (iii) If A is a real, all operators above can be carried out in real arithmetic Now what about the uniqueness of the decomposition? Essentially the uniqueness is true up to a multiplication by a diagonal matrix, except in the case when the matrix has rank is less than m, when there is no form of uniqueness Suppose that the rank of A is m Then application of the Gram-Schmidt procedure yields a matrix R with positive diagonal Suppose that A has two QR factorizations, QR and PS with upper triangular factors having positive diagonals Then P Q = SR We have that SR is upper triangular and moreover has a positive diagonal Also, P Q is unitary We know that the only upper triangular unitary matrices are diagonal matrices, and finally the only unitary matrix with a positive diagonal is the identity matrix Therefore P Q = I, whichisto say that P = Q We summarize as Corollary 73 Suppose A is in M n,m and n m If rank(a) =m then the QR factorization of A = QR with upper triangular matrix R having a positive diagonal is unique

14 24 CHAPTER 7 FACTORIZATION THEOREMS The QR algorithm The QR algorithm parallels the LR algorithm almost identically Suppose A is in M n Define Also A = Q R A 2 R Q Q A Q = A 2 Then decompose A 2 into a QR decomposition A 2 = Q 2 R 2 and Q 2A 2 Q 2 = R 2 Q 2 A 3 Also Q 2Q A Q Q 2 = R 2 Q 2 = A 3 Proceed sequentially Let A k = Q k R k A k+ = R k Q k Q k A kq k = A k+ Then whence P k = Q Q 2 Q k T k = R k R k R P k A P k = A k+ P k A k+ = A P k

15 73 THE QR ALGORITHM 25 Also we have P k T k = P k Q k R k T k = P k A k T k = A P k T k = = A k Theorem 732 Let A M n be given, and assume the eigenvalues of A satisfy λ > λ 2 > > λ n > 0 Then the iterations A k converge to a triangular matrix Proof Our hypothesis gives that A is diagonalizable, and we write A Λ = diag(λ λ n ) That is, where Λ = diag(λ λ n ) Let A = SΛS X = S = Q x R x Y = S = L y U y here QR here LU Then A k = Q x R x Λ k L y U y = Q x R x Λ k L y Λ k Λ k U y = Q x (I + R x E k Rx )R x Λ k U Y where It follows that I + R x E k R x E k = Λ k L y Λ k I 0 i = j (E k ) ij = (λ i /λ j ) k`ij i>j 0 i<j I, andr x Λ k U y is upper triangular Thus Q x (I + R x E k R x )R x Λ k U y = P k T k

16 26 CHAPTER 7 FACTORIZATION THEOREMS The matrix I + R x E k Rx can be QR factored as Ũk R k, and since I + R x E k Rx I, it follows that we can assume both Ũk I and R k I Hence A k = Q x Ũ k [ R k (I + R x E k R x )R x Λ k U y ]=P k T k with the first factor unitary and the second factor upper triangular Since we have assumed (by the eigenvalue condition) that A is nonsingular, this factorization is essentially unique, where possibly a multiplication by a diagonal matrix must be applied to give the upper triangular factor on the right a positive diagonal Just what is the form of the diagonal matrix can be seen from the following Let Λ = Λ Λ,where Λ is the diagonal matrix of moduli of the elements of Λ and where Λ is the unitary matrix of the signs of each eigenvalue respectively We also take U y = Λ 2 (Λ 2 U y)where Λ 2 is a unitary matrix chosen so that Λ 2U has a positive diagonal Then ³ A k = Q x Ũ k Λ 2 Λ k [ Λ 2 Λ k Rk (I + R x E k Rx )R x ³Λ 2 Λ k Λ k (Λ 2U y )] = P k T k From this we obtain P k is essentially asymptotic to Q x Ũ k Λ 2 Λ k this we obtain that and from Q k = P k P k Λ which is diagonal Finally, it follows that A k is upper triangular since Q k A k = R k In the limit therefore A is similar to an upper triangular matrix Example 73 Apply the QR method to the matrix A := The matrix A has eigvenvalues 545, 0723, 87 The successive iterations are

17 74 LEAST SQUARES 27 A 2 = A 4 = A 6 = A 8 = A 3 = A 5 = A 7 = Note the gradual appearance of the eigenvalues on the diagonal Remark These iterations were carried out in precision 3 arithmetic, which affects the rate of convergence to triangular form 74 Least Squares As we know, if A M n,m with m<nit is generally not possible to solve the overdetermined system Ax = b For example, suppose we have the data {(x i,y i )} n i=,withthex-coordinates distinct We may wish to fit a straight to this data This means we want to find coefficients m and b so that b + mx i = y i, i =,,n (?) Taking the matrix and data vector x x 2 A = x n y y 2 b = y n and z =[b, m] T, the system (?) becomes Az = b Usually n À 2 Hence there is virtually no hope to determine a unique solution to system However, there are numerous ways to determine constants m and b so that the resulting line represents the data For example, owing to the distinctness of the x-coordinates, it is possible to solve any 2 2 subsystem of

18 28 CHAPTER 7 FACTORIZATION THEOREMS Az = b Other variations exist A new 2 2 system could be created by creating two averages of the data, say left and right, and solving Assume kp the sequence {x j } is ordered from least to greatest Define x` = k x j and j= np x r = n k x j Let y` and y r denote the corresponding averages for the j=k+ ordinates Then define the intercept b and slope m by solving the system x` b = y` x r m y r While this will normally give a reasonable approximating line, its value has little utility beyond its naive simplicity and visual appearance What is desired is to establish a criteria for choosing the line Define the residual of the approximation r = b Az Itmakesperfect sense to consider finding z =[b, m] T for which the residual is minimized in some norm Any norm can be selected here, but on practical grounds the best norm to use is the Euclidean norm k k 2 The vector Az that yields the minimal norm residual is the one for which (b Az) Aw, for we are seeking the nearest value in the Aw to the vector b It can be found by select the one for the solution, Az, forwhich This means b Ax Aw all w hb Ax, Ayi =0 ally or ha T (b Ay),yi =0 ally or A T (b Ay) =0 A T Ay = A T b Normal Equations The least squares solution to Ax = b is given by the solution to the normal equation A T Ay = A T b

19 75 EXERCISES 29 Suppose we have the QR decomposition for A ThenifA is real Hence the normal equations become A T A = R T Q T QR = R T R A T y = R T Qy R T Rx = R T Qy Assuming that the rank of A is m, wemusthavethatr and hence R T is invertible Therefore we have the least squares solution is given by the triangular system 75 Exercises Rx = Qy If A M(C) hasrankk, show that there is a permutation matrix P such that PA has its first k principal determinants nonzero 2 For the least squares fit of a straight line determine R and Q 3 In the case of data A T n Σxi A = Σx i Σx 2 i A T Σyi b = Σx i y i 4 In attempting to solve a quadratic fit wehavethemodel The system is c + bx i + ax 2 i = y i i =,,n x x 2 y y 2 A = b = x n x 2 n y n The normal equations have the matrix and data given by n Σx i Σx 2 A T i Σy i A = Σx i Σx 2 i Σx 3 i A T b = Σx i y i Σx 2 i Σx 2 i Σx 4 i Σx 2 i y i 5 Find the normal equations for the least squares fit ofdatatoapolynomial of degree k

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

LINEAR ALGEBRA. September 23, 2010

LINEAR ALGEBRA. September 23, 2010 LINEAR ALGEBRA September 3, 00 Contents 0. LU-decomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

Solution of Linear Systems

Solution of Linear Systems Chapter 3 Solution of Linear Systems In this chapter we study algorithms for possibly the most commonly occurring problem in scientific computing, the solution of linear systems of equations. We start

More information

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization 7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

6. Cholesky factorization

6. Cholesky factorization 6. Cholesky factorization EE103 (Fall 2011-12) triangular matrices forward and backward substitution the Cholesky factorization solving Ax = b with A positive definite inverse of a positive definite matrix

More information

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.

Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i. Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Solving Linear Systems, Continued and The Inverse of a Matrix

Solving Linear Systems, Continued and The Inverse of a Matrix , Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing

More information

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication). MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Applied Linear Algebra I Review page 1

Applied Linear Algebra I Review page 1 Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties

More information

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems

Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Numerical Methods I Solving Linear Systems: Sparse Matrices, Iterative Methods and Non-Square Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001,

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix 7. LU factorization EE103 (Fall 2011-12) factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization algorithm effect of rounding error sparse

More information

1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES 1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

More information

Orthogonal Bases and the QR Algorithm

Orthogonal Bases and the QR Algorithm Orthogonal Bases and the QR Algorithm Orthogonal Bases by Peter J Olver University of Minnesota Throughout, we work in the Euclidean vector space V = R n, the space of column vectors with n real entries

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Lecture 4: Partitioned Matrices and Determinants

Lecture 4: Partitioned Matrices and Determinants Lecture 4: Partitioned Matrices and Determinants 1 Elementary row operations Recall the elementary operations on the rows of a matrix, equivalent to premultiplying by an elementary matrix E: (1) multiplying

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

MAT188H1S Lec0101 Burbulla

MAT188H1S Lec0101 Burbulla Winter 206 Linear Transformations A linear transformation T : R m R n is a function that takes vectors in R m to vectors in R n such that and T (u + v) T (u) + T (v) T (k v) k T (v), for all vectors u

More information

Methods for Finding Bases

Methods for Finding Bases Methods for Finding Bases Bases for the subspaces of a matrix Row-reduction methods can be used to find bases. Let us now look at an example illustrating how to obtain bases for the row space, null space,

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

8 Square matrices continued: Determinants

8 Square matrices continued: Determinants 8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Solving Linear Systems of Equations. Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.

Solving Linear Systems of Equations. Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx. Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

Inner products on R n, and more

Inner products on R n, and more Inner products on R n, and more Peyam Ryan Tabrizian Friday, April 12th, 2013 1 Introduction You might be wondering: Are there inner products on R n that are not the usual dot product x y = x 1 y 1 + +

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Lecture 1: Schur s Unitary Triangularization Theorem

Lecture 1: Schur s Unitary Triangularization Theorem Lecture 1: Schur s Unitary Triangularization Theorem This lecture introduces the notion of unitary equivalence and presents Schur s theorem and some of its consequences It roughly corresponds to Sections

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Numerical Analysis Lecture Notes Peter J. Olver 6. Eigenvalues and Singular Values In this section, we collect together the basic facts about eigenvalues and eigenvectors. From a geometrical viewpoint,

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Linear Algebra: Determinants, Inverses, Rank

Linear Algebra: Determinants, Inverses, Rank D Linear Algebra: Determinants, Inverses, Rank D 1 Appendix D: LINEAR ALGEBRA: DETERMINANTS, INVERSES, RANK TABLE OF CONTENTS Page D.1. Introduction D 3 D.2. Determinants D 3 D.2.1. Some Properties of

More information

More than you wanted to know about quadratic forms

More than you wanted to know about quadratic forms CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences More than you wanted to know about quadratic forms KC Border Contents 1 Quadratic forms 1 1.1 Quadratic forms on the unit

More information

Subspaces of R n LECTURE 7. 1. Subspaces

Subspaces of R n LECTURE 7. 1. Subspaces LECTURE 7 Subspaces of R n Subspaces Definition 7 A subset W of R n is said to be closed under vector addition if for all u, v W, u + v is also in W If rv is in W for all vectors v W and all scalars r

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Elementary Matrices and The LU Factorization

Elementary Matrices and The LU Factorization lementary Matrices and The LU Factorization Definition: ny matrix obtained by performing a single elementary row operation (RO) on the identity (unit) matrix is called an elementary matrix. There are three

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Unit 18 Determinants

Unit 18 Determinants Unit 18 Determinants Every square matrix has a number associated with it, called its determinant. In this section, we determine how to calculate this number, and also look at some of the properties of

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

More information

ALGEBRAIC EIGENVALUE PROBLEM

ALGEBRAIC EIGENVALUE PROBLEM ALGEBRAIC EIGENVALUE PROBLEM BY J. H. WILKINSON, M.A. (Cantab.), Sc.D. Technische Universes! Dsrmstedt FACHBEREICH (NFORMATiK BIBL1OTHEK Sachgebieto:. Standort: CLARENDON PRESS OXFORD 1965 Contents 1.

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Lecture 5 Least-squares

Lecture 5 Least-squares EE263 Autumn 2007-08 Stephen Boyd Lecture 5 Least-squares least-squares (approximate) solution of overdetermined equations projection and orthogonality principle least-squares estimation BLUE property

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

MAT 242 Test 2 SOLUTIONS, FORM T

MAT 242 Test 2 SOLUTIONS, FORM T MAT 242 Test 2 SOLUTIONS, FORM T 5 3 5 3 3 3 3. Let v =, v 5 2 =, v 3 =, and v 5 4 =. 3 3 7 3 a. [ points] The set { v, v 2, v 3, v 4 } is linearly dependent. Find a nontrivial linear combination of these

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

A note on companion matrices

A note on companion matrices Linear Algebra and its Applications 372 (2003) 325 33 www.elsevier.com/locate/laa A note on companion matrices Miroslav Fiedler Academy of Sciences of the Czech Republic Institute of Computer Science Pod

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

Notes on Factoring. MA 206 Kurt Bryan

Notes on Factoring. MA 206 Kurt Bryan The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 30th, 2010 A. Donev (Courant Institute)

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

1.2 Solving a System of Linear Equations

1.2 Solving a System of Linear Equations 1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables

More information

Chapter 7. Lyapunov Exponents. 7.1 Maps

Chapter 7. Lyapunov Exponents. 7.1 Maps Chapter 7 Lyapunov Exponents Lyapunov exponents tell us the rate of divergence of nearby trajectories a key component of chaotic dynamics. For one dimensional maps the exponent is simply the average

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Math 312 Homework 1 Solutions

Math 312 Homework 1 Solutions Math 31 Homework 1 Solutions Last modified: July 15, 01 This homework is due on Thursday, July 1th, 01 at 1:10pm Please turn it in during class, or in my mailbox in the main math office (next to 4W1) Please

More information

Row Echelon Form and Reduced Row Echelon Form

Row Echelon Form and Reduced Row Echelon Form These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

More information

MATH 551 - APPLIED MATRIX THEORY

MATH 551 - APPLIED MATRIX THEORY MATH 55 - APPLIED MATRIX THEORY FINAL TEST: SAMPLE with SOLUTIONS (25 points NAME: PROBLEM (3 points A web of 5 pages is described by a directed graph whose matrix is given by A Do the following ( points

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University

Linear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

Using row reduction to calculate the inverse and the determinant of a square matrix

Using row reduction to calculate the inverse and the determinant of a square matrix Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

26. Determinants I. 1. Prehistory

26. Determinants I. 1. Prehistory 26. Determinants I 26.1 Prehistory 26.2 Definitions 26.3 Uniqueness and other properties 26.4 Existence Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent

More information